Peter–Weyl theorem (original) (raw)

About DBpedia

Im mathematischen Teilgebiet der harmonischen Analyse verallgemeinert der Satz von Peter-Weyl, benannt nach Hermann Weyl und seinem Studenten Fritz Peter (1899–1949), die Fourierreihe für Funktionen auf beliebigen kompakten topologischen Gruppen.

Property Value
dbo:abstract Im mathematischen Teilgebiet der harmonischen Analyse verallgemeinert der Satz von Peter-Weyl, benannt nach Hermann Weyl und seinem Studenten Fritz Peter (1899–1949), die Fourierreihe für Funktionen auf beliebigen kompakten topologischen Gruppen. (de) El Teorema de Peter-Weyl es un resultado básico en la teoría del análisis armónico, aplicado a grupos topológicos que son compactos, pero no necesariamente . Hermann Weyl, junto con su estudiante Peter, lo probó en la configuración de un grupo compacto de Lie, G. El teorema generaliza los hechos significantes sobre la descomposición de la representación regular de un grupo finito, como fue descubierto por F.G. Frobenius e Issai Schur. Para establecer el Teorema, primero es necesaria la idea del Espacio de Hilbert sobre , ; esto es razonable puesto que la medida de Haar existe en . Llamando este espacio , el grupo tiene una representación unitaria en actuando por la derecha o por la izquierda. Esto implica una representación de vía Esta representación se descompone en la suma de por cada representación finita irreducible de G donde es la representación dual. Esto significa que hay una descripción de suma directa de con la indicación de todas las clases (hasta el isomorfismo) de representaciones unitarias irreducibles de . Esto implica inmediatamente la estructura de para las representaciones diestra o zurda de , que es la suma directa de cada ; tantas veces como su dimensión (siempre finita). (es) In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur. Let G be a compact group. The theorem has three parts. The first part states that the matrix coefficients of irreducible representations of G are dense in the space C(G) of continuous complex-valued functions on G, and thus also in the space L2(G) of square-integrable functions. The second part asserts the complete reducibility of unitary representations of G. The third part then asserts that the regular representation of G on L2(G) decomposes as the direct sum of all irreducible unitary representations. Moreover, the matrix coefficients of the irreducible unitary representations form an orthonormal basis of L2(G). In the case that G is the group of unit complex numbers, this last result is simply a standard result from Fourier series. (en) Il teorema di Peter-Weyl è un risultato della teoria delle rappresentazioni che fornisce informazioni utili al calcolo delle rappresentazioni irriducibili di gruppi finiti (informazioni sul numero delle rappresentazioni irriducibili non equivalenti e sulla loro dimensione). Esso può anche essere usato per decomporre le rappresentazioni riducibili. In particolare afferma che le rappresentazioni irriducibili non equivalenti di un gruppo di ordine sono in numero finito uguale al numero delle classi di coniugio in cui il gruppo è suddiviso, e sono tali che l'insieme dei vettori di componenti al variare di che si ottengono al variare di da a e al variare di e da a (dimensione di ), formano una base ortonormale in . L'uso di questo teorema per i gruppi finiti viene ulteriormente semplificato introducendo la nozione di carattere, e ne esiste inoltre una generalizzazione per rappresentazioni di gruppi infiniti come ad esempio i gruppi di Lie. (it) 彼得-魏尔定理(英語:Peter–Weyl theorem)是调和分析和群表示论中的一组重要定理,于1927年由赫尔曼·魏尔和他的学生证明。该定理刻画了紧群不可约表示的完备性,可以视作有限群表示理论中弗罗贝尼乌斯定理的推广。定理分为三部分:第一部分指出,紧群的所有有限维不可约的,在上所有复值连续群函数构成、配备了的空间中稠密。第二部分指出,在任何一个可分希尔伯特空间上的酉表示都完全可约。第三部分断言,的所有有限维不可约酉表示的矩阵元构成了上平方可积的复值函数空间的一组标准正交基。 (zh)
dbo:wikiPageID 294474 (xsd:integer)
dbo:wikiPageLength 16359 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1106662564 (xsd:integer)
dbo:wikiPageWikiLink dbr:Annals_of_Mathematics dbr:Character_(mathematics) dbr:Uniform_norm dbr:Unitary_operator dbr:Lie_group dbr:Profinite_group dbr:Continuous_function dbr:Mathematics dbr:Closure_(topology) dbr:Endomorphism dbr:Continuous_functions_on_a_compact_Hausdorff_space dbr:Homogeneous_polynomials dbr:Limit_(category_theory) dbr:Lp_space dbr:Stone–Weierstrass_theorem dbr:Compact_group dbr:Dense_set dbr:Élie_Cartan dbr:Fritz_Peter dbr:Closed_subgroup_theorem dbr:Harmonic_analysis dbr:Orthonormal_basis dbr:Matrix_coefficient dbc:Theorems_in_group_theory dbc:Topological_groups dbr:Topological_group dbc:Unitary_representation_theory dbr:Haar_measure dbr:Hausdorff_space dbr:Irreducible_representation dbr:Ferdinand_Georg_Frobenius dbr:Linear_functional dbr:Regular_representation dbr:Group_action_(mathematics) dbr:Hermann_Weyl dbr:Issai_Schur dbr:Matrix_group dbr:Abelian_group dbr:Maximal_torus dbc:Theorems_in_harmonic_analysis dbc:Theorems_in_representation_theory dbr:Pontryagin_duality dbr:Special_unitary_group dbr:Spherical_harmonics dbr:Circle_group dbr:Group_representation dbr:Group_homomorphisms dbr:Category_theory dbr:Strong_operator_topology dbr:Unitary_representation dbr:Complex-valued_function dbr:Square-integrable_function dbr:Finite_group dbr:Weyl_character_formula dbr:Direct_sum_of_representations dbr:American_Journal_of__Mathematics
dbp:id p/p072440 (en)
dbp:title Peter-Weyl theorem (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:Citation dbt:Clarify dbt:Harv dbt:Short_description dbt:Harvnb
dct:subject dbc:Theorems_in_group_theory dbc:Topological_groups dbc:Unitary_representation_theory dbc:Theorems_in_harmonic_analysis dbc:Theorems_in_representation_theory
gold:hypernym dbr:Result
rdf:type yago:WikicatMathematicalTheorems yago:WikicatTheoremsInAnalysis yago:WikicatTheoremsInGroupTheory yago:WikicatTheoremsInHarmonicAnalysis yago:WikicatTheoremsInRepresentationTheory yago:WikicatTopologicalGroups yago:Abstraction100002137 yago:Communication100033020 yago:Group100031264 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293
rdfs:comment Im mathematischen Teilgebiet der harmonischen Analyse verallgemeinert der Satz von Peter-Weyl, benannt nach Hermann Weyl und seinem Studenten Fritz Peter (1899–1949), die Fourierreihe für Funktionen auf beliebigen kompakten topologischen Gruppen. (de) 彼得-魏尔定理(英語:Peter–Weyl theorem)是调和分析和群表示论中的一组重要定理,于1927年由赫尔曼·魏尔和他的学生证明。该定理刻画了紧群不可约表示的完备性,可以视作有限群表示理论中弗罗贝尼乌斯定理的推广。定理分为三部分:第一部分指出,紧群的所有有限维不可约的,在上所有复值连续群函数构成、配备了的空间中稠密。第二部分指出,在任何一个可分希尔伯特空间上的酉表示都完全可约。第三部分断言,的所有有限维不可约酉表示的矩阵元构成了上平方可积的复值函数空间的一组标准正交基。 (zh) El Teorema de Peter-Weyl es un resultado básico en la teoría del análisis armónico, aplicado a grupos topológicos que son compactos, pero no necesariamente . Hermann Weyl, junto con su estudiante Peter, lo probó en la configuración de un grupo compacto de Lie, G. El teorema generaliza los hechos significantes sobre la descomposición de la representación regular de un grupo finito, como fue descubierto por F.G. Frobenius e Issai Schur. (es) In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur. (en) Il teorema di Peter-Weyl è un risultato della teoria delle rappresentazioni che fornisce informazioni utili al calcolo delle rappresentazioni irriducibili di gruppi finiti (informazioni sul numero delle rappresentazioni irriducibili non equivalenti e sulla loro dimensione). Esso può anche essere usato per decomporre le rappresentazioni riducibili. L'uso di questo teorema per i gruppi finiti viene ulteriormente semplificato introducendo la nozione di carattere, e ne esiste inoltre una generalizzazione per rappresentazioni di gruppi infiniti come ad esempio i gruppi di Lie. (it)
rdfs:label Satz von Peter-Weyl (de) Teorema de Peter-Weyl (es) Teorema di Peter-Weyl (it) 페터-바일 정리 (ko) Peter–Weyl theorem (en) Teorema de Peter-Weyl (pt) 彼得-魏尔定理 (zh)
owl:sameAs freebase:Peter–Weyl theorem wikidata:Peter–Weyl theorem dbpedia-de:Peter–Weyl theorem dbpedia-es:Peter–Weyl theorem dbpedia-it:Peter–Weyl theorem dbpedia-ko:Peter–Weyl theorem dbpedia-pt:Peter–Weyl theorem dbpedia-zh:Peter–Weyl theorem https://global.dbpedia.org/id/XgaA
prov:wasDerivedFrom wikipedia-en:Peter–Weyl_theorem?oldid=1106662564&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Peter–Weyl_theorem
is dbo:wikiPageRedirects of dbr:Peter-Weyl_theorem dbr:Peter–Weyl_theory dbr:Peter-Weyl dbr:Peter-Weyl_theory dbr:Peter_weyl_theorem dbr:Peter–Weyl
is dbo:wikiPageWikiLink of dbr:Representation_theory dbr:Almost_periodic_function dbr:Representation_theory_of_SL2(R) dbr:Representation_theory_of_the_Lorentz_group dbr:List_of_harmonic_analysis_topics dbr:List_of_representation_theory_topics dbr:Convolution dbr:Glossary_of_representation_theory dbr:Representation_theory_of_SU(2) dbr:Compact_group dbr:Fritz_Peter dbr:Hamiltonian_lattice_gauge_theory dbr:Harmonic_analysis dbr:Matrix_coefficient dbr:Timeline_of_quantum_mechanics dbr:Topological_group dbr:Wigner_D-matrix dbr:Fourier_series dbr:Fourier_transform dbr:List_of_Fourier_analysis_topics dbr:List_of_Lie_groups_topics dbr:Regular_representation dbr:Hermann_Weyl dbr:Hilbert_space dbr:Isotypical_representation dbr:Simple_Lie_group dbr:Arzelà–Ascoli_theorem dbr:Weyl's_theorem dbr:Pontryagin_duality dbr:Group_representation dbr:Peter-Weyl_theorem dbr:Peter–Weyl_theory dbr:Unitary_representation dbr:List_of_theorems dbr:List_of_things_named_after_Hermann_Weyl dbr:Schur_orthogonality_relations dbr:Semisimple_representation dbr:Weyl_character_formula dbr:Noncommutative_harmonic_analysis dbr:Representation_on_coordinate_rings dbr:Representation_theory_of_semisimple_Lie_algebras dbr:Theorem_of_the_highest_weight dbr:Peter-Weyl dbr:Peter-Weyl_theory dbr:Peter_weyl_theorem dbr:Peter–Weyl
is rdfs:seeAlso of dbr:Compact_group
is foaf:primaryTopic of wikipedia-en:Peter–Weyl_theorem