Kosak, S. T. & Groudine, M. Form follows function: the genomic organization of cellular differentiation. Genes Dev.18, 1371–1384 (2004). ArticleCASPubMed Google Scholar
Ben-Shahar, Y., Nannapaneni, K., Casavant, T. L., Scheetz, T. E. & Welsh, M. J. Eukaryotic operon-like transcription of functionally related genes in Drosophila. Proc. Natl Acad. Sci. USA104, 222–227 (2007). ArticleCASPubMed Google Scholar
Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science165, 349–357 (1969). ArticleCASPubMed Google Scholar
Waterston, R. H., Lander, E. S. & Sulston, J. E. On the sequencing of the human genome. Proc. Natl Acad. Sci. USA99, 3712–3716 (2002). ArticleCASPubMedPubMed Central Google Scholar
Keene, J. D. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc. Natl Acad. Sci. USA98, 7018–7024 (2001). ArticleCASPubMedPubMed Central Google Scholar
Keene, J. D. & Tenenbaum, S. A. Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell9, 1161–1167 (2002). ArticleCASPubMed Google Scholar
Hieronymus, H. & Silver, P. A. A systems view of mRNP biology. Genes Dev.18, 2845–2860 (2004). A comprehensive overview that articulates the advent of a new field in systems biology; the authors outline its conceptual framework and describe its experimental basis. ArticleCASPubMed Google Scholar
Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science309, 1514–1518 (2005). A beautifully written essay that captivates the sequence of events by which eukaryotic mRNAs are transcribed, organized, processed and transported to reach their final fates of turnover and protein synthesis. ArticleCASPubMed Google Scholar
Keene, J. D. & Lager, P. J. Post-transcriptional operons and regulons co-ordinating gene expression. Chromosome Res.13, 327–337 (2005). ArticleCASPubMed Google Scholar
Saunders, M. A., Liang, H. & Li, W. H. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA104, 3300–3305 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chan, C. S., Elemento, O. & Tavazoie, S. Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Comput. Biol.1, e69 (2005). ArticleCASPubMedPubMed Central Google Scholar
Intine, R. V., Tenenbaum, S. A., Sakulich, A. L., Keene, J. D. & Maraia, R. J. Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol. Cell12, 1301–1307 (2003). ArticleCASPubMed Google Scholar
Garbarino-Pico, E. et al. Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA13, 745–755 (2007). ArticleCASPubMedPubMed Central Google Scholar
Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature416, 499–506 (2002). ArticleCASPubMed Google Scholar
Moore, M. J., Schwartzfarb, E. M., Silver, P. A. & Yu, M. C. Differential recruitment of the splicing machinery during transcription predicts genome-wide patterns of mRNA splicing. Mol. Cell24, 903–915 (2006). ArticleCASPubMed Google Scholar
Sanford, J. R., Gray, N. K., Beckmann, K. & Caceres, J. F. A novel role for shuttling SR proteins in mRNA translation. Genes Dev.18, 755–768 (2004). ArticleCASPubMedPubMed Central Google Scholar
Greenleaf, A. L. Positive patches and negative noodles: linking RNA processing to transcription? Trends Biochem. Sci.18, 117–119 (1993). ArticleCASPubMed Google Scholar
Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J.19, 6860–6869 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kaplan, J. C., Kahn, A. & Chelly, J. Illegitimate transcription: its use in the study of inherited disease. Hum. Mutat.1, 357–360 (1992). ArticleCASPubMed Google Scholar
Blake, W. J., Kearn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature422, 633–637 (2003). ArticleCASPubMed Google Scholar
Rodriguez-Trelles, F., Tarrio, R. & Ayala, F. J. Is ectopic expression caused by deregulatory mutations or due to gene-regulation leaks with evolutionary potential? Bioessays27, 592–601 (2005). ArticleCASPubMed Google Scholar
Yanai, I. et al. Similar gene expression profiles do not imply similar tissue functions. Trends Genet.22, 132–138 (2006). A forward-thinking description of tissue-specific gene expression, its apparent leakiness and the suggestion that it involves coordinated post-transcriptional events. ArticleCASPubMed Google Scholar
Hurst, L. D., Pal, C. & Lercher, M. J. The evolutionary dynamics of eukaryotic gene order. Nature Rev. Genet.5, 299–310 (2004). ArticleCASPubMed Google Scholar
Spellman, P. T. & Rubin, G. M. Evidence for large domains of similarly expressed genes in the Drosophila genome. J. Biol.1, 5 (2002). A retrospective study of a large body of expression data from fruitflies, showing that co-localized genes are transcribed together in chromatin domains but the proteins that are encoded by these genes are not functionally related. ArticlePubMedPubMed Central Google Scholar
Seydoux, G. & Braun, R. E. Pathway to totipotency: lessons from germ cells. Cell127, 891–904 (2006). A review of current concepts in the field of germ-cell development that, among other things, suggests that totipotent germ cells use RNA-centric 'hubs' to provide plasticity in response to developmental signals. ArticleCASPubMed Google Scholar
Golding, I. & Cox, E. C. Eukaryotic transcription: what does it mean for a gene to be 'on'? Curr. Biol.16, R371–R373 (2006). ArticleCASPubMed Google Scholar
Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol.4, e309 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jin, L., Guzik, B. W., Bor, Y. C., Rekosh, D. & Hammarskjold, M. L. Tap and NXT promote translation of unspliced mRNA. Genes Dev.17, 3075–3086 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bor, Y. C. et al. The Wilms' tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes Dev.20, 1597–1608 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gama-Carvalho, M., Barbosa-Morais, N. L., Brodsky, A. S., Silver, P. A. & Carmo-Fonseca, M. Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors. Genome Biol.7, R113 (2006). An elegant demonstration that the polypyrimidine tract RNA-binding protein and the U2AF2 splicing factors associate with discrete subsets of mature spliced mRNAs in the cytoplasm. ArticleCASPubMedPubMed Central Google Scholar
Zhu, H., Hasman, R. A., Barron, V. A., Luo, G. & Lou, H. A nuclear function of Hu proteins as neuron-specific alternative RNA processing regulators. Mol. Biol. Cell17, 5105–5114 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science302, 1212–1215 (2003). CASPubMed Google Scholar
Pan, Q. et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol. Cell16, 929–941 (2004). ArticleCASPubMed Google Scholar
Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature444, 580–586 (2006). ArticleCASPubMed Google Scholar
Hieronymus, H. & Silver, P. A. Genome-wide analysis of RNA–protein interactions illustrates specificity of the mRNA export machinery. Nature Genet.33, 155–161 (2003). A landmark paper describing how mRNA subsets that encode functionally related proteins associate combinatorially with export proteins Mex67 and Yra1 in yeast. ArticleCASPubMed Google Scholar
Guisbert, K., Duncan, K., Li, H. & Guthrie, C. Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA11, 383–393 (2005). ArticleCAS Google Scholar
Tenenbaum, S. A., Carson, C. C., Lager, P. J. & Keene, J. D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl Acad. Sci. USA97, 14085–14090 (2000). First use of RIP–chip to demonstrate that ELAV/Hu, EIF4E and PolyA-binding proteins associate with discrete mRNA subsets that changed coordinately following induction of neuronal differentiation. ArticleCASPubMedPubMed Central Google Scholar
Lai, W. S. et al. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol. Cell. Biol.19, 4311–4323 (1999). ArticleCASPubMedPubMed Central Google Scholar
Levine, T. D., Gao, F., King, P. H., Andrews, L. G. & Keene, J. D. Hel-N1: an autoimmune RNA-binding protein with specificity for 3′ uridylate-rich untranslated regions of growth factor mRNAs. Mol. Cell. Biol.13, 3494–3504 (1993). ArticleCASPubMedPubMed Central Google Scholar
Brennan, C. M. & Steitz, J. A. HuR and mRNA stability. Cell Mol. Life Sci.58, 266–277 (2001). ArticleCASPubMed Google Scholar
Antic, D. & Keene, J. D. Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am. J. Hum. Genet.61, 273–278 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cheadle, C. et al. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics6, 75 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lykke-Andersen, J. & Wagner, E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev.19, 351–361 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lam, L. T. et al. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol.2, RESEARCH0041 (2001).
Yang, E. et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res.13, 1863–1872 (2003). ArticleCASPubMedPubMed Central Google Scholar
Raghavan, A. et al. Patterns of coordinate down-regulation of ARE-containing transcripts following immune cell activation. Genomics84, 1002–1013 (2004). ArticleCASPubMed Google Scholar
Vlasova, I. A. et al. Coordinate stabilization of growth-regulatory transcripts in T cell malignancies. Genomics86, 159–171 (2005). References 52–55 demonstrate that mRNA decay in immune cells can be classified into functional groups that change coordinately with cell activation or drug treatments. ArticleCASPubMed Google Scholar
Raghavan, A. et al. HuA and tristetraprolin are induced following T cell activation and display distinct but overlapping RNA binding specificities. J. Biol. Chem.276, 47958–47965 (2001). ArticleCASPubMed Google Scholar
Marzluff, W. F. Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr. Opin. Cell Biol.17, 274–280 (2005). ArticleCASPubMed Google Scholar
Townley-Tilson, W. H., Pendergrass, S. A., Marzluff, W. F. & Whitfield, M. L. Genome-wide analysis of mRNAs bound to the histone stem-loop binding protein. RNA12, 1853–1867 (2006). ArticleCASPubMedPubMed Central Google Scholar
Grigull, J., Mnaimneh, S., Pootoolal, J., Robinson, M. D. & Hughes, T. R. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol. Cell. Biol.24, 5534–5547 (2004). References 59 and 60 demonstrate the existence of mRNA stability modules or post-transcriptional operons in yeast that can change coordinately following perturbations. ArticleCASPubMedPubMed Central Google Scholar
Duttagupta, R. et al. Global analysis of Pub1p targets reveals a coordinate control of gene expression through modulation of binding and stability. Mol. Cell. Biol.25, 5499–5513 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lai, W. S., Carballo, E., Thorn, J. M., Kennington, E. A. & Blackshear, P. J. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to AU-rich elements and destabilization of mRNA. J. Biol. Chem.275, 17827–17837 (2000). ArticleCASPubMed Google Scholar
Puig, S., Askeland, E. & Thiele, D. J. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell120, 99–110 (2005). ArticleCASPubMed Google Scholar
Bell-Pedersen, D. et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nature Rev. Genet.6, 544–556 (2005). ArticleCASPubMed Google Scholar
Benjamin, D., Schmidlin, M., Min, L., Gross, B. & Moroni, C. BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol. Cell. Biol.26, 9497–9507 (2006). The authors note that BRF1 RNA-binding protein undergoes diurnal circadian pulses in peripheral organs, and might use phosphorylation to regulate a post-transcriptional operon that coordinates the degradation of immediate-early-gene transcripts. ArticleCASPubMedPubMed Central Google Scholar
Lowrey, P. L. & Takahashi, J. S. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet.5, 407–441 (2004). ArticleCASPubMedPubMed Central Google Scholar
Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature417, 78–83 (2002). ArticleCASPubMed Google Scholar
Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell109, 307–320 (2002). ArticleCASPubMed Google Scholar
Lidder, P., Gutierrez, R. A., Salome, P. A., McClung, C. R. & Green, P. J. Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway. Plant Physiol.138, 2374–2385 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kojima, S. et al. LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1. Proc. Natl Acad. Sci. USA104, 1859–1864 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fan, J. et al. Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc. Natl Acad. Sci. USA99, 10611–10616 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fan, J. et al. En masse nascent transcription analysis to elucidate regulatory transcription factors. Nucleic Acids Res.34, 1492–1500 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tenenbaum, S. A., Carson, C. C., Atasoy, U. & Keene, J. D. Genome-wide regulatory analysis using en masse nuclear run-ons and ribonomic profiling with autoimmune sera. Gene317, 79–87 (2003). ArticleCASPubMed Google Scholar
Eberwine, J., Miyashiro, K., Kacharmina, J. E. & Job, C. Local translation of classes of mRNAs that are targeted to neuronal dendrites. Proc. Natl Acad. Sci. USA98, 7080–7085 (2001). ArticleCASPubMedPubMed Central Google Scholar
Huang, Y. S. & Richter, J. D. Regulation of local mRNA translation. Curr. Opin. Cell Biol.16, 308–313 (2004). ArticleCASPubMed Google Scholar
Racki, W. J. & Richter, J. D. CPEB controls oocyte growth and follicle development in the mouse. Development133, 4527–4537 (2006). ArticleCASPubMed Google Scholar
Richter, J. D. & Lorenz, L. J. Selective translation of mRNAs at synapses. Curr. Opin. Neurobiol.12, 300–304 (2002). ArticleCASPubMed Google Scholar
Ashley, C. T. Jr, Wilkinson, K. D., Reines, D. & Warren, S. T. FMR1 protein: conserved RNP family domains and selective RNA binding. Science262, 563–566 (1993). ArticleCASPubMed Google Scholar
Gao, F. B., Carson, C. C., Levine, T. & Keene, J. D. Selection of a subset of mRNAs from combinatorial 3′ untranslated region libraries using neuronal RNA-binding protein Hel-N1. Proc. Natl Acad. Sci. USA91, 11207–11211 (1994). This paper describes multitargeting of subsets of mRNAs that contain a similar binding sequence for an ELAV/Hu RNA-binding protein and suggests that their expression is coordinated. ArticleCASPubMedPubMed Central Google Scholar
Jain, R. G., Andrews, L. G., McGowan, K. M., Pekala, P. H. & Keene, J. D. Ectopic expression of Hel-N1, an RNA-binding protein, increases glucose transporter (GLUT1) expression in 3T3-L1 adipocytes. Mol. Cell. Biol.17, 954–962 (1997). ArticleCASPubMedPubMed Central Google Scholar
Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell107, 477–487 (2001). ArticleCASPubMed Google Scholar
Eystathioy, T. et al. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell13, 1338–1351 (2002). ArticleCASPubMedPubMed Central Google Scholar
Waggoner, S. A. & Liebhaber, S. A. Identification of mRNAs associated with _α_CP2-containing RNP complexes. Mol. Cell. Biol.23, 7055–7067 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lopez de Silanes, I., Zhan, M., Lal, A., Yang, X. & Gorospe, M. Identification of a target RNA motif for RNA-binding protein HuR. Proc. Natl Acad. Sci. USA101, 2987–2992 (2004). ArticleCASPubMed Google Scholar
Culjkovic, B., Topisirovic, I., Skrabanek, L., Ruiz-Gutierrez, M. & Borden, K. L. EIF4E is a central node of an RNA regulon that governs cellular proliferation. J. Cell. Biol.175, 415–426 (2006). ArticleCASPubMedPubMed Central Google Scholar
Larsson, O. et al. Apoptosis resistance downstream of EIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res.34, 4375–4386 (2006). ArticleCASPubMedPubMed Central Google Scholar
Agnes, F. & Perron, M. RNA-binding proteins and neural development: a matter of targets and complexes. Neuroreport15, 2567–2570 (2004). ArticleCASPubMed Google Scholar
Fan, J., Heller, N. M., Gorospe, M., Atasoy, U. & Stellato, C. The role of post-transcriptional regulation in chemokine gene expression in inflammation and allergy. Eur. Respir. J.26, 933–947 (2005). ArticleCASPubMed Google Scholar
Mata, J., Marguerat, S. & Bahler, J. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem. Sci.30, 506–514 (2005). ArticleCASPubMed Google Scholar
Vanderklish, P. W. & Edelman, G. M. Differential translation and fragile X syndrome. Genes Brain Behav.4, 360–384 (2005). ArticleCASPubMed Google Scholar
Vemuri, G. N. & Aristidou, A. A. Metabolic engineering in the omics era: elucidating and modulating regulatory networks. Microbiol. Mol. Biol. Rev.69, 197–216 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wilusz, C. J. & Wilusz, J. Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet.20, 491–497 (2004). ArticleCASPubMed Google Scholar
Gerber, A. P., Herschlag, D. & Brown, P. O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol.2, E79 (2004). A definitive demonstration that five RNA-binding proteins inS. cerevisiaeassociate with discrete subsets of mRNAs that encode functionally related proteins. It provides a confirmation of modular RNPs that is consistent with the post-transcriptional operon model. ArticlePubMedPubMed Central Google Scholar
Wickens, M., Bernstein, D. S., Kimble, J. & Parker, R. A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet.18, 150–157 (2002). ArticleCASPubMed Google Scholar
Garcia-Rodriguez, L. J., Gay, A. C. & Pon, L. A. Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J. Cell Biol.176, 197–207 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mesarovic, M. D., Sreenath, S. N. & Keene, J. D. Search for organising principles: understanding in systems biology. Syst. Biol. (Stevenage)1, 19–27 (2004). ArticleCAS Google Scholar
Gerber, A. P., Luschnig, S., Krasnow, M. A., Brown, P. O. & Herschlag, D. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc. Natl Acad. Sci. USA103, 4487–4492 (2006). ArticleCASPubMedPubMed Central Google Scholar
Culjkovic, B., Topisirovic, I. & Borden, K. L. Controlling gene expression through RNA regulons: the role of the eukaryotic translation initiation factor EIF4E. Cell Cycle6, 65–69 (2007). ArticleCASPubMed Google Scholar
Mamane, Y. et al. Epigenetic activation of a subset of mRNAs by EIF4E explains its effects on cell proliferation. PLoS ONE2, e242 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lu, X., de la Pena, L., Barker, C., Camphausen, K. & Tofilon, P. J. Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Res.66, 1052–161 (2006). ArticlePubMed Google Scholar
Mazan-Mamczarz, K. et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc. Natl Acad. Sci. USA100, 8354–8359 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gorospe, M. HuR in the mammalian genotoxic response: post-transcriptional multitasking. Cell Cycle2, 412–414 (2003). ArticleCASPubMed Google Scholar
Lopez de Silanes, I. et al. Global analysis of HuR-regulated gene expression in colon cancer systems of reducing complexity. Gene Expr.12, 49–59 (2004). ArticleCASPubMed Google Scholar
Lopez de Silanes, I. et al. Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Mol. Cell. Biol.25, 9520–9531 (2005). ArticleCASPubMedPubMed Central Google Scholar
Penalva, L. O., Burdick, M. D., Lin, S. M., Sutterluety, H. & Keene, J. D. RNA-binding proteins to assess gene expression states of co-cultivated cells in response to tumor cells. Mol. Cancer3, 24 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol.169, 871–884 (2005). ArticleCASPubMedPubMed Central Google Scholar
Casciola-Rosen, L., Rosen, A., Petri, M. & Schlissel, M. Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA93, 1624–1629 (1996). ArticleCASPubMedPubMed Central Google Scholar
Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 7 May 2007 (doi: 10.1038/ncb1596). ArticleCASPubMed Google Scholar
Lawrence, J. G. Selfish operons and speciation by gene transfer. Trends Microbiol.5, 355–359 (1997). ArticleCASPubMed Google Scholar
Lawrence, J. G. Shared strategies in gene organization among prokaryotes and eukaryotes. Cell110, 407–413 (2002). ArticleCASPubMed Google Scholar
Carballo, E., Lai, W. S. & Blackshear, P. J. Evidence that tristetraprolin is a physiological regulator of granulocyte–macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood95, 1891–1899 (2000). CASPubMed Google Scholar
Musunuru, K. Cell-specific RNA-binding proteins in human disease. Trends Cardiovasc. Med.13, 188–195 (2003). ArticleCASPubMed Google Scholar
Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science299, 259–262 (2003). ArticleCASPubMed Google Scholar
Verheesen, P. et al. Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear polyA-binding protein with a single-domain intracellular antibody. Hum. Mol. Genet.15, 105–111 (2006). ArticleCASPubMed Google Scholar
Parsa, A. T. & Holland, E. C. Cooperative translational control of gene expression by Ras and Akt in cancer. Trends Mol. Med.10, 607–613 (2004). ArticleCASPubMed Google Scholar
Polunovsky, V. A. & Bitterman, P. B. The cap-dependent translation apparatus integrates and amplifies cancer pathways. RNA Biol.3, 10–17 (2006). ArticleCASPubMed Google Scholar
Taylor, G. A. et al. A pathogenetic role for TNFa in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity4, 445–454 (1996). ArticleCASPubMed Google Scholar
van der Walt, J. M. et al. Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am. J. Hum. Genet.74, 1121–1127 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hollams, E. M., Giles, K. M., Thomson, A. M. & Leedman, P. J. mRNA stability and the control of gene expression: implications for human disease. Neurochem. Res.27, 957–980 (2002). ArticleCASPubMed Google Scholar
Audic, Y. & Hartley, R. S. Post-transcriptional regulation in cancer. Biol. Cell96, 479–498 (2004). ArticleCASPubMed Google Scholar
Inada, M. & Guthrie, C. Identification of Lhp1p-associated RNAs by microarray analysis in Saccharomyces cerevisiae reveals association with coding and noncoding RNAs. Proc. Natl Acad. Sci. USA101, 434–439 (2004). ArticleCASPubMedPubMed Central Google Scholar
Darnell, R. B. & Posner, J. B. Paraneoplastic syndromes affecting the nervous system. Semin. Oncol.33, 270–298 (2006). ArticlePubMed Google Scholar
Lasker, A. G., Mazzocco, M. M. & Zee, D. S. Ocular motor indicators of executive dysfunction in fragile X and Turner syndromes. Brain. Cogn.63, 203–220 (2006). ArticlePubMed Google Scholar
Wong, J. M. & Collins, K. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev.20, 2848–2858 (2006). ArticleCASPubMedPubMed Central Google Scholar
Robinson, D. O., Hammans, S. R., Read, S. P. & Sillibourne, J. Oculopharyngeal muscular dystrophy (OPMD): analysis of the PABPN1 gene expansion sequence in 86 patients reveals 13 different expansion types and further evidence for unequal recombination as the mutational mechanism. Hum. Genet.116, 267–271 (2005). ArticleCASPubMed Google Scholar
Carrel, T. L. et al. Survival motor neuron function in motor axons is independent of functions required for small nuclear ribonucleoprotein biogenesis. J. Neurosci.26, 11014–11022 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ranum, L. P. & Cooper, T. A. RNA-mediated neuromuscular disorders. Annu. Rev. Neurosci.29, 259–277 (2006). ArticleCASPubMed Google Scholar
Shiffman, D. et al. Gene variants of VAMP8 and HNRPUL1 are associated with early-onset myocardial infarction. Arterioscler. Thromb. Vasc. Biol.26, 1613–1618 (2006). ArticleCASPubMed Google Scholar
Artandi, S. E. Telomeres, telomerase, and human disease. N. Engl. J. Med.355, 1195–1197 (2006). ArticleCASPubMed Google Scholar
Siddall, N. A., McLaughlin, E. A., Marriner, N. L. & Hime, G. R. The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proc. Natl Acad. Sci. USA103, 8402–8407 (2006). ArticleCASPubMedPubMed Central Google Scholar