List of prime numbers (original) (raw)

About DBpedia

بالنظر إلى مبرهنة إقليدس، عدد الأعداد الأولية غير منته. الأعداد الأولية تتكون من مختلفة. الأعداد الأولية الخمس مائة الأولى مدرجة أدناه، تليها قوائم الأعداد الأولى من مختلف الأنواع في الترتيب الأبجدي.

Property Value
dbo:abstract بالنظر إلى مبرهنة إقليدس، عدد الأعداد الأولية غير منته. الأعداد الأولية تتكون من مختلفة. الأعداد الأولية الخمس مائة الأولى مدرجة أدناه، تليها قوائم الأعداد الأولى من مختلف الأنواع في الترتيب الأبجدي. (ar) Následující seznam obsahuje všechna prvočísla menší než 10000: * 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71 * 73 * 79 * 83 * 89 * 97 * 101 * 103 * 107 * 109 * 113 * 127 * 131 * 137 * 139 * 149 * 151 * 157 * 163 * 167 * 173 * 179 * 181 * 191 * 193 * 197 * 199 * 211 * 223 * 227 * 229 * 233 * 239 * 241 * 251 * 257 * 263 * 269 * 271 * 277 * 281 * 283 * 293 * 307 * 311 * 313 * 317 * 331 * 337 * 347 * 349 * 353 * 359 * 367 * 373 * 379 * 383 * 389 * 397 * 401 * 409 * 419 * 421 * 431 * 433 * 439 * 443 * 449 * 457 * 461 * 463 * 467 * 479 * 487 * 491 * 499 * 503 * 509 * 521 * 523 * 541 * 547 * 557 * 563 * 569 * 571 * 577 * 587 * 593 * 599 * 601 * 607 * 613 * 617 * 619 * 631 * 641 * 643 * 647 * 653 * 659 * 661 * 673 * 677 * 683 * 691 * 701 * 709 * 719 * 727 * 733 * 739 * 743 * 751 * 757 * 761 * 769 * 773 * 787 * 797 * 809 * 811 * 821 * 823 * 827 * 829 * 839 * 853 * 857 * 859 * 863 * 877 * 881 * 883 * 887 * 907 * 911 * 919 * 929 * 937 * 941 * 947 * 953 * 967 * 971 * 977 * 983 * 991 * 997 * * * * * * * * * * * * * * * 1093 * * 1103 * 1109 * 1117 * 1123 * 1129 * 1151 * 1153 * 1163 * 1171 * 1181 * 1187 * 1193 * 1201 * 1213 * 1217 * 1223 * 1229 * 1231 * 1237 * 1249 * 1259 * 1277 * 1279 * 1283 * 1289 * 1291 * 1297 * 1301 * 1303 * 1307 * 1319 * 1321 * 1327 * 1361 * 1367 * 1373 * 1381 * 1399 * 1409 * 1423 * 1427 * 1429 * 1433 * 1439 * 1447 * 1451 * 1453 * 1459 * 1471 * 1481 * 1483 * 1487 * 1489 * 1493 * 1499 * 1511 * 1523 * 1531 * 1543 * 1549 * 1553 * 1559 * 1567 * 1571 * 1579 * 1583 * 1597 * 1601 * 1607 * 1609 * 1613 * 1619 * 1621 * 1627 * 1637 * 1657 * 1663 * 1667 * 1669 * 1693 * 1697 * 1699 * 1709 * 1721 * 1723 * 1733 * 1741 * 1747 * 1753 * 1759 * 1777 * 1783 * 1787 * 1789 * 1801 * 1811 * 1823 * 1831 * 1847 * 1861 * 1867 * 1871 * 1873 * 1877 * 1879 * 1889 * 1901 * 1907 * 1913 * 1931 * 1933 * 1949 * 1951 * 1973 * 1979 * 1987 * 1993 * 1997 * 1999 * 2003 * 2011 * 2017 * 2027 * 2029 * 2039 * 2053 * 2063 * 2069 * 2081 * 2083 * 2087 * 2089 * 2099 * 2111 * 2113 * 2129 * 2131 * 2137 * 2141 * 2143 * 2153 * 2161 * 2179 * 2203 * 2207 * 2213 * 2221 * 2237 * 2239 * 2243 * 2251 * 2267 * 2269 * 2273 * 2281 * 2287 * 2293 * 2297 * 2309 * 2311 * 2333 * 2339 * 2341 * 2347 * 2351 * 2357 * 2371 * 2377 * 2381 * 2383 * 2389 * 2393 * 2399 * 2411 * 2417 * 2423 * 2437 * 2441 * 2447 * 2459 * 2467 * 2473 * 2477 * 2503 * 2521 * 2531 * 2539 * 2543 * 2549 * 2551 * 2557 * 2579 * 2591 * 2593 * 2609 * 2617 * 2621 * 2633 * 2647 * 2657 * 2659 * 2663 * 2671 * 2677 * 2683 * 2687 * 2689 * 2693 * 2699 * 2707 * 2711 * 2713 * 2719 * 2729 * 2731 * 2741 * 2749 * 2753 * 2767 * 2777 * 2789 * 2791 * 2797 * 2801 * 2803 * 2819 * 2833 * 2837 * 2843 * 2851 * 2857 * 2861 * 2879 * 2887 * 2897 * 2903 * 2909 * 2917 * 2927 * 2939 * 2953 * 2957 * 2963 * 2969 * 2971 * 2999 * 3001 * 3011 * 3019 * 3023 * 3037 * 3041 * 3049 * 3061 * 3067 * 3079 * 3083 * 3089 * 3109 * 3119 * 3121 * 3137 * 3163 * 3167 * 3169 * 3181 * 3187 * 3191 * 3203 * 3209 * 3217 * 3221 * 3229 * 3251 * 3253 * 3257 * 3259 * 3271 * 3299 * 3301 * 3307 * 3313 * 3319 * 3323 * 3329 * 3331 * 3343 * 3347 * 3359 * 3361 * 3371 * 3373 * 3389 * 3391 * 3407 * 3413 * 3433 * 3449 * 3457 * 3461 * 3463 * 3467 * 3469 * 3491 * 3499 * 3511 * 3517 * 3527 * 3529 * 3533 * 3539 * 3541 * 3547 * 3557 * 3559 * 3571 * 3581 * 3583 * 3593 * 3607 * 3613 * 3617 * 3623 * 3631 * 3637 * 3643 * 3659 * 3671 * 3673 * 3677 * 3691 * 3697 * 3701 * 3709 * 3719 * 3727 * 3733 * 3739 * 3761 * 3767 * 3769 * 3779 * 3793 * 3797 * 3803 * 3821 * 3823 * 3833 * 3847 * 3851 * 3853 * 3863 * 3877 * 3881 * 3889 * 3907 * 3911 * 3917 * 3919 * 3923 * 3929 * 3931 * 3943 * 3947 * 3967 * 3989 * 4001 * 4003 * 4007 * 4013 * 4019 * 4021 * 4027 * 4049 * 4051 * 4057 * 4073 * 4079 * 4091 * 4093 * 4099 * 4111 * 4127 * 4129 * 4133 * 4139 * 4153 * 4157 * 4159 * 4177 * 4201 * 4211 * 4217 * 4219 * 4229 * 4231 * 4241 * 4243 * 4253 * 4259 * 4261 * 4271 * 4273 * 4283 * 4289 * 4297 * 4327 * 4337 * 4339 * 4349 * 4357 * 4363 * 4373 * 4391 * 4397 * 4409 * 4421 * 4423 * 4441 * 4447 * 4451 * 4457 * 4463 * 4481 * 4483 * 4493 * 4507 * 4513 * 4517 * 4519 * 4523 * 4547 * 4549 * 4561 * 4567 * 4583 * 4591 * 4597 * 4603 * 4621 * 4637 * 4639 * 4643 * 4649 * 4651 * 4657 * 4663 * 4673 * 4679 * 4691 * 4703 * 4721 * 4723 * 4729 * 4733 * 4751 * 4759 * 4783 * 4787 * 4789 * 4793 * 4799 * 4801 * 4813 * 4817 * 4831 * 4861 * 4871 * 4877 * 4889 * 4903 * 4909 * 4919 * 4931 * 4933 * 4937 * 4943 * 4951 * 4957 * 4967 * 4969 * 4973 * 4987 * 4993 * 4999 * 5003 * 5009 * 5011 * 5021 * 5023 * 5039 * 5051 * 5059 * 5077 * 5081 * 5087 * 5099 * 5101 * 5107 * 5113 * 5119 * 5147 * 5153 * 5167 * 5171 * 5179 * 5189 * 5197 * 5209 * 5227 * 5231 * 5233 * 5237 * 5261 * 5273 * 5279 * 5281 * 5297 * 5303 * 5309 * 5323 * 5333 * 5347 * 5351 * 5381 * 5387 * 5393 * 5399 * 5407 * 5413 * 5417 * 5419 * 5431 * 5437 * 5441 * 5443 * 5449 * 5471 * 5477 * 5479 * 5483 * 5501 * 5503 * 5507 * 5519 * 5521 * 5527 * 5531 * 5557 * 5563 * 5569 * 5573 * 5581 * 5591 * 5623 * 5639 * 5641 * 5647 * 5651 * 5653 * 5657 * 5659 * 5669 * 5683 * 5689 * 5693 * 5701 * 5711 * 5717 * 5737 * 5741 * 5743 * 5749 * 5779 * 5783 * 5791 * 5801 * 5807 * 5813 * 5821 * 5827 * 5839 * 5843 * 5849 * 5851 * 5857 * 5861 * 5867 * 5869 * 5879 * 5881 * 5897 * 5903 * 5923 * 5927 * 5939 * 5953 * 5981 * 5987 * 6007 * 6011 * 6029 * 6037 * 6043 * 6047 * 6053 * 6067 * 6073 * 6079 * 6089 * 6091 * 6101 * 6113 * 6121 * 6131 * 6133 * 6143 * 6151 * 6163 * 6173 * 6197 * 6199 * 6203 * 6211 * 6217 * 6221 * 6229 * 6247 * 6257 * 6263 * 6269 * 6271 * 6277 * 6287 * 6299 * 6301 * 6311 * 6317 * 6323 * 6329 * 6337 * 6343 * 6353 * 6359 * 6361 * 6367 * 6373 * 6379 * 6389 * 6397 * 6421 * 6427 * 6449 * 6451 * 6469 * 6473 * 6481 * 6491 * 6521 * 6529 * 6547 * 6551 * 6553 * 6563 * 6569 * 6571 * 6577 * 6581 * 6599 * 6607 * 6619 * 6637 * 6653 * 6659 * 6661 * 6673 * 6679 * 6689 * 6691 * 6701 * 6703 * 6709 * 6719 * 6733 * 6737 * 6761 * 6763 * 6779 * 6781 * 6791 * 6793 * 6803 * 6823 * 6827 * 6829 * 6833 * 6841 * 6857 * 6863 * 6869 * 6871 * 6883 * 6899 * 6907 * 6911 * 6917 * 6947 * 6949 * 6959 * 6961 * 6967 * 6971 * 6977 * 6983 * 6991 * 6997 * 7001 * 7013 * 7019 * 7027 * 7039 * 7043 * 7057 * 7069 * 7079 * 7103 * 7109 * 7121 * 7127 * 7129 * 7151 * 7159 * 7177 * 7187 * 7193 * 7207 * 7211 * 7213 * 7219 * 7229 * 7237 * 7243 * 7247 * 7253 * 7283 * 7297 * 7307 * 7309 * 7321 * 7331 * 7333 * 7349 * 7351 * 7369 * 7393 * 7411 * 7417 * 7433 * 7451 * 7457 * 7459 * 7477 * 7481 * 7487 * 7489 * 7499 * 7507 * 7517 * 7523 * 7529 * 7537 * 7541 * 7547 * 7549 * 7559 * 7561 * 7573 * 7577 * 7583 * 7589 * 7591 * 7603 * 7607 * 7621 * 7639 * 7643 * 7649 * 7669 * 7673 * 7681 * 7687 * 7691 * 7699 * 7703 * 7717 * 7723 * 7727 * 7741 * 7753 * 7757 * 7759 * 7789 * 7793 * 7817 * 7823 * 7829 * 7841 * 7853 * 7867 * 7873 * 7877 * 7879 * 7883 * 7901 * 7907 * 7919 * 7927 * 7933 * 7937 * 7949 * 7951 * 7963 * 7993 * 8009 * 8011 * 8017 * 8039 * 8053 * 8059 * 8069 * 8081 * 8087 * 8089 * 8093 * 8101 * 8111 * 8117 * 8123 * 8147 * 8161 * 8167 * 8171 * 8179 * 8191 * 8209 * 8219 * 8221 * 8231 * 8233 * 8237 * 8243 * 8263 * 8269 * 8273 * 8287 * 8291 * 8293 * 8297 * 8311 * 8317 * 8329 * 8353 * 8363 * 8369 * 8377 * 8387 * 8389 * 8419 * 8423 * 8429 * 8431 * 8443 * 8447 * 8461 * 8467 * 8501 * 8513 * 8521 * 8527 * 8537 * 8539 * 8543 * 8563 * 8573 * 8581 * 8597 * 8599 * 8609 * 8623 * 8627 * 8629 * 8641 * 8647 * 8663 * 8669 * 8677 * 8681 * 8689 * 8693 * 8699 * 8707 * 8713 * 8719 * 8731 * 8737 * 8741 * 8747 * 8753 * 8761 * 8779 * 8783 * 8803 * 8807 * 8819 * 8821 * 8831 * 8837 * 8839 * 8849 * 8861 * 8863 * 8867 * 8887 * 8893 * 8923 * 8929 * 8933 * 8941 * 8951 * 8963 * 8969 * 8971 * 8999 * 9001 * 9007 * 9011 * 9013 * 9029 * 9041 * 9043 * 9049 * 9059 * 9067 * 9091 * 9103 * 9109 * 9127 * 9133 * 9137 * 9151 * 9157 * 9161 * 9173 * 9181 * 9187 * 9199 * 9203 * 9209 * 9221 * 9227 * 9239 * 9241 * 9257 * 9277 * 9281 * 9283 * 9293 * 9311 * 9319 * 9323 * 9337 * 9341 * 9343 * 9349 * 9371 * 9377 * 9391 * 9397 * 9403 * 9413 * 9419 * 9421 * 9431 * 9433 * 9437 * 9439 * 9461 * 9463 * 9467 * 9473 * 9479 * 9491 * 9497 * 9511 * 9521 * 9533 * 9539 * 9547 * 9551 * 9587 * 9601 * 9613 * 9619 * 9623 * 9629 * 9631 * 9643 * 9649 * 9661 * 9677 * 9679 * 9689 * 9697 * 9719 * 9721 * 9733 * 9739 * 9743 * 9749 * 9767 * 9769 * 9781 * 9787 * 9791 * 9803 * 9811 * 9817 * 9829 * 9833 * 9839 * 9851 * 9857 * 9859 * 9871 * 9883 * 9887 * 9901 * 9907 * 9923 * 9929 * 9931 * 9941 * 9949 * 9967 * 9973 (cs) This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite. (en) Bilangan prima adalah bilangan asli lebih besar dari 1 yang tidak memiliki pembagi positif selain 1 dan dirinya sendiri. Menurut , ada bilangan prima yang takhingga. Himpunan bagian dari bilangan prima dapat dibuat dengan berbagai . 1000 bilangan prima pertama tercantum di bawah ini, diikuti dengan daftar jenis bilangan prima yang terkenal dalam urutan abjad, memberikan suku pertamanya masing-masing. 1 bukan bilangan prima atau komposit. (in) Aucune liste de nombres premiers finie ne peut être exhaustive car il existe une infinité de nombres premiers. On ne connaît d’ailleurs pas non plus de formule simple produisant une telle liste. Des listes plus longues de nombres premiers sont disponibles, notamment sur les sites de : * l'encyclopédie en ligne des suites de nombres entiers (OEIS) ; * l'université d'Utah (U) ; * l'université du Tennessee at Martin (UTM) ; * l'université d'Arizona (Chris Caldwell) ; * Gérard Villemin. (fr) 素数の一覧(そすうのいちらん)では、素数を小さいものから順にリストする。素数は無限に存在するため網羅は不可能であるが、ここでは小さい順に200個の一覧を載せる。 「巨大な素数の一覧」も参照 (ja) Esistono infiniti numeri primi che possono essere individuati con diverse formule. Il più grande individuato sinora, che contiene 24 862 048 cifre, è esprimibile come: Di seguito sono riportati tutti i numeri primi fino a un massimo di 5 cifre (pertanto minori di 100 000). Sono in tutto 9 592. (it) Dit is een lijst van de eerste duizend priemgetallen; het hoogste getal in de tabel is 7919. In een lijst van de eerste tienduizend priemgetallen is 104 729 het hoogste getal. Er zijn veel langere lijsten bekend, bijvoorbeeld tot 1 000 000 000 000 (10¹², biljoen); het hoogste priemgetal in die lijst is 990 000 028 099. Er bestaan oneindig veel priemgetallen, wat meer dan tweeduizend jaar geleden al bewezen werd met de stelling van Euclides. Hoewel de priemgetallen niet regelmatig verdeeld zijn en de priemgetalhiaten onbegrensd zijn, is er een duidelijk verband tussen de grootte van een priemgetal en zijn volgnummer, wat uitgedrukt wordt in de priemgetalstelling en de priemgetal-telfunctie. Bij de eerste priemgetallen is het verband nog zwak, maar het wordt beter bij het oplopen van de volgnummers. (nl) Detta är en lista över primtal som ordnas ordinalt men även efter . Ett primtal är ett naturligt tal, som är större än 1 och som inte har några andra positiva delare än 1 och talet självt. Enligt Euklides sats finns det oändligt många primtal. De första 1 000 primtalen visas i den första tabellen, följt av listor med anmärkningsvärda typer av primtal i alfabetisk ordning. Notera att 1 varken är ett primtal eller ett sammansatt tal. (sv) Um número primo (ou um primo) é um número natural maior do que 1 que não possui divisores além de 1 e de si mesmo. Pelo teorema de Euclides, há uma infinidade de números primos. É possível gerar subconjuntos de números primos por meio de várias . Os primeiros 1000 números primos são listados a seguir, seguidos de listas de tipos notáveis de números primos em ordem alfabética, contendo os seus respectivos primeiros termos. Pela definição, o número 1 não é nem primo nem composto. (pt) Эта страница содержит список первых 500 простых чисел (от 2 до 3571), а также списки некоторых специальных типов простых чисел. (ru) Ця сторінка містить список перших 500 простих чисел а також деякі інші прості числа. (uk) 可以证明,质数的数目是无限多的,而它們可以透過不同的質數公式產生出來。以下將列出頭500個質數,並以英文字母的順序將不同種類的質數中的第一批列出來。 (zh)
dbo:wikiPageExternalLink http://www.prime-numbers.org/ http://www.rsok.com/~jrm/printprimes.html https://ghostarchive.org/varchive/youtube/20211102/QSEKzFGpCQs%7C https://www.youtube.com/watch%3Fv=QSEKzFGpCQs http://www.fermatquotient.com/FermatQuotienten/FermQ_Sort.txt http://oeis.org/wiki/Index_to_OEIS:_Section_Pri http://primes.utm.edu/lists/ http://primes.utm.edu/nthprime/
dbo:wikiPageID 442370 (xsd:integer)
dbo:wikiPageLength 108630 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1124462660 (xsd:integer)
dbo:wikiPageWikiLink dbr:40000_(number) dbr:5_(number) dbr:60000_(number) dbr:65537_(number) dbr:70000_(number) dbr:80000_(number) dbr:90000_(number) dbr:Prime-counting_function dbr:Primitive_root_modulo_n dbr:Pythagorean_prime dbr:Bell_prime dbr:Stern_prime dbr:Prime_gap dbr:1901_(number) dbr:1907_(number) dbr:1913_(number) dbr:191_(number) dbr:193_(number) dbr:211_(number) dbr:Binomial_coefficient dbr:Brady_Haran dbr:Repunit dbr:Riemann_hypothesis dbr:Cullen_number dbr:Cyclic_number dbr:Unique_prime dbc:Number-related_lists dbr:Seven-segment_display dbr:2017_(number) dbr:2099_(number) dbr:2719_(number) dbr:2887_(number) dbr:307_(number) dbr:401_(number) dbr:419_(number) dbr:457_(number) dbr:503_(number) dbr:509_(number) dbr:619_(number) dbr:727_(number) dbr:757_(number) dbr:787_(number) dbr:811_(number) dbr:883_(number) dbr:Mills'_constant dbr:Leyland_number dbr:Isolated_prime dbr:283_(number) dbr:100000000_(number) dbr:10000000_(number) dbr:1000000_(number) dbr:100000_(number) dbr:10000_(number) dbr:1000_(number) dbr:1009_(number) dbr:1013_(number) dbr:1019_(number) dbr:101_(number) dbr:1021_(number) dbr:1031_(number) dbr:1033_(number) dbr:1039_(number) dbr:103_(number) dbr:1049_(number) dbr:1051_(number) dbr:1061_(number) dbr:1063_(number) dbr:1069_(number) dbr:107_(number) dbr:1087_(number) dbr:1091_(number) dbr:1093_(number) dbr:1097_(number) dbr:109_(number) dbr:1103_(number) dbr:1109_(number) dbr:1117_(number) dbr:1123_(number) dbr:1129_(number) dbr:113_(number) dbr:1151_(number) dbr:1153_(number) dbr:1163_(number) dbr:1171_(number) dbr:1181_(number) dbr:1187_(number) dbr:1193_(number) dbr:11_(number) dbr:1201_(number) dbr:1213_(number) dbr:1217_(number) dbr:1223_(number) dbr:1229_(number) dbr:1231_(number) dbr:1237_(number) dbr:1249_(number) dbr:1259_(number) dbr:1277_(number) dbr:1279_(number) dbr:127_(number) dbr:1283_(number) dbr:1289_(number) dbr:1291_(number) dbr:1297_(number) dbr:1301_(number) dbr:1303_(number) dbr:1307_(number) dbr:1319_(number) dbr:131_(number) dbr:1321_(number) dbr:1327_(number) dbr:1361_(number) dbr:1367_(number) dbr:1373_(number) dbr:137_(number) dbr:1381_(number) dbr:1399_(number) dbr:139_(number) dbr:13_(number) dbr:1409_(number) dbr:1423_(number) dbr:1427_(number) dbr:1429_(number) dbr:1433_(number) dbr:1439_(number) dbr:1447_(number) dbr:1451_(number) dbr:1453_(number) dbr:1459_(number) dbr:1471_(number) dbr:1481_(number) dbr:1483_(number) dbr:1487_(number) dbr:1489_(number) dbr:1493_(number) dbr:1499_(number) dbr:149_(number) dbr:1511_(number) dbr:151_(number) dbr:1523_(number) dbr:1531_(number) dbr:1543_(number) dbr:1601_(number) dbr:17_(number) dbr:157_(number) dbr:163_(number) dbr:167_(number) dbr:Cototient dbr:Safe_prime dbr:Primorial_prime dbr:Pell_number dbr:Quartan_prime dbr:1607_(number) dbr:1609_(number) dbr:1613_(number) dbr:1619_(number) dbr:1621_(number) dbr:1627_(number) dbr:1637_(number) dbr:1657_(number) dbr:1663_(number) dbr:1667_(number) dbr:1669_(number) dbr:1693_(number) dbr:1697_(number) dbr:1699_(number) dbr:1709_(number) dbr:1721_(number) dbr:1723_(number) dbr:1733_(number) dbr:173_(number) dbr:1747_(number) dbr:1753_(number) dbr:1759_(number) dbr:1777_(number) dbr:1783_(number) dbr:1787_(number) dbr:1789_(number) dbr:179_(number) dbr:1801_(number) dbr:1811_(number) dbr:181_(number) dbr:1823_(number) dbr:1831_(number) dbr:1847_(number) dbr:1861_(number) dbr:1867_(number) dbr:1871_(number) dbr:1873_(number) dbr:1877_(number) dbr:1879_(number) dbr:1889_(number) dbr:1549_(number) dbr:1553_(number) dbr:1559_(number) dbr:1567_(number) dbr:1571_(number) dbr:1579_(number) dbr:1583_(number) dbr:1597_(number) dbr:Class_number_(number_theory) dbr:Eisenstein_integer dbr:Gaussian_prime dbr:Modular_arithmetic dbr:Cuban_prime dbr:Smarandache–Wellin_number dbr:197_(number) dbr:1987_(number) dbr:Arithmetic_mean dbr:Subsequence dbr:Cluster_prime dbr:Composite_number dbr:Full_reptend_prime dbr:Perrin_number dbr:Supersingular_prime_(moonshine_theory) dbr:Proth_number dbr:1931_(number) dbr:1933_(number) dbr:1949_(number) dbr:1951_(number) dbr:20000_(number) dbr:53_(number) dbr:59_(number) dbr:613_(number) dbr:67_(number) dbr:71_(number) dbr:743_(number) dbr:79_(number) dbr:83_(number) dbr:881_(number) dbr:89_(number) dbr:911_(number) dbr:971_(number) dbr:97_(number) dbr:Twin_prime dbr:Wieferich_prime dbr:Wilson_prime dbr:Divisor dbr:Irreducible_element dbr:Irregular_prime dbr:Permutable_prime dbr:1973_(number) dbr:2 dbr:2147483647 dbr:23_(number) dbr:241_(number) dbr:3 dbr:317_(number) dbr:4000_(number) dbr:43,112,609_(number) dbr:5 dbr:5000_(number) dbr:593_(number) dbr:6000_(number) dbr:61_(number) dbr:7 dbr:7000_(number) dbr:701_(number) dbr:73_(number) dbr:8000_(number) dbr:8191_(number) dbr:9000_(number) dbr:1997_(number) dbr:1999_(number) dbr:223_(number) dbr:227_(number) dbr:229_(number) dbr:233_(number) dbr:239_(number) dbr:251_(number) dbr:257_(number) dbr:263_(number) dbr:269_(number) dbr:271_(number) dbr:277_(number) dbr:281_(number) dbr:29_(number) dbr:311_(number) dbr:313_(number) dbr:31_(number) dbr:3511_(number) dbr:353_(number) dbr:359_(number) dbr:37_(number) dbr:41_(number) dbr:43_(number) dbr:47_(number) dbc:Prime_numbers dbr:Cyclotomic_field dbr:Euclid's_theorem dbr:Euler_number dbr:Fibonacci_number dbr:Balanced_prime dbc:Classes_of_prime_numbers dbr:Partition_(number_theory) dbr:Partition_of_a_set dbr:Dihedral_prime dbr:Dirichlet's_theorem_on_arithmetic_progressions dbr:Fortunate_number dbr:Goldbach's_conjecture
dbp:colwidth 20 (xsd:integer)
dbp:small yes (en)
dbp:title Prime Number Sequences (en)
dbp:urlname topics/PrimeNumberSequences (en)
dbp:wikiPageUsesTemplate dbt:Annotated_link dbt:As_of dbt:Cbignore dbt:Cite_web dbt:Div_col dbt:Div_col_end dbt:Dynamic_list dbt:E dbt:In_lang dbt:Math dbt:MathWorld dbt:Mvar dbt:OEIS dbt:Portal dbt:Pp dbt:Reflist dbt:See_also dbt:Short_description dbt:Sub dbt:Sup dbt:Use_dmy_dates dbt:OEIS2C dbt:Prime_number_classes
dct:subject dbc:Number-related_lists dbc:Prime_numbers dbc:Classes_of_prime_numbers dbc:Mathematics-related_lists
gold:hypernym dbr:Number
rdf:type owl:Thing
rdfs:comment بالنظر إلى مبرهنة إقليدس، عدد الأعداد الأولية غير منته. الأعداد الأولية تتكون من مختلفة. الأعداد الأولية الخمس مائة الأولى مدرجة أدناه، تليها قوائم الأعداد الأولى من مختلف الأنواع في الترتيب الأبجدي. (ar) This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite. (en) Bilangan prima adalah bilangan asli lebih besar dari 1 yang tidak memiliki pembagi positif selain 1 dan dirinya sendiri. Menurut , ada bilangan prima yang takhingga. Himpunan bagian dari bilangan prima dapat dibuat dengan berbagai . 1000 bilangan prima pertama tercantum di bawah ini, diikuti dengan daftar jenis bilangan prima yang terkenal dalam urutan abjad, memberikan suku pertamanya masing-masing. 1 bukan bilangan prima atau komposit. (in) Aucune liste de nombres premiers finie ne peut être exhaustive car il existe une infinité de nombres premiers. On ne connaît d’ailleurs pas non plus de formule simple produisant une telle liste. Des listes plus longues de nombres premiers sont disponibles, notamment sur les sites de : * l'encyclopédie en ligne des suites de nombres entiers (OEIS) ; * l'université d'Utah (U) ; * l'université du Tennessee at Martin (UTM) ; * l'université d'Arizona (Chris Caldwell) ; * Gérard Villemin. (fr) 素数の一覧(そすうのいちらん)では、素数を小さいものから順にリストする。素数は無限に存在するため網羅は不可能であるが、ここでは小さい順に200個の一覧を載せる。 「巨大な素数の一覧」も参照 (ja) Esistono infiniti numeri primi che possono essere individuati con diverse formule. Il più grande individuato sinora, che contiene 24 862 048 cifre, è esprimibile come: Di seguito sono riportati tutti i numeri primi fino a un massimo di 5 cifre (pertanto minori di 100 000). Sono in tutto 9 592. (it) Detta är en lista över primtal som ordnas ordinalt men även efter . Ett primtal är ett naturligt tal, som är större än 1 och som inte har några andra positiva delare än 1 och talet självt. Enligt Euklides sats finns det oändligt många primtal. De första 1 000 primtalen visas i den första tabellen, följt av listor med anmärkningsvärda typer av primtal i alfabetisk ordning. Notera att 1 varken är ett primtal eller ett sammansatt tal. (sv) Um número primo (ou um primo) é um número natural maior do que 1 que não possui divisores além de 1 e de si mesmo. Pelo teorema de Euclides, há uma infinidade de números primos. É possível gerar subconjuntos de números primos por meio de várias . Os primeiros 1000 números primos são listados a seguir, seguidos de listas de tipos notáveis de números primos em ordem alfabética, contendo os seus respectivos primeiros termos. Pela definição, o número 1 não é nem primo nem composto. (pt) Эта страница содержит список первых 500 простых чисел (от 2 до 3571), а также списки некоторых специальных типов простых чисел. (ru) Ця сторінка містить список перших 500 простих чисел а також деякі інші прості числа. (uk) 可以证明,质数的数目是无限多的,而它們可以透過不同的質數公式產生出來。以下將列出頭500個質數,並以英文字母的順序將不同種類的質數中的第一批列出來。 (zh) Následující seznam obsahuje všechna prvočísla menší než 10000: * 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71 * 73 * 79 * 83 * 89 * 97 * 101 * 103 * 107 * 109 * 113 * 127 * 131 * 137 * 139 * 149 * 151 * 157 * 163 * 167 * 173 * 179 * 181 * 191 * 193 * 197 * 199 * 211 * 223 * 227 * 229 * 233 * 239 * 241 * 251 * 257 * 263 * 269 * 271 * 277 * 281 * 283 * 293 * 307 * 311 * 313 * 317 * 331 * 337 * 347 * 349 * 353 * 359 * 367 * 373 * 379 * 383 * 389 * 397 * 401 * 409 * 419 * 421 * 431 * 433 * 439 * 443 * 449 * 457 * 461 * 463 * 467 * 479 * 487 * 491 * 499 * 503 * 509 * 521 * 523 * 541 * 547 * 557 * 563 * 569 * 571 * 577 * 587 * 593 * 599 * (cs) Dit is een lijst van de eerste duizend priemgetallen; het hoogste getal in de tabel is 7919. In een lijst van de eerste tienduizend priemgetallen is 104 729 het hoogste getal. Er zijn veel langere lijsten bekend, bijvoorbeeld tot 1 000 000 000 000 (10¹², biljoen); het hoogste priemgetal in die lijst is 990 000 028 099. Er bestaan oneindig veel priemgetallen, wat meer dan tweeduizend jaar geleden al bewezen werd met de stelling van Euclides. (nl)
rdfs:label قائمة الأعداد الأولية (ar) Seznam prvočísel (cs) Liste de nombres premiers (fr) Daftar bilangan prima (in) Lista di numeri primi (it) List of prime numbers (en) 소수 목록 (ko) 素数の一覧 (ja) Lijst van priemgetallen (nl) Lista de números primos (pt) Список простых чисел (ru) Список простих чисел (uk) Lista över primtal (sv) 質數列表 (zh)
owl:sameAs dbpedia-fr:List of prime numbers wikidata:List of prime numbers dbpedia-an:List of prime numbers dbpedia-ar:List of prime numbers http://bs.dbpedia.org/resource/Spisak_1000_prostih_brojeva dbpedia-cs:List of prime numbers dbpedia-cy:List of prime numbers dbpedia-fa:List of prime numbers dbpedia-gl:List of prime numbers dbpedia-hu:List of prime numbers http://hy.dbpedia.org/resource/Պարզ_թվերի_ցանկ dbpedia-id:List of prime numbers dbpedia-it:List of prime numbers dbpedia-ja:List of prime numbers dbpedia-ko:List of prime numbers dbpedia-mk:List of prime numbers dbpedia-nl:List of prime numbers dbpedia-nn:List of prime numbers dbpedia-pt:List of prime numbers dbpedia-ro:List of prime numbers dbpedia-ru:List of prime numbers dbpedia-simple:List of prime numbers dbpedia-sk:List of prime numbers dbpedia-sr:List of prime numbers dbpedia-sv:List of prime numbers http://ta.dbpedia.org/resource/பகா_எண்களின்_பட்டியல் dbpedia-th:List of prime numbers dbpedia-tr:List of prime numbers dbpedia-uk:List of prime numbers http://uz.dbpedia.org/resource/Tub_sonlar_roʻyxati dbpedia-vi:List of prime numbers dbpedia-zh:List of prime numbers https://global.dbpedia.org/id/28kTJ
prov:wasDerivedFrom wikipedia-en:List_of_prime_numbers?oldid=1124462660&ns=0
foaf:isPrimaryTopicOf wikipedia-en:List_of_prime_numbers
is dbo:wikiPageRedirects of dbr:Prime_number_type dbr:Prime_number_types dbr:Prime_type dbr:Prime_types dbr:Non-generous_prime dbr:List_of_Prime_Numbers dbr:Lists_of_prime_numbers dbr:Annihilating_prime dbr:Annihilating_prime_number dbr:Annihilating_prime_numbers dbr:Annihilating_primes dbr:List_of_prime_numbers_by_type dbr:Types_of_prime_numbers dbr:Gilda's_prime dbr:List_Of_First_1000_Prime_Numbers dbr:Palindromic_wing_prime dbr:Base_10_Wieferich_prime dbr:Base_11_Wieferich_prime dbr:Base_13_Wieferich_prime dbr:Base_17_Wieferich_prime dbr:Base_19_Wieferich_prime dbr:Base_5_Wieferich_prime dbr:Base_6_Wieferich_prime dbr:Base_7_Wieferich_prime dbr:List_of_primes dbr:List_of_special_classes_of_prime_numbers dbr:Harmonic_prime dbr:Swinging_prime dbr:Mirimanoff_prime dbr:Wieferich_prime_base_10 dbr:Wieferich_prime_base_11 dbr:Wieferich_prime_base_12 dbr:Wieferich_prime_base_13 dbr:Wieferich_prime_base_14 dbr:Wieferich_prime_base_15 dbr:Wieferich_prime_base_17 dbr:Wieferich_prime_base_18 dbr:Wieferich_prime_base_19 dbr:Wieferich_prime_base_20 dbr:Wieferich_prime_base_21 dbr:Wieferich_prime_base_22 dbr:Wieferich_prime_base_23 dbr:Wieferich_prime_base_24 dbr:Wieferich_prime_base_3 dbr:Wieferich_prime_base_5 dbr:Wieferich_prime_base_6 dbr:Wieferich_prime_base_7 dbr:Partition_prime dbr:Additive_prime dbr:Additive_prime_number dbr:Prime_number_list dbr:Prime_of_binary_quadratic_form dbr:Table_of_Primes
is dbo:wikiPageWikiLink of dbr:Prime_number_type dbr:Prime_number_types dbr:Prime_type dbr:Prime_types dbr:PrimePages dbr:Non-generous_prime dbr:List_of_Prime_Numbers dbr:List_of_numbers dbr:List_of_mathematical_examples dbr:Cuban_prime dbr:5 dbr:73_(number) dbr:37_(number) dbr:APL_syntax_and_symbols dbr:Table_of_Gaussian_integer_factorizations dbr:Lists_of_mathematics_topics dbr:Lists_of_prime_numbers dbr:Outline_of_arithmetic dbr:Table_of_prime_factors dbr:Annihilating_prime dbr:Annihilating_prime_number dbr:Annihilating_prime_numbers dbr:Annihilating_primes dbr:List_of_prime_numbers_by_type dbr:Types_of_prime_numbers dbr:Gilda's_prime dbr:List_Of_First_1000_Prime_Numbers dbr:Palindromic_wing_prime dbr:Base_10_Wieferich_prime dbr:Base_11_Wieferich_prime dbr:Base_13_Wieferich_prime dbr:Base_17_Wieferich_prime dbr:Base_19_Wieferich_prime dbr:Base_5_Wieferich_prime dbr:Base_6_Wieferich_prime dbr:Base_7_Wieferich_prime dbr:List_of_primes dbr:List_of_special_classes_of_prime_numbers dbr:Harmonic_prime dbr:Swinging_prime dbr:Mirimanoff_prime dbr:Wieferich_prime_base_10 dbr:Wieferich_prime_base_11 dbr:Wieferich_prime_base_12 dbr:Wieferich_prime_base_13 dbr:Wieferich_prime_base_14 dbr:Wieferich_prime_base_15 dbr:Wieferich_prime_base_17 dbr:Wieferich_prime_base_18 dbr:Wieferich_prime_base_19 dbr:Wieferich_prime_base_20 dbr:Wieferich_prime_base_21 dbr:Wieferich_prime_base_22 dbr:Wieferich_prime_base_23 dbr:Wieferich_prime_base_24 dbr:Wieferich_prime_base_3 dbr:Wieferich_prime_base_5 dbr:Wieferich_prime_base_6 dbr:Wieferich_prime_base_7 dbr:Partition_prime dbr:Additive_prime dbr:Additive_prime_number dbr:Prime_number_list dbr:Prime_of_binary_quadratic_form dbr:Table_of_Primes
is foaf:primaryTopic of wikipedia-en:List_of_prime_numbers