Triangular orthobicupola (original) (raw)

About DBpedia

En geometria, la ortobicúpula triangular es pot construir enganxant dues cúpules triangulars per les cares hexagonals. És un dels noranta-dos sòlids de Johnson (J26). Té simetria D3h. Els 92 sòlids de Johnson van ser descrits 1966 per Norman Johnson i els va numerar. No va demostrar que no n'existia més que 92, però va conjecturar que no n'hi havia d'altres. Victor Zalgaller el 1969 va demostrar que la llista de Johnson era completa. S'utilitzen els noms i l'ordre donats per Johnson, i se'ls nota Jxx on xx és el nombre donat per Jonson.

thumbnail

Property Value
dbo:abstract En geometria, la ortobicúpula triangular es pot construir enganxant dues cúpules triangulars per les cares hexagonals. És un dels noranta-dos sòlids de Johnson (J26). Té simetria D3h. Els 92 sòlids de Johnson van ser descrits 1966 per Norman Johnson i els va numerar. No va demostrar que no n'existia més que 92, però va conjecturar que no n'hi havia d'altres. Victor Zalgaller el 1969 va demostrar que la llista de Johnson era completa. S'utilitzen els noms i l'ordre donats per Johnson, i se'ls nota Jxx on xx és el nombre donat per Jonson. (ca) En geometrio, la triangula ortodukupolo estas unu el la solidoj de Johnson (J27). Kiel la nomo sugestas, ĝi povas esti konstruita per kunigo de du triangulaj kupoloj (J3) laŭ iliaj bazoj. Ĝi havas egala nombro de kvadratoj kaj trianguloj je ĉiu vertico; tamen, ĝi estas ne vertico-transitiva. La triangula ortodukupolo estas la unua en malfinia aro de ortodukupoloj. La triangula ortodukupolo similas al la kubokedro, kiu estas la triangula turnodukupolo. La diferenco inter kubokedro kaj triangula ortodukupolo estas en tio ke unu el la du triangulaj kupoloj estas je 60-gradoj turnita relative al la alia. La duala de la triangula ortodukupolo estas trapezo-romba dekduedro. Ĝi havas 8 rombajn kaj 4 trapezajn edrojn. Ĝi estas simila al la romba dekduedro kaj ili ambaŭ estas . (eo) Ein Disheptaeder (auch Antikuboktaeder) ist ein Polyeder, das aus denselben Flächen wie das Kuboktaeder, also denen eines Hexaeders (Kubus) und eines Oktaeders, besteht. In dem Alternativnamen (Anti-Kubooktaeder) stecken entsprechend die Wörter Kubus und Oktaeder. Des Weiteren ist es als Johnson-Körper J27 (Dreiecksdoppelkuppel (verdrehtes Kuboktaeder)) bekannt. (de) Geometrian, ortobikupula triangeluarra Johnsonen solidoetako bat da (J27), bi kupula triangeluar (J3) haien oinarrietatik lotuz eraiki daitekeena. Johnsonen solidoak 92 dira; eta Norman Johnson-ek izendatu eta deskribatu zituen, 1966an. (eu) En geometría, la ortobicúpula triangular es uno de los sólidos de Johnson (J27). Como sugiere su nombre, puede construirse uniendo dos cúpulas triangulares (J3) por sus bases. Tiene el mismo número de cuadrados y triángulos en cada vértice; sin embargo, no es transitivo por vértices. La ortobicúpula triangular es la primera de un conjunto infinito de ellas. La ortobicúpula triangular tiene cierta similitud con el cuboctaedro, que se llamaría girobicúpula triangular en la nomenclatura de los sólidos de Johnson — la diferencia es que las dos cúpulas triangulares que forman la ortobicúpula triangular están unidas de forma que los triángulos de una de las cúpulas constituyentes tocan triángulos de la otra y los cuadrados tocan otros cuadrados (de ahí el prefijo "orto"); mientras que en el cuboctaedro los triángulos tocan cuadrados y viceversa. Dada una ortobicúpula triangular, al rotar una de las cúpulas 60 grados antes de unir, se forma un cuboctaedro. La ortobicúpula triangular elongada (J35), que se construye elongando este sólido, tiene una relación especial (diferente) con el rombicuboctaedro. Los 92 sólidos de Johnson fueron nombrados y descritos por Norman Johnson en 1966. El dual de la ortobicúpula triangular se llama dodecaedro trapezorrómbico. Tiene 6 carasrómbicas y 6 trapezoidales. Es similar al dodecaedro rómbico y ambos son poliedros que pueden llenar el espacio. (es) En géométrie, l'orthobicoupole hexagonale est un des solides de Johnson (J27). Comme son nom l'indique, il peut être construit en attachant deux coupoles hexagonales (J3) par leurs bases. Il possède un nombre égal de carrés et de triangles à chaque sommet; néanmoins, ses sommets ne sont pas égaux. L'orthobicoupole hexagonale est le premier solide de l'ensemble infini des orthobicoupoles. L'orthobicoupole hexagonale a une ressemblance superficielle avec le cuboctaèdre, qui serait connu sous le nom de gyrobicoupole hexagonale dans la nomenclature des solides de Johnson — la différence réside dans les deux coupoles hexagonales qui composent l'orthobicoupole hexagonale, elles sont jointes de telle façon que les paires de côtés qui coïncident sont les mêmes; le cuboctaèdre est joint de telle façon que les triangles coïncident avec les carrés et vice versa. Étant donné une orthobicoupole hexagonale, une rotation de 60 degrés d'une coupole avant la jonction donne un cuboctaèdre. L'orthobicoupole hexagonale allongée (J35), qui est construite par allongement de ce solide, possède une relation spéciale (différente) avec le rhombicuboctaèdre. Le dual de l'orthobicoupole hexagonale est appelé un dodécaèdre trapézo-rhombique. Il possède 6 faces rhombiques et 6 faces trapézoïdales. Il est similaire au dodécaèdre rhombique et les deux sont des polyèdres qui peuvent remplir l'espace. Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966. (fr) In geometry, the triangular orthobicupola is one of the Johnson solids (J27). As the name suggests, it can be constructed by attaching two triangular cupolas (J3) along their bases. It has an equal number of squares and triangles at each vertex; however, it is not vertex-transitive. It is also called an anticuboctahedron, twisted cuboctahedron or disheptahedron. It is also a canonical polyhedron. A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966. The triangular orthobicupola is the first in an infinite set of orthobicupolae. (en) 同相双三角台塔(どうそうそうさんかくだいとう、Triangular orthobicupola)とは、27番目のジョンソンの立体で、二つの正三角台塔(J3)の底面同士を、三角形の面同士が隣り合うように貼りあわせた形である (立方八面体を半分に割り、片側を60°回して貼りあわせた形)。 (ja) Een gedraaide kuboctaëder of driehoekige orthogonale dubbelkoepel is in de meetkunde het johnsonlichaam J27. Deze ruimtelijke figuur kan worden geconstrueerd door twee driehoekige koepels J3 met hun congruente grondvlakken op elkaar te plaatsen. Hetzelfde geldt voor een kuboctaëder, dat is een archimedisch lichaam, maar het verschil is dat beide driehoekige koepels in de twee figuren 60°, of 180° dat is hetzelfde, verschillend ten opzichte van elkaar zijn gedraaid. De 92 johnsonlichamen werden in 1966 door Norman Johnson benoemd en beschreven. * (en) MathWorld. Triangular Orthobicupola (nl) In geometria solida, l'ortobicupola triangolare è un poliedro con 14 facce che può essere costruito, come intuibile dal suo nome, unendo due cupole triangolari per la loro base esagonale. (it) Em geometria, a ortobicúpula triangular é um dos sólidos de Johnson (J27). Como seu nome sugere, pode ser construída unindo-se duas cúpulas triangulares (J3) por suas bases. Tem o mesmo número de quadrados e triângulos em cada vértice.A ortobicúpula triangular tem certa similaridade com o cuboctaedro, a diferença é que as duas cúpulas triangulares que formam a ortobicúpula triangular estão unidas de forma a que os triângulos de uma das cúpulas constituintes tocam triângulos da outra e os quadrados tocam outros quadrados (daí vem o prefixo "orto"); Nota-se que no cuboctaedro os triângulos tocam os quadrados e vice-versa. Dada uma ortobicúpula triangular, ao rotacionar uma das cúpulas 60 graus antes de unir, se forma um cuboctaedro. (pt) Трёхска́тный прямо́й бику́пол — один из многогранников Джонсона (J27, по Залгаллеру — 2М4). Составлен из 14 граней: 8 правильных треугольников и 6 квадратов. Каждая квадратная грань окружена квадратной и тремя треугольными; среди треугольных граней 2 окружены тремя квадратными, остальные 6 — двумя квадратными и треугольной. Имеет 24 ребра одинаковой длины. 3 ребра располагаются между двумя квадратными гранями, 18 рёбер — между квадратной и треугольной, остальные 3 — между двумя треугольными. У трёхскатного прямого бикупола 12 вершин. В каждой сходятся две квадратных и две треугольных грани. Трёхскатный прямой бикупол можно получить из кубооктаэдра, разделив его на две половины, каждая из которых представляет собой трёхскатный купол (J3), и повернув одну из них на 60° вокруг её оси симметрии. * Кубооктаэдр * Трёхскатный прямой бикупол Объём и площадь поверхности при этом не изменятся; описанная и полувписанная сферы полученного многогранника также совпадают с описанной и полувписанной сферами исходного кубооктаэдра. (ru) 在几何学里, 同相雙三角台塔是约翰逊多面体之一(J28)。正如其名字所暗示的:它可以通过把两个正三角台塔(J3)的六边形面合在一起来创造。 (zh)
dbo:thumbnail wiki-commons:Special:FilePath/triangular_orthobicupola.png?width=300
dbo:wikiPageID 1196250 (xsd:integer)
dbo:wikiPageLength 3781 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1092815971 (xsd:integer)
dbo:wikiPageWikiLink dbr:Bicupola_(geometry) dbr:Johnson_solid dbr:Regular_polygon dbr:Rhombic_dodecahedron dbr:Cuboctahedron dbr:Volume dbr:Midsphere dbr:Elongated_triangular_orthobicupola dbr:Geometry dbr:Convex_polytope dbr:Rectified_cubic_honeycomb dbr:Trapezo-rhombic_dodecahedron dbr:Triangular_cupola dbr:Formula dbr:Gyrobifastigium dbr:Triangle dbc:Johnson_solids dbr:Square_(geometry) dbr:Square_orthobicupola dbr:Square_pyramid dbr:Circumscribed_sphere dbr:Surface_area dbr:Face_(geometry) dbr:Rhombicuboctahedron dbr:Vertex-transitive dbr:File:Cuboctahedron_3_planes.png dbr:File:Triangular_orthobicupola_wireframe.png
dbp:dual dbr:Trapezo-rhombic_dodecahedron
dbp:edges 24 (xsd:integer)
dbp:faces 2 (xsd:integer) 6 (xsd:integer)
dbp:net Johnson solid 27 net.png (en)
dbp:properties dbr:Convex_polytope
dbp:title Johnson solid (en) Triangular orthobicupola (en)
dbp:type dbr:Johnson_solid
dbp:urlname JohnsonSolid (en) TriangularOrthobicupola (en)
dbp:vertices 12 (xsd:integer)
dbp:wikiPageUsesTemplate dbt:Johnson_solid dbt:Johnson_solids_navigator dbt:Mathworld2 dbt:Math dbt:Reflist dbt:Short_description dbt:Sub dbt:Sup dbt:Infobox_polyhedron dbt:Polyhedron-stub
dct:subject dbc:Johnson_solids
gold:hypernym dbr:Solids
rdf:type yago:Abstraction100002137 yago:Attribute100024264 yago:Polyhedron113883885 yago:Shape100027807 yago:Solid113860793
rdfs:comment En geometria, la ortobicúpula triangular es pot construir enganxant dues cúpules triangulars per les cares hexagonals. És un dels noranta-dos sòlids de Johnson (J26). Té simetria D3h. Els 92 sòlids de Johnson van ser descrits 1966 per Norman Johnson i els va numerar. No va demostrar que no n'existia més que 92, però va conjecturar que no n'hi havia d'altres. Victor Zalgaller el 1969 va demostrar que la llista de Johnson era completa. S'utilitzen els noms i l'ordre donats per Johnson, i se'ls nota Jxx on xx és el nombre donat per Jonson. (ca) Ein Disheptaeder (auch Antikuboktaeder) ist ein Polyeder, das aus denselben Flächen wie das Kuboktaeder, also denen eines Hexaeders (Kubus) und eines Oktaeders, besteht. In dem Alternativnamen (Anti-Kubooktaeder) stecken entsprechend die Wörter Kubus und Oktaeder. Des Weiteren ist es als Johnson-Körper J27 (Dreiecksdoppelkuppel (verdrehtes Kuboktaeder)) bekannt. (de) Geometrian, ortobikupula triangeluarra Johnsonen solidoetako bat da (J27), bi kupula triangeluar (J3) haien oinarrietatik lotuz eraiki daitekeena. Johnsonen solidoak 92 dira; eta Norman Johnson-ek izendatu eta deskribatu zituen, 1966an. (eu) 同相双三角台塔(どうそうそうさんかくだいとう、Triangular orthobicupola)とは、27番目のジョンソンの立体で、二つの正三角台塔(J3)の底面同士を、三角形の面同士が隣り合うように貼りあわせた形である (立方八面体を半分に割り、片側を60°回して貼りあわせた形)。 (ja) Een gedraaide kuboctaëder of driehoekige orthogonale dubbelkoepel is in de meetkunde het johnsonlichaam J27. Deze ruimtelijke figuur kan worden geconstrueerd door twee driehoekige koepels J3 met hun congruente grondvlakken op elkaar te plaatsen. Hetzelfde geldt voor een kuboctaëder, dat is een archimedisch lichaam, maar het verschil is dat beide driehoekige koepels in de twee figuren 60°, of 180° dat is hetzelfde, verschillend ten opzichte van elkaar zijn gedraaid. De 92 johnsonlichamen werden in 1966 door Norman Johnson benoemd en beschreven. * (en) MathWorld. Triangular Orthobicupola (nl) In geometria solida, l'ortobicupola triangolare è un poliedro con 14 facce che può essere costruito, come intuibile dal suo nome, unendo due cupole triangolari per la loro base esagonale. (it) Em geometria, a ortobicúpula triangular é um dos sólidos de Johnson (J27). Como seu nome sugere, pode ser construída unindo-se duas cúpulas triangulares (J3) por suas bases. Tem o mesmo número de quadrados e triângulos em cada vértice.A ortobicúpula triangular tem certa similaridade com o cuboctaedro, a diferença é que as duas cúpulas triangulares que formam a ortobicúpula triangular estão unidas de forma a que os triângulos de uma das cúpulas constituintes tocam triângulos da outra e os quadrados tocam outros quadrados (daí vem o prefixo "orto"); Nota-se que no cuboctaedro os triângulos tocam os quadrados e vice-versa. Dada uma ortobicúpula triangular, ao rotacionar uma das cúpulas 60 graus antes de unir, se forma um cuboctaedro. (pt) 在几何学里, 同相雙三角台塔是约翰逊多面体之一(J28)。正如其名字所暗示的:它可以通过把两个正三角台塔(J3)的六边形面合在一起来创造。 (zh) En geometrio, la triangula ortodukupolo estas unu el la solidoj de Johnson (J27). Kiel la nomo sugestas, ĝi povas esti konstruita per kunigo de du triangulaj kupoloj (J3) laŭ iliaj bazoj. Ĝi havas egala nombro de kvadratoj kaj trianguloj je ĉiu vertico; tamen, ĝi estas ne vertico-transitiva. La triangula ortodukupolo estas la unua en malfinia aro de ortodukupoloj. La duala de la triangula ortodukupolo estas trapezo-romba dekduedro. Ĝi havas 8 rombajn kaj 4 trapezajn edrojn. Ĝi estas simila al la romba dekduedro kaj ili ambaŭ estas . (eo) En geometría, la ortobicúpula triangular es uno de los sólidos de Johnson (J27). Como sugiere su nombre, puede construirse uniendo dos cúpulas triangulares (J3) por sus bases. Tiene el mismo número de cuadrados y triángulos en cada vértice; sin embargo, no es transitivo por vértices. La ortobicúpula triangular es la primera de un conjunto infinito de ellas. La ortobicúpula triangular elongada (J35), que se construye elongando este sólido, tiene una relación especial (diferente) con el rombicuboctaedro. Los 92 sólidos de Johnson fueron nombrados y descritos por Norman Johnson en 1966. (es) En géométrie, l'orthobicoupole hexagonale est un des solides de Johnson (J27). Comme son nom l'indique, il peut être construit en attachant deux coupoles hexagonales (J3) par leurs bases. Il possède un nombre égal de carrés et de triangles à chaque sommet; néanmoins, ses sommets ne sont pas égaux. L'orthobicoupole hexagonale est le premier solide de l'ensemble infini des orthobicoupoles. L'orthobicoupole hexagonale allongée (J35), qui est construite par allongement de ce solide, possède une relation spéciale (différente) avec le rhombicuboctaèdre. (fr) In geometry, the triangular orthobicupola is one of the Johnson solids (J27). As the name suggests, it can be constructed by attaching two triangular cupolas (J3) along their bases. It has an equal number of squares and triangles at each vertex; however, it is not vertex-transitive. It is also called an anticuboctahedron, twisted cuboctahedron or disheptahedron. It is also a canonical polyhedron. The triangular orthobicupola is the first in an infinite set of orthobicupolae. (en) Трёхска́тный прямо́й бику́пол — один из многогранников Джонсона (J27, по Залгаллеру — 2М4). Составлен из 14 граней: 8 правильных треугольников и 6 квадратов. Каждая квадратная грань окружена квадратной и тремя треугольными; среди треугольных граней 2 окружены тремя квадратными, остальные 6 — двумя квадратными и треугольной. Имеет 24 ребра одинаковой длины. 3 ребра располагаются между двумя квадратными гранями, 18 рёбер — между квадратной и треугольной, остальные 3 — между двумя треугольными. У трёхскатного прямого бикупола 12 вершин. В каждой сходятся две квадратных и две треугольных грани. * * (ru)
rdfs:label Ortobicúpula triangular (ca) Disheptaeder (de) Triangula ortodukupolo (eo) Ortobicúpula triangular (es) Ortobikupula triangeluar (eu) Ortobicupola triangolare (it) Orthobicoupole hexagonale (fr) 同相双三角台塔 (ja) Gedraaide kuboctaëder (nl) Ortobicúpula triangular (pt) Triangular orthobicupola (en) Трёхскатный прямой бикупол (ru) 同相雙三角台塔 (zh)
owl:sameAs freebase:Triangular orthobicupola wikidata:Triangular orthobicupola dbpedia-ca:Triangular orthobicupola dbpedia-de:Triangular orthobicupola dbpedia-eo:Triangular orthobicupola dbpedia-es:Triangular orthobicupola dbpedia-eu:Triangular orthobicupola dbpedia-fr:Triangular orthobicupola dbpedia-it:Triangular orthobicupola dbpedia-ja:Triangular orthobicupola dbpedia-nl:Triangular orthobicupola dbpedia-pt:Triangular orthobicupola dbpedia-ro:Triangular orthobicupola dbpedia-ru:Triangular orthobicupola dbpedia-sl:Triangular orthobicupola dbpedia-th:Triangular orthobicupola dbpedia-zh:Triangular orthobicupola https://global.dbpedia.org/id/55oU9
prov:wasDerivedFrom wikipedia-en:Triangular_orthobicupola?oldid=1092815971&ns=0
foaf:depiction wiki-commons:Special:FilePath/Cuboctahedron_3_planes.png wiki-commons:Special:FilePath/Triangular_orthobicupola_wireframe.png wiki-commons:Special:FilePath/triangular_orthobicupola.png wiki-commons:Special:FilePath/Johnson_solid_27_net.png
foaf:isPrimaryTopicOf wikipedia-en:Triangular_orthobicupola
is dbo:wikiPageRedirects of dbr:Pseudocuboctahedron dbr:Anticuboctahedron dbr:Disheptahedron dbr:Gyrate_cuboctahedron
is dbo:wikiPageWikiLink of dbr:Bicupola_(geometry) dbr:Johnson_solid dbr:Cuboctahedron dbr:List_of_mathematical_shapes dbr:List_of_polygons,_polyhedra_and_polytopes dbr:Close-packing_of_equal_spheres dbr:Elongated_triangular_gyrobicupola dbr:Elongated_triangular_orthobicupola dbr:Convex_uniform_honeycomb dbr:Coordination_geometry dbr:Coordination_number dbr:Crystal_structure dbr:Pseudocuboctahedron dbr:Trapezo-rhombic_dodecahedron dbr:J27 dbr:24_(number) dbr:List_of_Johnson_solids dbr:Gyrobifastigium dbr:Gyroelongated_triangular_bicupola dbr:Tetrahedral-octahedral_honeycomb dbr:Dodecahedron dbr:Square_orthobicupola dbr:Anticuboctahedron dbr:List_of_small_polyhedra_by_vertex_count dbr:Tetradecahedron dbr:Disheptahedron dbr:Gyrate_cuboctahedron
is dbp:dual of dbr:Trapezo-rhombic_dodecahedron
is foaf:primaryTopic of wikipedia-en:Triangular_orthobicupola