Representation theory of SU(2) (original) (raw)

About DBpedia

Die Darstellungstheorie der Lie-Algebra ist von grundlegender Bedeutung in Mathematik und Physik. In der Mathematik ist sie der einfachste Fall in der Klassifikation der Darstellungen halbeinfacher Lie-Algebren, in der Physik spielt sie eine zentrale Rolle in der Quantenmechanik, weil sie die Darstellungen der Drehimpulsalgebra klassifiziert.

Property Value
dbo:abstract Die Darstellungstheorie der Lie-Algebra ist von grundlegender Bedeutung in Mathematik und Physik. In der Mathematik ist sie der einfachste Fall in der Klassifikation der Darstellungen halbeinfacher Lie-Algebren, in der Physik spielt sie eine zentrale Rolle in der Quantenmechanik, weil sie die Darstellungen der Drehimpulsalgebra klassifiziert. (de) Dentro del estudio de la teoría de la representación del grupo de Lie, el estudio de las representaciones del grupo unitario especial es fundamental para el estudio de las representaciones de . Es el primer caso de un grupo de Lie que es tanto un como . La primera condición implica que la teoría de la representación es discreta: las representaciones son de una colección de representaciones irreducibles básicas (gobernadas por el teorema de Peter-Weyl). El segundo significa que habrá representaciones irreducibles en dimensiones superiores a 1. SU(2) es el grupo de recubrimiento del grupo de rotación SO(3), por lo que su teoría de representación incluye la de este último, debido al homomorfismo suprayectivo existente entre ambos. Esto subraya la importancia de SU(2) para la descripción no relativista del espín en la física teórica. Como se muestra a continuación, las representaciones irreducibles de dimensión finita de SU(2) se indexan mediante un entero no negativo y tienen una dimensión . En la literatura sobre física, las representaciones están etiquetadas por la cantidad , donde es entonces un número entero o semientero, y la dimensión es . (es) In the study of the representation theory of Lie groups, the study of representations of SU(2) is fundamental to the study of representations of semisimple Lie groups. It is the first case of a Lie group that is both a compact group and a non-abelian group. The first condition implies the representation theory is discrete: representations are direct sums of a collection of basic irreducible representations (governed by the Peter–Weyl theorem). The second means that there will be irreducible representations in dimensions greater than 1. SU(2) is the universal covering group of SO(3), and so its representation theory includes that of the latter, by dint of a surjective homomorphism to it. This underlies the significance of SU(2) for the description of non-relativistic spin in theoretical physics; see for other physical and historical context. As shown below, the finite-dimensional irreducible representations of SU(2) are indexed by a non-negative integer and have dimension . In the physics literature, the representations are labeled by the quantity , where is then either an integer or a half-integer, and the dimension is . (en)
dbo:wikiPageExternalLink http://www.staff.science.uu.nl/~hooft101/lectures/lieg.html
dbo:wikiPageID 1378619 (xsd:integer)
dbo:wikiPageLength 19942 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1102500813 (xsd:integer)
dbo:wikiPageWikiLink dbr:Projective_representation dbr:Quaternion dbr:Representation_theory dbr:Borel–Weil–Bott_theorem dbr:Delta_baryon dbr:Pauli_matrices dbr:Representation_of_a_Lie_group dbr:Representation_theory_of_SL2(R) dbr:Character_(mathematics) dbr:Versor dbc:Representation_theory_of_Lie_groups dbr:Column_vector dbr:Commutator dbr:Complex_number dbr:Complexification dbr:Mathematical_induction dbr:Matrix_(mathematics) dbr:Matrix_multiplication dbr:SO(3) dbr:SU(2) dbr:Non-abelian_group dbr:Rotation_operator_(quantum_mechanics) dbr:Eigenvector dbr:Electroweak_interaction dbr:Geometry dbr:Lie_groups dbr:Lorentz_group dbr:Compact_group dbr:Fundamental_representation dbr:Particle_physics dbr:Theoretical_physics dbr:Three-dimensional_space dbr:Weak_isospin dbr:William_Rowan_Hamilton dbr:Irreducible_representation dbr:Adjoint_representation dbc:Rotation_in_three_dimensions dbr:Euclidean_space dbr:Baryon dbr:Universal_enveloping_algebra dbr:Maximal_torus dbr:Rotation_group_SO(3) dbr:Special_relativity dbr:Special_unitary_group dbr:Spin-½ dbr:Spin_(physics) dbr:Group_theory dbr:Casimir_element dbr:Real_number dbr:Semisimple_Lie_group dbr:Unit_vector dbr:Rotation dbr:Rotation_(mathematics) dbr:Schur's_lemma dbr:Weyl_character_formula dbr:Representation_theory_of_semisimple_Lie_algebras dbr:Peter–Weyl_theorem dbr:Vector_meson dbr:Half-integer_spin dbr:Universal_covering_group dbr:Rotation_operator_(vector_space) dbr:Direct_sum_of_representations dbr:Representation_theory_of_SL2(C) dbr:Rest_mass dbr:Integer_spin dbr:Isobaric_spin
dbp:wikiPageUsesTemplate dbt:Citation dbt:Main dbt:Math dbt:Mvar dbt:Reflist dbt:See_also dbt:Short_description
dct:subject dbc:Representation_theory_of_Lie_groups dbc:Rotation_in_three_dimensions
rdf:type owl:Thing
rdfs:comment Die Darstellungstheorie der Lie-Algebra ist von grundlegender Bedeutung in Mathematik und Physik. In der Mathematik ist sie der einfachste Fall in der Klassifikation der Darstellungen halbeinfacher Lie-Algebren, in der Physik spielt sie eine zentrale Rolle in der Quantenmechanik, weil sie die Darstellungen der Drehimpulsalgebra klassifiziert. (de) Dentro del estudio de la teoría de la representación del grupo de Lie, el estudio de las representaciones del grupo unitario especial es fundamental para el estudio de las representaciones de . Es el primer caso de un grupo de Lie que es tanto un como . La primera condición implica que la teoría de la representación es discreta: las representaciones son de una colección de representaciones irreducibles básicas (gobernadas por el teorema de Peter-Weyl). El segundo significa que habrá representaciones irreducibles en dimensiones superiores a 1. (es) In the study of the representation theory of Lie groups, the study of representations of SU(2) is fundamental to the study of representations of semisimple Lie groups. It is the first case of a Lie group that is both a compact group and a non-abelian group. The first condition implies the representation theory is discrete: representations are direct sums of a collection of basic irreducible representations (governed by the Peter–Weyl theorem). The second means that there will be irreducible representations in dimensions greater than 1. (en)
rdfs:label Darstellungstheorie der sl(2,C) (de) Teoría de la representación de SU(2) (es) Representation theory of SU(2) (en)
rdfs:seeAlso dbr:SU(2) dbr:Rotation_group_SO(3) dbr:Special_linear_Lie_algebra
owl:sameAs freebase:Representation theory of SU(2) wikidata:Representation theory of SU(2) dbpedia-de:Representation theory of SU(2) dbpedia-es:Representation theory of SU(2) https://global.dbpedia.org/id/4tuAP
prov:wasDerivedFrom wikipedia-en:Representation_theory_of_SU(2)?oldid=1102500813&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Representation_theory_of_SU(2)
is dbo:wikiPageRedirects of dbr:Representation_theory_of_SO(3)
is dbo:wikiPageWikiLink of dbr:Projective_representation dbr:Quantum_state dbr:Representation_theory dbr:Pauli_matrices dbr:Representation_of_a_Lie_group dbr:Representation_theory_of_SL2(R) dbr:Representation_theory_of_the_Galilean_group dbr:Representation_theory_of_the_Lorentz_group dbr:Lie_group–Lie_algebra_correspondence dbr:Nuclear_force dbr:SL2(R) dbr:Clebsch–Gordan_coefficients dbr:Clebsch–Gordan_coefficients_for_SU(3) dbr:Generalizations_of_Pauli_matrices dbr:Compact_group dbr:Irreducible_representation dbr:3-j_symbol dbr:List_of_Lie_groups_topics dbr:Special_unitary_group dbr:Spin_(physics) dbr:Kähler_identities dbr:Rotation_(mathematics) dbr:Multiplet dbr:Semisimple_representation dbr:Weyl_character_formula dbr:Vector_boson dbr:Representation_theory_of_semisimple_Lie_algebras dbr:Representation_theory_of_SO(3)
is rdfs:seeAlso of dbr:Representation_of_a_Lie_group dbr:3D_rotation_group dbr:Parity_(physics) dbr:Isospin
is foaf:primaryTopic of wikipedia-en:Representation_theory_of_SU(2)