Pyrite (original) (raw)

A valid IMA mineral species - grandfathered

09718560017271926448075.jpg

06496280017271926488539.jpg

About PyriteHide

This section is currently hidden. Click the show button to view.

Name:

Named in antiquity from the Greek "pyr" for "fire", because sparks flew from it when struck with another mineral or metal. Known to Dioscorides (~50 CE) under the name "περι υληζ ιατρικηζ" which included both pyrite and chalcopyrite.

Pyrite Group.

The isometric (cubic) polymorph of orthorhombic marcasite. However, some pyrites may be trigonal (pseudo-cubic; Moëlo, 2023).

Compare UM1997-43-S:Fe.

Pyrite is a very common mineral (also one of the most common natural sulfides, and the most common disulfide), found in a wide variety of geological formations from sedimentary deposits to hydrothermal veins and as a constituent of metamorphic rocks. The brassy-yellow metallic colour of pyrite has in many cases lead to people mistaking it for Gold, hence the common nickname 'Fool's gold'. Pyrite is quite easy to distinguish from gold: pyrite is much lighter, but harder than gold and cannot be scratched with a fingernail or pocket knife.

Pyrite is commonly found to contain minor nickel, and forms a series with Vaesite, NiS2; Bravoite is a Ni-bearing variety of pyrite.
It usually contains minor cobalt too and forms a series with Cattierite, CoS2. Many pyrites contain minor As, see Arsenic-bearing Pyrite.
"Pb-bearing" pyrite has been described by Cabral et al. (2011) and Pačevski et al. (2012). It can also contain traces of other metals, including gold. Most of the foreign metal contents in pyrite can be traced back to metal nanoparticles (Deditius et al., 2011; Pačevski et al., 2012).

05247710017271926406639.jpg

05247710017271926406639.jpg

05247710017271926406639.jpg

Pyrite will slowly oxidize, with the help of various bacteria, in a moist environment, and release sulfuric acid that is formed during the process. Well-crystallized specimens are generally relatively stable, while pyrite formed as sedimentary concretions has a tendency to decompose quickly.

According to Schmøkel et al. (2014), effective charges on sulfur and iron are ca. -1/3 and ca. +2/3, respectively. This is in opposition to the formal -1 and +2 charges as would be suggested by purely ionic bonding.

Unique IdentifiersHide

This section is currently hidden. Click the show button to view.

Long-form identifier:

mindat:1:1:3314:1

949ade6b-bc43-44c1-8073-49cb574bf3ef

IMA Classification of PyriteHide

This section is currently hidden. Click the show button to view.

Approved, 'Grandfathered' (first described prior to 1959)

Classification of PyriteHide

This section is currently hidden. Click the show button to view.

2.EB.05a

2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
E : Metal Sulfides, M: S <= 1:2
B : M:S = 1:2, with Fe, Co, Ni, PGE, etc.

2.12.1.1

2 : SULFIDES
12 : AmBnXp, with (m+n):p = 1:2

3.9.3

3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
9 : Sulphides etc. of Fe

Mineral SymbolsHide

This section is currently hidden. Click the show button to view.

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.

Symbol Source Reference
Py IMA–CNMNC Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43
Py Kretz (1983) Kretz, R. (1983) Symbols of rock-forming minerals. American Mineralogist, 68, 277–279.
Py Siivolam & Schmid (2007) Siivolam, J. and Schmid, R. (2007) Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: List of mineral abbreviations. Web-version 01.02.07. IUGS Commission on the Systematics in Petrology. download
Py Whitney & Evans (2010) Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187 doi:10.2138/am.2010.3371
Py The Canadian Mineralogist (2019) The Canadian Mineralogist (2019) The Canadian Mineralogist list of symbols for rock- and ore-forming minerals (December 30, 2019). download
Py Warr (2020) Warr, L.N. (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55, 261–264 doi:10.1180/clm.2020.30

Pronunciation of PyriteHide

This section is currently hidden. Click the show button to view.

Pronunciation:

Play Recorded by Country
Sorry, your browser doesn't support HTML5 audio. Jolyon Ralph United Kingdom

Physical Properties of PyriteHide

This section is currently hidden. Click the show button to view.

Hardness:

VHN100=1505 - 1520 kg/mm2 - Vickers

Cleavage:

Poor/Indistinct
Indistinct on {001}.

Fracture:

Irregular/Uneven, Conchoidal

Density:

4.8 - 5 g/cm3 (Measured) 5.01 g/cm3 (Calculated)

Optical Data of PyriteHide

This section is currently hidden. Click the show button to view.

Anisotropism:

Rarely anisotropic, due to polishing effects.

Reflectivity:

Wavelength R
400nm 38.2%
440nm 42.8%
480nm 48.5%
520nm 52.6%
560nm 54.6%
600nm 55.2%
640nm 56.0%
680nm 56.8%
700nm 57.0%

Reflectance graph
Graph shows reflectance levels at different wavelengths (in nm). Top of box is 100%. Peak reflectance is 57.0%.

Colour in reflected light:

Creamy white

Pleochroism:

Non-pleochroic

Chemistry of PyriteHide

This section is currently hidden. Click the show button to view.

Common Impurities:

Ni,Co,As,Cu,Zn,Ag,Au,Tl,Se,V

Age distributionHide

This section is currently hidden. Click the show button to view.

Crystallography of PyriteHide

This section is currently hidden. Click the show button to view.

Class (H-M):

m_3(2/m_3) - Diploidal

Cell Parameters:

a = 5.417 Å

Unit Cell V:

158.96 ų (Calculated from Unit Cell)

Morphology:

Typically cubic or pyritohedral (pentagonal dodecahedral), sometimes octahedral and combinations are common, resulting in striated faces. Less frequently octahedral, most commonly massive, granular, and sometimes radiating, reniform, discoidal or globular.

Twinning:

On [110], interpenetrating ('Iron Cross Law'). Twin axis [001] and twin plane {011}, penetration and contact twins. Twinning on (111) was described by Nicol (1904), Goldschmidt and Nicol (1904) and Gaubert (1928), all of whom considered it rare.

Crystallographic forms of PyriteHide

This section is currently hidden. Click the show button to view.

Crystal Atlas:

Image Loading

3d models and HTML5 code kindly provided bywww.smorf.nl.

Toggle
Edge Lines |Miller Indices |Axes

Transparency
Opaque |Translucent |Transparent

View
Along a-axis |Along b-axis |Along c-axis |Start rotation |Stop rotation

Crystal StructureHide

This section is currently hidden. Click the show button to view.

Load
Unit Cell |Unit Cell Packed
2x2x2 |3x3x3 |4x4x4

Show
Big Balls |Small Balls |Just Balls |Spacefill
Polyhedra Off |Si Polyhedra |All Polyhedra
Remove metal-metal sticks

Display Options
Black Background |White Background
Perspective On |Perspective Off
2D |Stereo |Red-Blue |Red-Cyan

View
CIF File Best |x |y |z |a |b |c

Rotation
Stop |Start

Labels
Console Off |On |Grey |Yellow

ID Species Reference Link Year Locality Pressure (GPa) Temp (K)
0000006 Pyrite Ramsdell L S (1925) The crystal structures of some metallic sulfides American Mineralogist 10 281-304 1925 natural, unknown 0 293
0000605 Pyrite Bayliss P (1977) Crystal structure refinement of a weakly anisotropic pyrite cubic model American Mineralogist 62 1168-1172 1977 0 293
0000606 Pyrite Bayliss P (1977) Crystal structure refinement of a weakly anisotropic pyrite American Mineralogist 62 1168-1172 1977 0 293
0007752 Pyrite Schmid-Beurmann P, Lottermoser W (1993) 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2-FeS2 solid solution series Physics and Chemistry of Minerals 19 571-577 1993 0 293
0007753 Pyrite Schmid-Beurmann P, Lottermoser W (1993) 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2-FeS2 solid solution series Physics and Chemistry of Minerals 19 571-577 1993 0 293
0012728 Pyrite Rieder M, Crelling J C, Sustai O, Drabek M, Weiss Z, Klementova M (2007) Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic International Journal of Coal Geology 71 115-121 2007 synthetic 0 293
0012729 Pyrite Rieder M, Crelling J C, Sustai O, Drabek M, Weiss Z, Klementova M (2007) Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic International Journal of Coal Geology 71 115-121 2007 synthetic 0 293
0012730 Pyrite Rieder M, Crelling J C, Sustai O, Drabek M, Weiss Z, Klementova M (2007) Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic International Journal of Coal Geology 71 115-121 2007 Dul CSA mine, North Bohemian Basin, Czech Republic 0 293
0017728 Pyrite Oftedal I (1928) Uber die Kristallstrukturen der verbindungen RuS2, OsS2, MnTe2 und AuSb2. Mit einem Anhang uber die Gitterkonstant von Pyrit Zeitschrift fur Physikalische Chemie 135 291-299 1928 0 293

CIF Raw Data - click here to close

Epitaxial Relationships of PyriteHide

This section is currently hidden. Click the show button to view.

Epitaxy Comments:

Twinned prismatic marcasite crystals attached along pyrite octahedron edges from Rensselaer, Indiana (Brock and Slater, 1978). See also Rakovan et al. (1995).

Pyrite on chalcopyrite from Ege-Khay, Yakutia, Russia (Novgorodova 1977).

X-Ray Powder DiffractionHide

This section is currently hidden. Click the show button to view.

Image Loading


Radiation - Copper Kα

Data Set:

Data courtesy of RRUFF project at University of Arizona, used with permission.

Powder Diffraction Data:

d-spacing Intensity
3.128 Å (35)
2.7088 Å (85)
2.4281 Å (65)
2.2118 Å (50)
1.9155 Å (40)
1.6332 Å (100)
1.5640 Å (14)
1.5025 Å (20)
1.4479 Å (25)
1.2427 Å (12)
1.2113 Å (14)
1.1823 Å (8)
1.1548 Å (6)
1.1057 Å (6)
1.0427 Å (25)
1.0060 Å (8)
0.9892 Å (6)
0.9577 Å (12)
0.9030 Å (16)
0.8788 Å (8)
0.8565 Å (8)
0.8261 Å (4)
0.8166 Å (4)
0.7981 Å (6)

Geological EnvironmentHide

This section is currently hidden. Click the show button to view.

Geological Setting:

Common in many rock types, igneous, metamorphic and sedimentary.

Synonyms of PyriteHide

This section is currently hidden. Click the show button to view.

Other Language Names for PyriteHide

This section is currently hidden. Click the show button to view.

Simplified Chinese:黄铁矿

Traditional Chinese:黃鐵礦

Varieties of PyriteHide

This section is currently hidden. Click the show button to view.

Arsenic-bearing Pyrite An arsenic-bearing variety of pyrite that may contain up to about 10 at.% of As (Abraitis et al., 2004). Not uncommon; often zoned.Arsenic may be present in different valence states.May contain submicroscopic gold.
Bravoite A nickel-bearing variety of pyrite, part of a complete solid solution with the nickel analogue of pyrite, vaesite (NiS2). Originally reported from Ragra Mine (Minasragra), Junín, Cerro de Pasco, Alcides Carrión Province, Pasco Department, Peru."Whe...
Cobalt-bearing Pyrite A cobalt-bearing variety of pyrite.
Cobalt-nickel-pyrite (of Vernadsky) A Ni- and Co-bearing pyrite.
Copper-bearing Pyrite A copper-bearing variety of pyrite.The substitution of Cu for Fe results in changes in unit-cell parameter and Raman spectra (Pačevski et al., 2008).
Feather pyrite Feather-shaped pseudomorphs of fine-grained pyrite after thin tabular pyrrhotite.Not uncommon in some sulphide ore deposits.
Gelpyrit An arsenic-bearing gel form of iron disulphide.
Gold-bearing Pyrite A gold-bearing variety of pyrite. Possibly a mixture of pyrite with submicroscopic native gold inclusions.
Hengleinite A cobalt-bearing bravoite.First described from Müsen, Siegerland, North Rhine-Westphalia, Germany.
Hepatic pyrite Liver-coloured pyrite or marcasite.
Nadelpyrit German name for acicular pyrite (literally 'needle pyrite').
Nickel-bearing Pyrite A nickel-bearing variety of pyrite.
Silver-bearing Pyrite A silver-bearing pyrite, perhaps a mixture.
Telaspyrine Once considered a tellurium-bearing variety of pyrite, but probably a mixture.
Thallium- and Arsenic-bearing Pyrite A variety of pyrite rich in As and Tl.

Relationship of Pyrite to other SpeciesHide

This section is currently hidden. Click the show button to view.

Other Members of this group:

Common AssociatesHide

This section is currently hidden. Click the show button to view.

Associated Minerals Based on Photo Data:

10,735 photos of Pyrite associated with Quartz SiO2
7,587 photos of Pyrite associated with Calcite CaCO3
4,653 photos of Pyrite associated with Sphalerite ZnS
3,015 photos of Pyrite associated with Galena PbS
2,764 photos of Pyrite associated with Fluorite CaF2
2,519 photos of Pyrite associated with Dolomite CaMg(CO3)2
2,504 photos of Pyrite associated with Chalcopyrite CuFeS2
2,188 photos of Pyrite associated with Siderite FeCO3
1,337 photos of Pyrite associated with Baryte BaSO4
1,112 photos of Pyrite associated with Rhodochrosite MnCO3

This section is currently hidden. Click the show button to view.

2.EB. Selenolaurite RuSe2 Iso. m_3(2/m_3) : P _a_3
2.EB. Andrieslombaardite RhSbS Iso. 23 : _P_213
2.EB. Iridarsenite (Ir,Ru)As2 Mon. 2/m : _P_21/b
2.EB. Kanatzidisite (SbBiS3)2Te2 Mon. 2/m : _P_21/m
2.EB.05a Vaesite NiS2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Hauerite MnS2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Laurite RuS2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Gaotaiite Ir3Te8 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Penroseite (Ni,Co,Cu)Se2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Fukuchilite Cu3FeS8 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Villamanínite (Cu,Ni,Co,Fe)S2 Tric.
2.EB.05a Erlichmanite OsS2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Sperrylite PtAs2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Geversite PtSb2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Cattierite CoS2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Aurostibite AuSb2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Trogtalite CoSe2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a v Cayeuxite
2.EB.05a Kruťaite CuSe2 Iso. m_3(2/m_3) : P _a_3
2.EB.05a Insizwaite Pt(Bi,Sb)2 Iso. m_3(2/m_3) : P _a_3
2.EB.05b Bambollaite Cu(Se,Te)2 Tet.
2.EB.05a Dzharkenite FeSe2 Iso. m_3(2/m_3) : P _a_3
2.EB.10a Marcasite FeS2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.10e Paracostibite CoSbS Orth. m m m _(_2/_m_2/_m_2/m ) : P b c a
2.EB.10f Oenite CoSbAs Orth.
2.EB.10e Pararammelsbergite NiAs2 Orth. m m m _(_2/_m_2/_m_2/m ) : P b c a
2.EB.10a Mattagamite CoTe2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.10a Frohbergite FeTe2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.10d Costibite CoSbS Orth. m _m_2 : P m _n_21
2.EB.10b Alloclasite Co1-xFexAsS Mon. 2 : _P_21
2.EB.10c Glaucodot (Co0.50Fe0.50)AsS Orth. m _m_2 : P m _n_21
2.EB.10a Petříčekite CuSe2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.10a Kullerudite NiSe2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.10a Ferroselite FeSe2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.15b Seinäjokite FeSb2 Orth.
2.EB.15a Rammelsbergite NiAs2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.15a Clinosafflorite CoAs2 Mon. 2/m : _P_21/m
2.EB.15c Paxite CuAs2 Mon. 2/m : _P_21/b
2.EB.15a Nisbite NiSb2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.15a Löllingite FeAs2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.15a Safflorite (Co,Ni,Fe)As2 Orth. m m m _(_2/_m_2/_m_2/m ) : P n n m
2.EB.15a Omeiite (Os,Ru)As2 Orth.
2.EB.15a Anduoite (Ru,Os)As2 Orth.
2.EB.20 Arsenopyrite FeAsS Mon. 2/m : _P_21/b
2.EB.20 Ruarsite (Ru,Os)AsS Mon.
2.EB.20 Osarsite (Os,Ru)AsS Mon.
2.EB.20 Gudmundite FeSbS Mon. 2/m : _P_21/b
2.EB.25 Mayingite IrBiTe Iso. m_3(2/m_3) : P _a_3
2.EB.25 Maslovite PtBiTe Iso. 23 : _P_213
2.EB.25 Paragersdorffite Ni(As,S)2 Iso. m_3(2/m_3) : P _a_3
2.EB.25 Orthogersdorffite NiAsS Orth. m _m_2 : P c _a_21
2.EB.25 Jolliffeite NiAsSe Iso. m_3(2/m_3) : P _a_3
2.EB.25 Cobaltite CoAsS Orth. m _m_2 : P c _a_21
2.EB.25 Testibiopalladite PdSbTe Iso.
2.EB.25 va Antimony-bearing Gersdorffite Ni(As,Sb)S
2.EB.25 Kalungaite PdAsSe Iso. m_3(2/m_3) : P _a_3
2.EB.25 Hollingworthite (Rh,Pt,Pd)AsS Iso. m_3(2/m_3) : P _a_3
2.EB.25 Michenerite PdBiTe Iso. 23 : _P_213
2.EB.25 Gersdorffite NiAsS Iso. 23 : _P_213
2.EB.25 Milotaite PdSbSe Iso. 23 : _P_213
2.EB.25 Tolovkite IrSbS Iso.
2.EB.25 Platarsite Pt(As,S)2 Iso. m_3(2/m_3) : P _a_3
2.EB.25 Willyamite CoSbS
2.EB.25 Changchengite IrBiS Iso. 23 : _P_213
2.EB.25 Kvačekite NiSbSe Iso. 23 : _P_213
2.EB.25 Krutovite NiAs2 Iso. 23 : _P_213
2.EB.25 Padmaite PdBiSe Iso. 432
2.EB.25 Ullmannite NiSbS Iso. 23 : _P_213
2.EB.25 Irarsite (Ir,Ru,Rh,Pt)AsS Iso. m_3(2/m_3) : P _a_3
2.EB.30 Urvantsevite Pd(Bi,Pb)2 Tet. 4/m m m _(_4/_m_2/_m_2/m ) : _I_4/m m m
2.EB.35 Rheniite ReS2 Tric. 1 : _P_1

Fluorescence of PyriteHide

This section is currently hidden. Click the show button to view.

Other InformationHide

This section is currently hidden. Click the show button to view.

Thermal Behaviour:

Heated in a closed tube gives a sublimate of sulfur and a magnetic residue.

Notes:

Insoluble in HCl. Decomposed by nitric acid.

Special Storage/
Display Requirements:

Many pyrites will tarnish over time, and some will even break down due to hydrous iron sulphates and other phases. This can be mitigated somewhat by storage in low-humidity environments but is hard to stop once started. See: http://www.mindat.org/mesg-19-170458.html

Health Risks:

Some fine-grained pyrite is metastable and may alter to melanterite, which contains sulphuric acid. Always wash hands after handling, especially decrepitated material. Avoid inhaling dust when handling or breaking. Never lick or ingest.

Pyrite in petrologyHide

This section is currently hidden. Click the show button to view.

An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.

This section is currently hidden. Click the show button to view.

References for PyriteHide

This section is currently hidden. Click the show button to view.

Reference List:

Rakovan, John, Schoonen, Martin A. A., Reeder, Richard J., Tyrna, Paul, Nelson, Daniel O. (1995) Epitaxial overgrowths of marcasite on pyrite from the Tunnel and Reservoir Project, Chicago, Illinois, USA: Implications for marcasite growth. Geochimica et Cosmochimica Acta, 59 (2) 343-346 doi:10.1016/0016-7037(94)00320-l

Gaines, Richard V., Skinner, H. Catherine W., Foord, Eugene E., Mason, Brian, Rosenzweig, Abraham, King, Vandall T. (1997) Dana's New Mineralogy (8th ed.). Wiley-Interscience. p.1872

Schaufuß, Andrea G., Nesbitt, H. Wayne, Kartio, Ilkka, Laajalehto, Kari, Bancroft, G. Michael, Szargan, Rüdiger (1998) Reactivity of surface chemical states on fractured pyrite. Surface Science, 411 (3) 321-328 doi:10.1016/s0039-6028(98)00355-0

Schaufuss, A.G., Nesbitt, H.W., Kartio, I., Laajalehto, K., Bancroft, G.M., Szargan, R. (1998) Incipient oxidation of fractured pyrite surface in air. Journal of Electron Spectroscopy and Related Phenomena: 96: 69-82.

Nesbitt, H.W., Scaini, M., Höchst, H., Bancroft, G.M., Schaufuss, A.G., Szargan, R. (2000) Synchrotron XPS evidence for Fe2+-S and Fe3+-S surface species on pyrite fracture-surfaces, and their 3D electronic states. American Mineralogist, 85 (5) 850-857 doi:10.2138/am-2000-5-628

Bonev, Ivan K., Garcia-Ruiz, Juan Manuel, Atanassova, Radostina, Otalora, Fermin, Petrussenko, Svetoslav (2006) Genesis of filamentary pyrite associated with calcite crystals. European Journal of Mineralogy, 17 (6) 905-913 doi:10.1127/0935-1221/2005/0017-0905

Blanchard, Marc, Alfredsson, Maria, Brodholt, John, Wright, Kate, Catlow, C. Richard A. (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study. Geochimica et Cosmochimica Acta, 71 (3) 624-630 doi:10.1016/j.gca.2006.09.021

Tan, Zheng, Su, Xuping, Li, Zhi, Liu, Ya, Wang, Jianhua (2007) Phase equilibria in the Zn–Fe–S system at 450°C. International Journal of Materials Research, 98 (1) 16-20 doi:10.3139/146.101435

Deditius, Artur P., Utsunomiya, Satoshi, Reich, Martin, Kesler, Stephen E., Ewing, Rodney C., Hough, Robert, Walshe, John (2011) Trace metal nanoparticles in pyrite. Ore Geology Reviews, 42 (1) 32-46 doi:10.1016/j.oregeorev.2011.03.003

Pačevski, A., Moritz, R., Kouzmanov, K., Marquardt, K., Živković, P., Cvetković, L. (2012) Texture and composition of Pb-bearing pyrite from the Čoka Marin polymetallic deposit, Serbia, controlled by nanoscale inclusions. The Canadian Mineralogist, 50 (1). 1-20 doi:10.3749/canmin.50.1.1

Schmøkel, M.S., Bjerg, L., Cenedese, S., Jørgensen, M.R.V., Chen, Y.-S., Overgaard, J., Iversen, B.B. (2014) Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study. Chemical Science: 4: 1408-1421; https://pubs.rsc.org/en/content/articlelanding/2014/SC/C3SC52977K#!divAbstract

Rečnik, Aleksander, Zavašnik, Janez, Jin, Lei, Čobić, Andrea, Daneu, Nina (2016) On the origin of 'iron-cross' twins of pyrite from Mt. Katarina, Slovenia. Mineralogical Magazine, 80 (6) 937-948 doi:10.1180/minmag.2016.080.073

Le Pape, Pierre, Blanchard, Marc, Brest, Jessica, Boulliard, Jean-Claude, Ikogou, Maya, Stetten, Lucie, Wang, Shuaitao, Landrot, Gautier, Morin, Guillaume (2017) Arsenic Incorporation in Pyrite at Ambient Temperature at Both Tetrahedral S–I and Octahedral FeII Sites: Evidence from EXAFS–DFT Analysis. Environmental Science & Technology, 51 (1). 150-158 doi:10.1021/acs.est.6b03502

Becherini, Francesca, Del Favero, Letizia, Fornasiero, Mariagabriella, Guastoni, Alessandro, Bernardi, Adriana (2018) Pyrite Decay of Large Fossils: The Case Study of the Hall of Palms in Padova, Italy. Minerals, 8 (2) 40 doi:10.3390/min8020040

Zhang, He, Qian, Gujie, Cai, Yuanfeng, Gibson, Christopher, Pring, Allan (2022) Crystal chemistry of arsenian pyrites: A Raman spectroscopic study. American Mineralogist, 107 (2) 274-281 doi:10.2138/am-2021-7806

Chen, Juan, Li, Heping, Yuan, Yi, Zhang, Mengxue, Shuai, Shuhang, Wan, Jingjing (2022) Raman Spectroscopic Studies of Pyrite at High Pressure and High Temperature. Minerals, 12 (3) 332 doi:10.3390/min12030332

Li, Hengxu, Zhang, Zhaochong, Zhang, Ruixuan, Xie, Qiuhong, Zhang, Lei, Santosh, M. (2024) Geochemical discrimination of pyrite in diverse ore deposit types through statistical analysis and machine learning techniques. American Mineralogist, 109 (5) 846-857 doi:10.2138/am-2023-8976

Significant localities for PyriteHide

This section is currently hidden. Click the show button to view.

Showing 56 significant localities out of 48,466 recorded on mindat.org.

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

This section is currently hidden. Click the show button to view.