Symmetric monoidal category (original) (raw)

About DBpedia

In der Mathematik ist eine symmetrische monoidale Kategorie eine monoidale Kategorie (d. h. eine Kategorie, in der ein "Tensorprodukt" definiert ist), deren Tensorprodukt symmetrisch ist (d. h. man hat einen natürlichen Isomorphismus zwischen und für alle Objekte und ). Ein typisches Beispiele ist die Kategorie der Vektorräume über einem gegebenen Körper.

thumbnail

Property Value
dbo:abstract In der Mathematik ist eine symmetrische monoidale Kategorie eine monoidale Kategorie (d. h. eine Kategorie, in der ein "Tensorprodukt" definiert ist), deren Tensorprodukt symmetrisch ist (d. h. man hat einen natürlichen Isomorphismus zwischen und für alle Objekte und ). Ein typisches Beispiele ist die Kategorie der Vektorräume über einem gegebenen Körper. (de) In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" is defined) such that the tensor product is symmetric (i.e. is, in a certain strict sense, naturally isomorphic to for all objects and of the category). One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field k, using the ordinary tensor product of vector spaces. (en) 범주론에서 대칭 모노이드 범주(對稱monoid範疇, 영어: symmetric monoidal category)는 동형 사상 아래 결합 법칙과 교환 법칙이 성립하고, 동형 사상 아래 항등원이 존재하는 이항 연산을 갖는 범주이다. (교환 법칙이 성립하지 못할 수 있는) 모노이드 범주의 개념의 특수한 경우이다. (ko) В теории категорий симметричная моноидальная категория — это моноидальная категория, в которой операция тензорного произведения «настолько коммутативна, насколько это возможно». В симметричной моноидальной категории для любых объектов выбран изоморфизм , причём все эти изоморфизмы вместе образуют естественное семейство. (ru)
dbo:thumbnail wiki-commons:Special:FilePath/symmetric_monoidal_unit_coherence.png?width=300
dbo:wikiPageID 3865249 (xsd:integer)
dbo:wikiPageLength 4563 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1110712883 (xsd:integer)
dbo:wikiPageWikiLink dbr:Monoidal_category dbr:Dagger_category dbr:Dagger_symmetric_monoidal_category dbc:Monoidal_categories dbr:Mathematics dbr:Natural_transformation dbr:Nerve_(category_theory) dbr:Braided_monoidal_category dbr:Cosmos_(category_theory) dbr:Lie_algebra dbr:Closed_monoidal_category dbr:Complete_category dbr:Category_of_sets dbr:Field_(mathematics) dbr:Tensor_product_of_modules dbr:Group_representation dbr:Cartesian_monoidal_category dbr:Category_of_groups dbr:Category_theory dbr:Singleton_(mathematics) dbr:Category_of_vector_spaces dbr:Stereotype_space dbr:Category_of_bimodules dbr:Classifying_space_(category_theory) dbr:Group_completion dbr:Infinite_loop_space dbr:File:Symmetric_monoidal_associativity_coherence.png dbr:File:Symmetric_monoidal_inverse_law.png dbr:File:Symmetric_monoidal_unit_coherence.png
dbp:id 41190 (xsd:integer) symmetric+monoidal+category (en)
dbp:title Symmetric monoidal category (en)
dbp:wikiPageUsesTemplate dbt:Nlab dbt:Reflist dbt:Short_description dbt:Category_theory dbt:PlanetMath_attribution
dcterms:subject dbc:Monoidal_categories
rdf:type yago:WikicatMonoidalCategories yago:Abstraction100002137 yago:Class107997703 yago:Collection107951464 yago:Group100031264
rdfs:comment In der Mathematik ist eine symmetrische monoidale Kategorie eine monoidale Kategorie (d. h. eine Kategorie, in der ein "Tensorprodukt" definiert ist), deren Tensorprodukt symmetrisch ist (d. h. man hat einen natürlichen Isomorphismus zwischen und für alle Objekte und ). Ein typisches Beispiele ist die Kategorie der Vektorräume über einem gegebenen Körper. (de) In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" is defined) such that the tensor product is symmetric (i.e. is, in a certain strict sense, naturally isomorphic to for all objects and of the category). One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field k, using the ordinary tensor product of vector spaces. (en) 범주론에서 대칭 모노이드 범주(對稱monoid範疇, 영어: symmetric monoidal category)는 동형 사상 아래 결합 법칙과 교환 법칙이 성립하고, 동형 사상 아래 항등원이 존재하는 이항 연산을 갖는 범주이다. (교환 법칙이 성립하지 못할 수 있는) 모노이드 범주의 개념의 특수한 경우이다. (ko) В теории категорий симметричная моноидальная категория — это моноидальная категория, в которой операция тензорного произведения «настолько коммутативна, насколько это возможно». В симметричной моноидальной категории для любых объектов выбран изоморфизм , причём все эти изоморфизмы вместе образуют естественное семейство. (ru)
rdfs:label Symmetrische monoidale Kategorie (de) 대칭 모노이드 범주 (ko) Symmetric monoidal category (en) Симметричная моноидальная категория (ru)
owl:sameAs dbpedia-ru:Symmetric monoidal category freebase:Symmetric monoidal category yago-res:Symmetric monoidal category wikidata:Symmetric monoidal category dbpedia-de:Symmetric monoidal category dbpedia-ko:Symmetric monoidal category https://global.dbpedia.org/id/f6tf
prov:wasDerivedFrom wikipedia-en:Symmetric_monoidal_category?oldid=1110712883&ns=0
foaf:depiction wiki-commons:Special:FilePath/Symmetric_monoidal_associativity_coherence.png wiki-commons:Special:FilePath/Symmetric_monoidal_inverse_law.png wiki-commons:Special:FilePath/Symmetric_monoidal_unit_coherence.png wiki-commons:Special:FilePath/symmetric_monoidal_associativity_coherence.png wiki-commons:Special:FilePath/symmetric_monoidal_inverse_law.png wiki-commons:Special:FilePath/symmetric_monoidal_unit_coherence.png
foaf:isPrimaryTopicOf wikipedia-en:Symmetric_monoidal_category
is dbo:wikiPageRedirects of dbr:Symmetric_monoidal_categories dbr:Symmetric_monoidal_closed_category dbr:Symmetric_monoidal_infinity_category dbr:Symmetric_monoidal_∞-category
is dbo:wikiPageWikiLink of dbr:En-ring dbr:Enriched_category dbr:Monoid_(category_theory) dbr:Monoidal_category dbr:Tannaka–Krein_duality dbr:Dagger_compact_category dbr:Dagger_symmetric_monoidal_category dbr:Infinite_loop_space_machine dbr:Internal_bialgebroid dbr:Presheaf_with_transfers dbr:String_diagram dbr:Timeline_of_category_theory_and_related_mathematics dbr:*-autonomous_category dbr:ZX-calculus dbr:Glossary_of_category_theory dbr:Cosmos_(category_theory) dbr:Operad dbr:Super_vector_space dbr:Symmetric_monoidal_categories dbr:Bialgebroid dbr:Closed_monoidal_category dbr:Compact_closed_category dbr:PROP_(category_theory) dbr:Rigid_category dbr:Traced_monoidal_category dbr:Autonomous_category dbr:Dual_object dbr:Pointed_space dbr:Field_with_one_element dbr:Product_(category_theory) dbr:Smash_product dbr:Tensor dbr:Tensor_product_of_graphs dbr:AB5_category dbr:Highly_structured_ring_spectrum dbr:Tensor_product_of_Hilbert_spaces dbr:Tensor_product_of_algebras dbr:Cartesian_product_of_graphs dbr:Categorical_trace dbr:Category_of_modules dbr:Category_of_rings dbr:Chain_complex dbr:Strong_monad dbr:Supermodule dbr:Symmetric_spectrum dbr:Rig_category dbr:Symmetric_monoidal_closed_category dbr:Symmetric_monoidal_infinity_category dbr:Symmetric_monoidal_∞-category
is foaf:primaryTopic of wikipedia-en:Symmetric_monoidal_category