dbo:abstract |
Dalam geometri diferensial, teorema tiga geodetik atau teorema Lyusternik–Schnirelmann menyatakan bahwa setiap manifold Riemann dengan topologi bola setidaknya memiliki tiga yang membentuk tanpa perpotongan-diri. Hasilnya juga dapat diperluas ke kuasigeodesik pada polihedron cembung. (in) In differential geometry the theorem of the three geodesics, also known as Lyusternik–Schnirelmann theorem, states that every Riemannian manifold with the topology of a sphere has at least three simple closed geodesics (i.e. three embedded geodesic circles). The result can also be extended to quasigeodesics on a convex polyhedron, and to closed geodesics of reversible Finsler 2-spheres. The theorem is sharp: although every Riemannian 2-sphere contains infinitely many distinct closed geodesics, only three of them are guaranteed to have no self-intersections. For example, by a result of Morse if the lengths of three principal axes of an ellipsoid are distinct, but sufficiently close to each other, then the ellipsoid has only three simple closed geodesics. (en) У диференціальній геометрії теорема про три геодезичні стверджує, що кожен ріманів многовид з топологією сфери має три замкнені геодезичні, які є простими замкненими кривими без самоперетинів. Теорема також буде вірною для випадку квазігеодезичних ліній на поверхні опуклого многогранника. (uk) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Ellipsoid_tri-axial_abc.svg?width=300 |
dbo:wikiPageID |
48445265 (xsd:integer) |
dbo:wikiPageLength |
11483 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1121530193 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Regular_tetrahedron dbr:Riemann_surface dbr:Maryam_Mirzakhani dbc:Geodesic_(mathematics) dbr:Ellipsoid dbr:Geodesic dbr:Geodesics_on_an_ellipsoid dbr:Great_circle dbr:Lev_Schnirelmann dbr:Line_(geometry) dbr:Closed_geodesic dbr:Disphenoid dbr:Curve_shortening_flow dbr:Open_problem dbr:Almost_all dbr:Angular_defect dbr:Riemannian_manifold dbr:Henri_Poincaré dbc:Theorems_in_differential_geometry dbr:Hyperbolic_geometry dbr:Lazar_Lyusternik dbr:Homeomorphism dbr:Differential_geometry dbr:Marston_Morse dbr:Sphere dbr:Convex_polyhedron dbr:Polynomial_time dbr:Euclidean_plane dbr:Selberg_zeta_function dbr:Finsler dbr:Finsler_metric dbr:File:Ellipsoid_tri-axial_abc.svg |
dbp:wikiPageUsesTemplate |
dbt:Pi dbt:Reflist dbt:Short_description dbt:Unsolved |
dcterms:subject |
dbc:Geodesic_(mathematics) dbc:Theorems_in_differential_geometry |
rdfs:comment |
Dalam geometri diferensial, teorema tiga geodetik atau teorema Lyusternik–Schnirelmann menyatakan bahwa setiap manifold Riemann dengan topologi bola setidaknya memiliki tiga yang membentuk tanpa perpotongan-diri. Hasilnya juga dapat diperluas ke kuasigeodesik pada polihedron cembung. (in) In differential geometry the theorem of the three geodesics, also known as Lyusternik–Schnirelmann theorem, states that every Riemannian manifold with the topology of a sphere has at least three simple closed geodesics (i.e. three embedded geodesic circles). The result can also be extended to quasigeodesics on a convex polyhedron, and to closed geodesics of reversible Finsler 2-spheres. The theorem is sharp: although every Riemannian 2-sphere contains infinitely many distinct closed geodesics, only three of them are guaranteed to have no self-intersections. For example, by a result of Morse if the lengths of three principal axes of an ellipsoid are distinct, but sufficiently close to each other, then the ellipsoid has only three simple closed geodesics. (en) У диференціальній геометрії теорема про три геодезичні стверджує, що кожен ріманів многовид з топологією сфери має три замкнені геодезичні, які є простими замкненими кривими без самоперетинів. Теорема також буде вірною для випадку квазігеодезичних ліній на поверхні опуклого многогранника. (uk) |
rdfs:label |
Teorema tiga geodesik (in) Theorem of the three geodesics (en) Теорема про три геодезичні (uk) |
owl:sameAs |
yago-res:Theorem of the three geodesics wikidata:Theorem of the three geodesics dbpedia-id:Theorem of the three geodesics dbpedia-ro:Theorem of the three geodesics dbpedia-uk:Theorem of the three geodesics https://global.dbpedia.org/id/2Ne66 |
prov:wasDerivedFrom |
wikipedia-en:Theorem_of_the_three_geodesics?oldid=1121530193&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Ellipsoid_tri-axial_abc.svg |
foaf:isPrimaryTopicOf |
wikipedia-en:Theorem_of_the_three_geodesics |
is dbo:wikiPageRedirects of |
dbr:Theorem_of_the_three_closed_geodesics dbr:Lusternik-Schnirelmann_theorem_of_the_three_closed_geodesics dbr:Lusternik-Schnirelmann_theorem_of_the_three_geodesics dbr:Lusternik–Schnirelmann_theorem_of_the_three_closed_geodesics dbr:Lusternik–Schnirelmann_theorem_of_the_three_geodesics |
is dbo:wikiPageWikiLink of |
dbr:List_of_incomplete_proofs dbr:Maryam_Mirzakhani dbr:Alexandrov's_uniqueness_theorem dbr:Theorem_of_the_three_closed_geodesics dbr:Lev_Schnirelmann dbr:Closed_geodesic dbr:Curve-shortening_flow dbr:Lazar_Lyusternik dbr:List_of_unsolved_problems_in_computer_science dbr:NP-intermediate dbr:Lusternik-Schnirelmann_theorem_of_the_three_closed_geodesics dbr:Lusternik-Schnirelmann_theorem_of_the_three_geodesics dbr:Lusternik–Schnirelmann_theorem_of_the_three_closed_geodesics dbr:Lusternik–Schnirelmann_theorem_of_the_three_geodesics |
is foaf:primaryTopic of |
wikipedia-en:Theorem_of_the_three_geodesics |