The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer’s Disease (original) (raw)
Graeber MB, Kösel S, Egensperger R, Banati RB, Müller U, Bise K, Hoff P, Möller HJ, Fujisawa K, Mehraein P (1997) Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis. Neurogenetics 1(1):73–80. doi:10.1007/s100480050011 ArticlePubMedCAS Google Scholar
Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766 PubMedCAS Google Scholar
Benowitz LI, Rodriguez W, Paskevich P, Mufson EJ, Schenk D, Neve RL (1989) The amyloid precursor protein is concentrated in neuronal lysosomes in normal and Alzheimer disease subjects. Exp Neurol 106(3):237–250 ArticlePubMedCAS Google Scholar
Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800. doi:10.1212/wnl.58.12.1791 ArticlePubMed Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259 ArticlePubMedCAS Google Scholar
Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet-Bianco C, Pasquier F, Lebert F, Petit H, Di Menza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52(6):1158–1165 ArticlePubMedCAS Google Scholar
Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC (2002) Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A 99(7):4703–4707. doi:10.1073/pnas.052587399 ArticlePubMed CentralPubMedCAS Google Scholar
Lindsay J, Laurin D, Verreault R, Hébert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian study of health and aging. Am J Epidemiol 156(5):445–453. doi:10.1093/aje/kwf074 ArticlePubMed Google Scholar
Troen BR (2003) The biology of aging. Mt Sinai J Med 70(1):3–22 PubMed Google Scholar
Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325(6106):733–736 ArticlePubMedCAS Google Scholar
Ghiso J, Tagliavini F, Timmers WF, Frangione B (1989) Alzheimer’s disease amyloid precursor protein is present in senile plaques and cerebrospinal fluid: immunohistochemical and biochemical characterization. Biochem Biophys Res Commun 163(1):430–437 ArticlePubMedCAS Google Scholar
Autilio-Gambetti L, Morandi A, Tabaton M, Schaetzle B, Kovacs D, Perry G, Sharma S, Cornette J, Greenberg B, Gambetti P (1988) The amyloid percursor protein of Alzheimer disease is expressed as a 130 kDa polypeptide in various cultured cell types. FEBS Lett 241(1–2):94–98 ArticlePubMedCAS Google Scholar
Clark AW, Krekoski CA, Parhad IM, Liston D, Julien JP, Hoar DI (1989) Altered expression of genes for amyloid and cytoskeletal proteins in Alzheimer cortex. Ann Neurol 25(4):331–339. doi:10.1002/ana.410250404 ArticlePubMedCAS Google Scholar
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82(12):4245–4249 ArticlePubMed CentralPubMedCAS Google Scholar
Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135 ArticlePubMedCAS Google Scholar
Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890. doi:10.1016/S0006-291X(84)80190-4 ArticlePubMedCAS Google Scholar
Tanzi R, Gusella J, Watkins P, Bruns G, St George-Hyslop P, Van Keuren M, Patterson D, Pagan S, Kurnit D, Neve R (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235(4791):880–884. doi:10.1126/science.2949367 ArticlePubMedCAS Google Scholar
Korenberg JR, Pulst SM, Neve RL, West R (1989) The Alzheimer amyloid precursor protein maps to human chromosome 21 bands q21.105-q21.05. Genomics 5(1):124–127 ArticlePubMedCAS Google Scholar
Tokuda T, Fukushima T, Ikeda S, Sekijima Y, Shoji S, Yanagisawa N, Tamaoka A (1997) Plasma levels of amyloid beta proteins Abeta1-40 and Abeta1-42(43) are elevated in Down’s syndrome. Ann Neurol 41(2):271–273. doi:10.1002/ana.410410220 ArticlePubMedCAS Google Scholar
Mehta PD, Capone G, Jewell A, Freedland RL (2007) Increased amyloid β protein levels in children and adolescents with Down syndrome. J Neurol Sci 254(1):22–27 ArticlePubMedCAS Google Scholar
Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706 ArticlePubMedCAS Google Scholar
Murrell J, Farlow M, Ghetti B, Benson M (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254(5028):97–99. doi:10.1126/science.1925564 ArticlePubMedCAS Google Scholar
Suzuki N, Cheung T, Cai X, Odaka A, Otvos L, Eckman C, Golde T, Younkin S (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264(5163):1336–1340. doi:10.1126/science.8191290 ArticlePubMedCAS Google Scholar
Murrell JR, Hake AM, Quaid KA, Farlow MR, Ghetti B (2000) Early-onset Alzheimer disease caused by a new mutation (V717L) in the amyloid precursor protein gene. Arch Neurol 57(6):885–887. doi:10.1001/archneur.57.6.885 ArticlePubMedCAS Google Scholar
Kumar-Singh S, De Jonghe C, Cruts M, Kleinert R, Wang R, Mercken M, De Strooper B, Vanderstichele H, Löfgren A, Vanderhoeven I, Backhovens H, Vanmechelen E, Kroisel PM, Van Broeckhoven C (2000) Nonfibrillar diffuse amyloid deposition due to a γ 42‐secretase site mutation points to an essential role for N‐truncated Aβ42 in Alzheimer’s disease. Hum Mol Genet 9(18):2589–2598. doi:10.1093/hmg/9.18.2589 ArticlePubMedCAS Google Scholar
Ancolio K, Dumanchin C, Barelli H, Warter JM, Brice A, Campion D, Frébourg T, Checler F (1999) Unusual phenotypic alteration of β amyloid precursor protein (βAPP) maturation by a new Val-715 → Met βAPP-770 mutation responsible for probable early-onset Alzheimer’s disease. Proc Natl Acad Sci U S A 96(7):4119–4124. doi:10.1073/pnas.96.7.4119 ArticlePubMed CentralPubMedCAS Google Scholar
Eckman CB, Mehta ND, Crook R, Perez-tur J, Prihar G, Pfeiffer E, Graff-Radford N, Hinder P, Yager D, Zenk B, Refolo LM, Mihail Prada C, Younkin SG, Hutton M, Hardy J (1997) A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of Aβ42(43). Hum Mol Genet 6(12):2087–2089. doi:10.1093/hmg/6.12.2087 ArticlePubMedCAS Google Scholar
Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1(5):345–347. doi:10.1038/ng0892-345 ArticlePubMedCAS Google Scholar
Hendriks L, Vanduijn CM, Cras P, Cruts M, Vanhul W, Vanharskamp F, Warren A, McInnis MG, Antonarakis SE, Martin JJ, Hofman A, Vanbroeckhoven C (1992) Presenile-dementia and cerebral-hemorrhage linked to a mutation at codon-692 of the beta-amyloid precursor protein gene. Nat Genet 1(3):218–221. doi:10.1038/ng0692-218 ArticlePubMedCAS Google Scholar
Lan M-Y, Liu J-S, Wu Y-S, Peng C-H, Chang Y-Y (2014) A novel APP mutation (D678H) in a Taiwanese patient exhibiting dementia and cerebral microvasculopathy. J Clin Neurosci 21(3):513–515. doi:10.1016/j.jocn.2013.03.038 ArticlePubMedCAS Google Scholar
Kero M, Paetau A, Polvikoski T, Tanskanen M, Sulkava R, Jansson L, Myllykangas L, Tienari PJ (2013) Amyloid precursor protein (APP) A673T mutation in the elderly Finnish population. Neurobiol Aging 34(5):1518.e1–1518.e3. doi:10.1016/j.neurobiolaging.2012.09.017
Suárez-Calvet M, Belbin O, Pera M, Badiola N, Magrané J, Guardia-Laguarta C, Muñoz L, Colom-Cadena M, Clarimón J, Lleó A (2014) Autosomal-dominant Alzheimer’s disease mutations at the same codon of amyloid precursor protein differentially alter Aβ production. J Neurochem 128(2):330–339. doi:10.1111/jnc.12466 ArticlePubMedCAS Google Scholar
De Jonghe C, Esselens C, Kumar-Singh S, Craessaerts K, Serneels S, Checler F, Annaert W, Van Broeckhoven C, De Strooper B (2001) Pathogenic APP mutations near the γ-secretase cleavage site differentially affect Aβ secretion and APP C-terminal fragment stability. Hum Mol Genet 10(16):1665–1671. doi:10.1093/hmg/10.16.1665 ArticlePubMed Google Scholar
Russo C, Schettini G, Saido TC, Hulette C, Lippa C, Lannfelt L, Ghetti B, Gambetti P, Tabaton M, Teller JK (2000) Neurobiology: presenilin-1 mutations in Alzheimer’s disease. Nature 405(6786):531–532. doi:10.1038/35014735 ArticlePubMedCAS Google Scholar
Tanzi RE, George-Hyslop PHS, Haines JL, Polinsky RJ, Nee L, Foncin J-F, Neve RL, McClatchey AI, Conneally PM, Gusella JF (1987) The genetic defect in familial Alzheimer’s disease is not tightly linked to the amyloid [beta]-protein gene. Nature 329(6135):156–157 ArticlePubMedCAS Google Scholar
Vitek MP, Rasool CG, de Sauvage F, Vitek SM, Bartus RT, Beer B, Ashton RA, Macq AF, Maloteaux JM, Blume AJ et al (1988) Absence of mutation in the beta-amyloid cDNAs cloned from the brains of three patients with sporadic Alzheimer’s disease. Brain Res 464(2):121–131 ArticlePubMedCAS Google Scholar
Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada C-M, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease–linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17(5):1005–1013. doi:10.1016/S0896-6273(00)80230-5 ArticlePubMedCAS Google Scholar
Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC, Yamaguchi H, Ruiz A, Martinez A, Madrigal L (1996) The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nat Med 2(10):1146–1150 ArticlePubMedCAS Google Scholar
Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ, Hulette C, Crain B, Goldgaber D, Roses AD (1993) Association of apolipoprotein E allele ∈4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8):1467–1472 ArticlePubMedCAS Google Scholar
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923 ArticlePubMedCAS Google Scholar
Fergusson J, Landon M, Lowe J, Ward L, van Leeuwen FW, Mayer RJ (2000) Neurofibrillary tangles in progressive supranuclear palsy brains exhibit immunoreactivity to frameshift mutant ubiquitin-B protein. Neurosci Lett 279(2):69–72. doi:10.1016/S0304-3940(99)00917-9 ArticlePubMedCAS Google Scholar
van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Koycu S, Ramdjielal RD, Salehi A, Martens GJ, Grosveld FG, Peter J, Burbach H, Hol EM (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279(5348):242–247 ArticlePubMed Google Scholar
Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245(4916):417–420 ArticlePubMedCAS Google Scholar
Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci 924:17–25 ArticlePubMedCAS Google Scholar
Wippold FJ, Cairns N, Vo K, Holtzman DM, Morris JC (2008) Neuropathology for the neuroradiologist: plaques and tangles. Am J Neuroradiol 29(1):18–22. doi:10.3174/ajnr.A0781 ArticlePubMed Google Scholar
Masters CL, Selkoe DJ (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med a006262. doi: 10.1101/cshperspect.a006262
Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135(2):309–319 PubMed CentralPubMedCAS Google Scholar
Lord A, Philipson O, Klingstedt T, Westermark G, Hammarstrom P, Nilsson KP, Nilsson LN (2011) Observations in APP bitransgenic mice suggest that diffuse and compact plaques form via independent processes in Alzheimer’s disease. Am J Pathol 178(5):2286–2298. doi:10.1016/j.ajpath.2011.01.052 ArticlePubMed CentralPubMedCAS Google Scholar
Ma QH, Futagawa T, Yang WL, Jiang XD, Zeng L, Takeda Y, Xu RX, Bagnard D, Schachner M, Furley AJ, Karagogeos D, Watanabe K, Dawe GS, Xiao ZC (2008) A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat Cell Biol 10(3):283–294. doi:10.1038/ncb1690 ArticlePubMedCAS Google Scholar
Selkoe DJ, Podlisny MB, Joachim CL, Vickers EA, Lee G, Fritz LC, Oltersdorf T (1988) Beta-amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. Proc Natl Acad Sci U S A 85(19):7341–7345 ArticlePubMed CentralPubMedCAS Google Scholar
Tanaka S, Shiojiri S, Takahashi Y, Kitaguchi N, Ito H, Kameyama M, Kimura J, Nakamura S, Ueda K (1989) Tissue-specific expression of three types of beta-protein precursor mRNA: enhancement of protease inhibitor-harboring types in Alzheimer’s disease brain. Biochem Biophys Res Commun 165(3):1406–1414 ArticlePubMedCAS Google Scholar
Johnson SA, Pasinetti GM, May PC, Ponte PA, Cordell B, Finch CE (1988) Selective reduction of mRNA for the β-amyloid precursor protein that lacks a Kunitz-type protease inhibitor motif in cortex from Alzheimer brains. Exp Neurol 102(2):264–268. doi:10.1016/0014-4886(88)90104-5 ArticlePubMedCAS Google Scholar
Johnson SA, Rogers J, Finch CE (1989) APP-695 transcript prevalence is selectively reduced during Alzheimer’s disease in cortex and hippocampus but not in cerebellum. Neurobiol Aging 10(6):755–760 ArticlePubMedCAS Google Scholar
Haass C, Hung AY, Selkoe DJ (1991) Processing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci 11(12):3783–3793 PubMedCAS Google Scholar
Tanzi RE, McClatchey AI, Lamperti ED, Villa-Komaroff L, Gusella JF, Neve RL (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331(6156):528–530 ArticlePubMedCAS Google Scholar
Kitaguchi N, Takahashi Y, Tokushima Y, Shiojiri S, Ito H (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331(6156):530–532. doi:10.1038/331530a0 ArticlePubMedCAS Google Scholar
Small DH, Nurcombe V, Reed G, Clarris H, Moir R, Beyreuther K, Masters CL (1994) A heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the regulation of neurite outgrowth. J Neurosci 14(4):2117–2127 PubMedCAS Google Scholar
Mok SS, Sberna G, Heffernan D, Cappai R, Galatis D, Clarris HJ, Sawyer WH, Beyreuther K, Masters CL, Small DH (1997) Expression and analysis of heparin-binding regions of the amyloid precursor protein of Alzheimer’s disease. FEBS Lett 415(3):303–307. doi:10.1016/S0014-5793(97)01146-0 ArticlePubMedCAS Google Scholar
Rossjohn J, Cappai R, Feil SC, Henry A, McKinstry WJ, Galatis D, Hesse L, Multhaup G, Beyreuther K, Masters CL, Parker MW (1999) Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nat Struct Biol 6(4):327–331 ArticlePubMedCAS Google Scholar
Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, Williamson NA, White AR, Hinds MG, Norton RS, Beyreuther K, Masters CL, Parker MW, Cappai R (2003) Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain: a regulator of neuronal copper homeostasis. J Biol Chem 278(19):17401–17407. doi:10.1074/jbc.M300629200 ArticlePubMedCAS Google Scholar
Ninomiya H, Roch JM, Sundsmo MP, Otero DAC, Saitoh T (1993) Amino acid sequence RERMS represents the active domain of amyloid β/A4 protein precursor that promotes fibroblast growth. J Cell Biol 121(4):879–886 ArticlePubMedCAS Google Scholar
Dawkins E, Small DH (2014) Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer’s disease. J Neurochem 756–769. doi: 10.1111/jnc.12675
Perez RG, Zheng H, Van der Ploeg LHT, Koo EH (1997) The β-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J Neurosci 17(24):9407–9414 PubMedCAS Google Scholar
Corrigan F, Thornton E, Roisman LC, Leonard AV, Vink R, Blumbergs PC, van den Heuvel C, Cappai R (2014) The neuroprotective activity of the amyloid precursor protein against traumatic brain injury is mediated via the heparin binding site in residues 96-110. J Neurochem 128(1):196–204. doi:10.1111/jnc.12391 ArticlePubMedCAS Google Scholar
Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P, Xu H (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc Natl Acad Sci U S A 96(2):742–747. doi:10.1073/pnas.96.2.742 ArticlePubMed CentralPubMedCAS Google Scholar
Selkoe DJ, Yamazaki T, Citron M, Podlisny MB, Koo EH, Teplow DB, Haass C (1996) The role of APP processing and trafficking pathways in the formation of amyloid β-protein. Ann N Y Acad Sci 777(1):57–64. doi:10.1111/j.1749-6632.1996.tb34401.x ArticlePubMedCAS Google Scholar
Parvathy S, Hussain I, Karran EH, Turner AJ, Hooper NM (1999) Cleavage of Alzheimer’s amyloid precursor protein by α-secretase occurs at the surface of neuronal cells. Biochemistry (Mosc) 38(30):9728–9734. doi:10.1021/bi9906827 ArticleCAS Google Scholar
Skovronsky DM, Moore DB, Milla ME, Doms RW, Lee VM-Y (2000) Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-Golgi network. J Biol Chem 275(4):2568–2575. doi:10.1074/jbc.275.4.2568 ArticlePubMedCAS Google Scholar
Palmert MR, Podlisny MB, Witker DS, Oltersdorf T, Younkin LH, Selkoe DJ, Younkin SG (1989) The beta-amyloid protein precursor of Alzheimer disease has soluble derivatives found in human brain and cerebrospinal fluid. Proc Natl Acad Sci U S A 86(16):6338–6342 ArticlePubMed CentralPubMedCAS Google Scholar
Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) Secreted amyloid precursor protein β and secreted amyloid precursor protein α induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS ONE 6(1):e16301 ArticlePubMed CentralPubMedCAS Google Scholar
Hartl D, Klatt S, Roch M, Konthur Z, Klose J, Willnow TE, Rohe M (2013) Soluble alpha-APP (sAPPalpha) regulates CDK5 expression and activity in neurons. PLoS ONE 8(6):e65920 ArticlePubMed CentralPubMedCAS Google Scholar
Gakhar‐Koppole N, Hundeshagen P, Mandl C, Weyer SW, Allinquant B, Müller U, Ciccolini F (2008) Activity requires soluble amyloid precursor protein α to promote neurite outgrowth in neural stem cell‐derived neurons via activation of the MAPK pathway. Eur J Neurosci 28(5):871–882 ArticlePubMed Google Scholar
Baratchi S, Evans J, Tate WP, Abraham WC, Connor B (2012) Secreted amyloid precursor proteins promote proliferation and glial differentiation of adult hippocampal neural progenitor cells. Hippocampus 22(7):1517–1527 ArticlePubMedCAS Google Scholar
Demars MP, Bartholomew A, Strakova Z, Lazarov O (2011) Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Res Ther 2:36 ArticlePubMed CentralPubMedCAS Google Scholar
Hasebe N, Fujita Y, Ueno M, Yoshimura K, Fujino Y, Yamashita T (2013) Soluble β-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth. PLoS ONE 8(12):e82321 ArticlePubMed CentralPubMedCAS Google Scholar
Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K, S-i T, Ishiura S (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP α-secretase. Biochem Biophys Res Commun 301(1):231–235. doi:10.1016/S0006-291X(02)02999-6 ArticlePubMedCAS Google Scholar
Allinson TM, Parkin ET, Turner AJ, Hooper NM (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 74(3):342–352. doi:10.1002/jnr.10737 ArticlePubMedCAS Google Scholar
Deuss M, Reiss K, Hartmann D (2008) Part-time-secretases: the functional biology of ADAM 9, 10 and 17. Curr Alzheimer Res 5(2):187–201 ArticlePubMedCAS Google Scholar
van der Vorst EP, Keijbeck AA, de Winther MP, Donners MM (2012) A disintegrin and metalloproteases: molecular scissors in angiogenesis, inflammation and atherosclerosis. Atherosclerosis 224(2):302–308 ArticlePubMedCAS Google Scholar
Hartmann D, Tournoy J, Saftig P, Annaert W, De Strooper B (2001) Implication of APP secretases in notch signaling. J Mol Neurosci 17(2):171–181 ArticlePubMedCAS Google Scholar
Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11(21):2615–2624 ArticlePubMedCAS Google Scholar
Yang P, Baker KA, Hagg T (2006) The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 79(2):73–94 ArticlePubMedCAS Google Scholar
Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113(10):1456–1464. doi:10.1172/JCI20864 ArticlePubMed CentralPubMedCAS Google Scholar
Epis R, Marcello E, Gardoni F, Vastagh C, Malinverno M, Balducci C, Colombo A, Borroni B, Vara H, Dell’Agli M, Cattabeni F, Giustetto M, Borsello T, Forloni G, Padovani A, Di Luca M (2010) Blocking ADAM10 synaptic trafficking generates a model of sporadic Alzheimer’s disease. Brain 133(11):3323–3335. doi:10.1093/brain/awq217 ArticlePubMed Google Scholar
Arribas J, Esselens C (2009) ADAM17 as a therapeutic target in multiple diseases. Curr Pharm Des 15(20):2319–2335 ArticlePubMedCAS Google Scholar
Scheller J, Chalaris A, Garbers C, Rose-John S (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 32(8):380–387 ArticlePubMedCAS Google Scholar
Blacker M, Noe MC, Carty TJ, Goodyer CG, LeBlanc AC (2002) Effect of tumor necrosis factor-alpha converting enzyme (TACE) and metalloprotease inhibitor on amyloid precursor protein metabolism in human neurons. J Neurochem 83(6):1349–1357 ArticlePubMedCAS Google Scholar
Huse JT, Pijak DS, Leslie GJ, Lee VM-Y, Doms RW (2000) Maturation and endosomal targeting of β-site amyloid precursor protein-cleaving enzyme: the Alzheimer’s disease β-secretase. J Biol Chem 275(43):33729–33737. doi:10.1074/jbc.M004175200 ArticlePubMedCAS Google Scholar
Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK, Tate WP, Abraham WC (2008) Endogenous secreted amyloid precursor protein-α regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 31(2):250–260. doi:10.1016/j.nbd.2008.04.011 ArticlePubMedCAS Google Scholar
He W, Lu Y, Qahwash I, Hu X-Y, Chang A, Yan R (2004) Reticulon family members modulate BACE1 activity and amyloid-[beta] peptide generation. Nat Med 10(9):959–965. doi:10.1038/nm1088 ArticlePubMedCAS Google Scholar
Yokota T, Mishra M, Akatsu H, Tani Y, Miyauchi T, Yamamoto T, Kosaka K, Nagai Y, Sawada T, Heese K (2006) Brain site-specific gene expression analysis in Alzheimer’s disease patients. Eur J Clin Investig 36(11):820–830. doi:10.1111/j.1365-2362.2006.01722.x ArticleCAS Google Scholar
Serneels L, Van Biervliet J, Craessaerts K, Dejaegere T, Horre K, Van Houtvin T, Esselmann H, Paul S, Schafer MK, Berezovska O, Hyman BT, Sprangers B, Sciot R, Moons L, Jucker M, Yang Z, May PC, Karran E, Wiltfang J, D’Hooge R, De Strooper B (2009) Gamma-secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 324(5927):639–642. doi:10.1126/science.1171176 ArticlePubMed CentralPubMedCAS Google Scholar
Dries DR, Yu G (2008) Assembly, maturation, and trafficking of the gamma-secretase complex in Alzheimer’s disease. Curr Alzheimer Res 5(2):132–146 ArticlePubMed CentralPubMedCAS Google Scholar
Yamasaki A, Eimer S, Okochi M, Smialowska A, Kaether C, Baumeister R, Haass C, Steiner H (2006) The GxGD motif of presenilin contributes to catalytic function and substrate identification of gamma-secretase. J Neurosci 26(14):3821–3828. doi:10.1523/jneurosci. 5354-05.2006 ArticlePubMedCAS Google Scholar
Kretner B, Fukumori A, Kuhn P-H, Pérez-Revuelta BI, Lichtenthaler SF, Haass C, Steiner H (2013) Important functional role of residue x of the presenilin GxGD protease active site motif for APP substrate cleavage specificity and substrate selectivity of γ-secretase. J Neurochem 125(1):144–156. doi:10.1111/jnc.12124 ArticlePubMedCAS Google Scholar
Mori H, Takio K, Ogawara M, Selkoe DJ (1992) Mass spectrometry of purified amyloid beta protein in Alzheimer’s disease. J Biol Chem 267(24):17082–17086 PubMedCAS Google Scholar
Portelius E, Mattsson N, Andreasson U, Blennow K, Zetterberg H (2011) Novel aβ isoforms in Alzheimer’s disease—their role in diagnosis and treatment. Curr Pharm Des 17(25):2594–2602 ArticlePubMedCAS Google Scholar
Lim KH, Collver HH, Le YTH, Nagchowdhuri P, Kenney JM (2007) Characterizations of distinct amyloidogenic conformations of the Aβ (1–40) and (1–42) peptides. Biochem Biophys Res Commun 353(2):443–449. doi:10.1016/j.bbrc.2006.12.043 ArticlePubMedCAS Google Scholar
Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid β peptide1–42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156(3):519–529. doi:10.1083/jcb.200110119 ArticlePubMed CentralPubMedCAS Google Scholar
Mucke L, Masliah E, Yu G-Q, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11):4050–4058 PubMedCAS Google Scholar
Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267(1):546–554 PubMedCAS Google Scholar
Duff K, Eckman C, Zehr C, Yu X, Prada CM, Pereztur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-beta 42(43) in brains of mice expressing mutant presenilin 1. Nature 383(6602):710–713. doi:10.1038/383710a0 ArticlePubMedCAS Google Scholar
Jan A, Gokce O, Luthi-Carter R, Lashuel HA (2008) The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity. J Biol Chem 283(42):28176–28189. doi:10.1074/jbc.M803159200 ArticlePubMed CentralPubMedCAS Google Scholar
Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ (2001) The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 276(43):40288–40292. doi:10.1074/jbc.C100447200 ArticlePubMedCAS Google Scholar
Cupers P, Orlans I, Craessaerts K, Annaert W, De Strooper B (2001) The amyloid precursor protein (APP)-cytoplasmic fragment generated by gamma-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. J Neurochem 78(5):1168–1178 ArticlePubMedCAS Google Scholar
Slomnicki LP, Lesniak W (2008) A putative role of the amyloid precursor protein intracellular domain (AICD) in transcription. Acta Neurobiol Exp (Wars) 68(2):219–228 Google Scholar
Liu Q, Zerbinatti CV, Zhang J, Hoe H-S, Wang B, Cole SL, Herz J, Muglia L, Bu G (2007) Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 56(1):66–78. doi:10.1016/j.neuron.2007.08.008 ArticlePubMed CentralPubMedCAS Google Scholar
von Rotz RC, Kohli BM, Bosset J, Meier M, Suzuki T, Nitsch RM, Konietzko U (2004) The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J Cell Sci 117(19):4435–4448. doi:10.1242/jcs.01323 ArticleCAS Google Scholar
Kim H-S, Kim E-M, Lee J-P, Park CH, Kim S, Seo J-H, Chang K-A, Yu E, Jeong S-J, Chong YH, Suh Y-H (2003) C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3β expression. FASEB J 17(13):1951–1953. doi: 10.1096/fj.03-0106fje
Checler F, Sunyach C, Pardossi-Piquard R, Sevalle J, Vincent B, Kawarai T, Girardot N, St George-Hyslop P, da Costa CA (2007) The gamma/epsilon-secretase-derived APP intracellular domain fragments regulate p53. Curr Alzheimer Res 4(4):423–426 ArticlePubMedCAS Google Scholar
Y-w Z, Wang R, Liu Q, Zhang H, Liao F-F, Xu H (2007) Presenilin/γ-secretase-dependent processing of β-amyloid precursor protein regulates EGF receptor expression. Proc Natl Acad Sci U S A 104(25):10613–10618. doi:10.1073/pnas.0703903104 ArticleCAS Google Scholar
Muller T, Loosse C, Schrotter A, Schnabel A, Helling S, Egensperger R, Marcus K (2011) The AICD interacting protein DAB1 is up-regulated in Alzheimer frontal cortex brain samples and causes deregulation of proteins involved in gene expression changes. Curr Alzheimer Res 8(5):573–582 ArticlePubMedCAS Google Scholar
Nakayama K, Ohkawara T, Hiratochi M, Koh CS, Nagase H (2008) The intracellular domain of amyloid precursor protein induces neuron-specific apoptosis. Neurosci Lett 444(2):127–131. doi:10.1016/j.neulet.2008.08.034 ArticlePubMedCAS Google Scholar
Roncarati R, Sestan N, Scheinfeld MH, Berechid BE, Lopez PA, Meucci O, McGlade JC, Rakic P, D’Adamio L (2002) The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc Natl Acad Sci U S A 99(10):7102–7107. doi:10.1073/pnas.102192599 ArticlePubMed CentralPubMedCAS Google Scholar
Hu QD, Ang BT, Karsak M, Hu WP, Cui XY, Duka T, Takeda Y, Chia W, Sankar N, Ng YK, Ling EA, Maciag T, Small D, Trifonova R, Kopan R, Okano H, Nakafuku M, Chiba S, Hirai H, Aster JC, Schachner M, Pallen CJ, Watanabe K, Xiao ZC (2003) F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115(2):163–175 ArticlePubMedCAS Google Scholar
Ghosal K, Vogt DL, Liang M, Shen Y, Lamb BT, Pimplikar SW (2009) Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci U S A 106(43):18367–18372. doi:10.1073/pnas.0907652106 ArticlePubMed CentralPubMedCAS Google Scholar
Konietzko U (2012) AICD nuclear signaling and its possible contribution to Alzheimer’s disease. Curr Alzheimer Res 9(2):200–216 ArticlePubMedCAS Google Scholar
Yankner B, Duffy L, Kirschner D (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250(4978):279–282. doi:10.1126/science.2218531 ArticlePubMedCAS Google Scholar
Chen Y, Dong C (2008) A[beta]40 promotes neuronal cell fate in neural progenitor cells. Cell Death Differ 16(3):386–394 ArticlePubMedCAS Google Scholar
Giuffrida M, Tomasello F, Caraci F, Chiechio S, Nicoletti F, Copani A (2012) Beta-amyloid monomer and insulin/IGF-1 signaling in Alzheimer’s disease. Mol Neurobiol 46(3):605–613. doi:10.1007/s12035-012-8313-6 ArticlePubMedCAS Google Scholar
Calafiore M, Battaglia G, Zappala A, Trovato-Salinaro E, Caraci F, Caruso M, Vancheri C, Sortino MA, Nicoletti F, Copani A (2006) Progenitor cells from the adult mouse brain acquire a neuronal phenotype in response to beta-amyloid. Neurobiol Aging 27(4):606–613. doi:10.1016/j.neurobiolaging.2005.03.019 ArticlePubMedCAS Google Scholar
Butterfield DA, Yatin SM, Link CD (1999) In vitro and in vivo protein oxidation induced by Alzheimer’s disease amyloid beta-peptide (1-42). Ann N Y Acad Sci 893:265–268 ArticlePubMedCAS Google Scholar
Yatin SM, Varadarajan S, Link CD, Butterfield DA (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1-42). Neurobiol Aging 20(3):325–330, discussion 339–342 ArticlePubMedCAS Google Scholar
Yatin SM, Aksenova M, Aksenov M, Markesbery WR, Aulick T, Butterfield DA (1998) Temporal relations among amyloid beta-peptide-induced free-radical oxidative stress, neuronal toxicity, and neuronal defensive responses. J Mol Neurosci 11(3):183–197. doi:10.1385/JMN:11:3:183 ArticlePubMedCAS Google Scholar
Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950. doi:10.1523/jneurosci. 2357-10.2010 ArticlePubMedCAS Google Scholar
Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7(12):548–554. doi:10.1016/S1471-4914(01)02173-6 ArticlePubMedCAS Google Scholar
Adibhatla RM, Hatcher JF (2010) Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 12(1):125–169. doi:10.1089/ars.2009.2668 ArticlePubMedCAS Google Scholar
Rauchova H, Vokurkova M, Koudelova J (2012) Hypoxia-induced lipid peroxidation in the brain during postnatal ontogenesis. Physiol Res 61(Suppl 1):S89–S101 PubMedCAS Google Scholar
Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12(5):698–714 ArticlePubMedCAS Google Scholar
Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PLR, Siedlak SL, Tabaton M, Perry G (1998) Amyloid-β deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70(5):2212–2215. doi:10.1046/j.1471-4159.1998.70052212.x ArticlePubMedCAS Google Scholar
Kontush A, Berndt C, Weber W, Akopyan V, Arlt S, Schippling S, Beisiegel U (2001) Amyloid-β is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med 30(1):119–128. doi:10.1016/S0891-5849(00)00458-5 ArticlePubMedCAS Google Scholar
Kontush A, Donarski N, Beisiegel U (2001) Resistance of human cerebrospinal fluid to in vitro oxidation is directly related to its amyloid-β content. Free Radic Res 35(5):507–517. doi:10.1080/10715760100301521 ArticlePubMedCAS Google Scholar
Zou K, Gong JS, Yanagisawa K, Michikawa M (2002) A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 22(12):4833–4841 PubMedCAS Google Scholar
Skaper SD (2012) Alzheimer’s disease and amyloid: culprit or coincidence. Int Rev Neurobiol 102:277–316 ArticlePubMedCAS Google Scholar
Golde TE, Dickson D, Hutton M (2006) Filling the gaps in the a cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 3(5):421–430 ArticlePubMedCAS Google Scholar
Drachman DA (2014) The amyloid hypothesis, time to move on: amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement 10(3):372–380 ArticlePubMed Google Scholar
Zempel H, Mandelkow E-M (2011) Linking amyloid-β and tau: amyloid-β induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton. Neurodegener Dis 10(1–4):64–72 PubMed Google Scholar
Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow EM (2013) Amyloid-beta oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32(22):2920–2937. doi:10.1038/emboj.2013.207 ArticlePubMed CentralPubMedCAS Google Scholar
Ferreira A, Lu Q, Orecchio L, Kosik KS (1997) Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar Aβ. Mol Cell Neurosci 9(3):220–234. doi:10.1006/mcne.1997.0615 ArticlePubMedCAS Google Scholar
Yu W, Polepalli J, Wagh D, Rajadas J, Malenka R, Lu B (2012) A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of Aβ on synapses and dendritic spines. Hum Mol Genet 21(6):1384–1390 ArticlePubMed CentralPubMedCAS Google Scholar
Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through tau phosphorylation. Neuron 78(1):94–108 ArticlePubMed CentralPubMedCAS Google Scholar
Zheng W-H, Bastianetto S, Mennicken F, Ma W, Kar S (2002) Amyloid β peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115(1):201–211 ArticlePubMedCAS Google Scholar
Lewis J, Dickson DW, Lin W-L, Chisholm L, Corral A, Jones G, Yen S-H, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534):1487–1491. doi:10.1126/science.1058189 ArticlePubMedCAS Google Scholar
Brandt R, Hundelt M, Shahani N (2005) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta (BBA)-Mol Basis Dis 1739(2):331–354 ArticleCAS Google Scholar
Ludolph A, Kassubek J, Landwehrmeyer B, Mandelkow E, Mandelkow EM, Burn D, Caparros‐Lefebvre D, Frey K, De Yebenes J, Gasser T (2009) Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options. Eur J Neurol 16(3):297–309 ArticlePubMed CentralPubMedCAS Google Scholar
Ihara Y, Abraham C, Selkoe DJ (1983) Antibodies to paired helical filaments in Alzheimer’s disease do not recognize normal brain proteins. Nature 304(5928):727–730 ArticlePubMedCAS Google Scholar
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089 PubMedCAS Google Scholar
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917 ArticlePubMed CentralPubMedCAS Google Scholar
Cleveland DW, Hwo S-Y, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116(2):207–225 ArticlePubMedCAS Google Scholar
Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862 ArticlePubMed CentralPubMedCAS Google Scholar
Witman GB, Cleveland DW, Weingarten MD, Kirschner MW (1976) Tubulin requires tau for growth onto microtubule initiating sites. Proc Natl Acad Sci U S A 73(11):4070–4074 ArticlePubMed CentralPubMedCAS Google Scholar
Schoenfeld TA, Obar RA (1994) Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int Rev Cytol 151:67–137 ArticlePubMedCAS Google Scholar
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130. doi:10.1016/S0165-0173(00)00019-9 ArticlePubMed Google Scholar
González-Billault C, Engelke M, Jiménez-Mateos EM, Wandosell F, Cáceres A, Avila J (2002) Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. J Neurosci Res 67(6):713–719. doi:10.1002/jnr.10161 ArticlePubMedCAS Google Scholar
Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16(18):5583–5592 PubMedCAS Google Scholar
Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E-M, Mandelkow E (1998) Overexpression of Tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143(3):777–794. doi:10.1083/jcb.143.3.777 ArticlePubMed CentralPubMedCAS Google Scholar
Terwel D, Dewachter I, Van Leuven F (2002) Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. Neuromol Med 2(2):151–165. doi:10.1385/NMM:2:2:151 ArticleCAS Google Scholar
Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH, Brown H, Tiwari A, Hayward L, Edgar J, Nave K-A, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29(41):12776–12786. doi:10.1523/jneurosci. 3463-09.2009 ArticlePubMed CentralPubMedCAS Google Scholar
Hirokawa N, Shiomura Y, Okabe S (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol 107(4):1449–1459 ArticlePubMedCAS Google Scholar
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526. doi:10.1016/0896-6273(89)90210-9 ArticlePubMedCAS Google Scholar
Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8(1):159–168. doi:10.1016/0896-6273(92)90117-V ArticlePubMedCAS Google Scholar
Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, Avila J (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimers Res 2(1):3–18 ArticleCAS Google Scholar
Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328 ArticlePubMed CentralPubMedCAS Google Scholar
Schwalbe M, Biernat J, Bibow S, Ozenne V, Jensen MR, Kadavath H, Blackledge M, Mandelkow E, Zweckstetter M (2013) Phosphorylation of human tau protein by microtubule affinity-regulating kinase 2. Biochemistry (Mosc) 52(50):9068–9079. doi:10.1021/bi401266n ArticleCAS Google Scholar
Drewes G, Lichtenberg-Kraag B, Doring F, Mandelkow EM, Biernat J, Goris J, Doree M, Mandelkow E (1992) Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 11(6):2131–2138 PubMed CentralPubMedCAS Google Scholar
Mandelkow EM, Drewes G, Biernat J, Gustke N, Van Lint J, Vandenheede JR, Mandelkow E (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 314(3):315–321 ArticlePubMedCAS Google Scholar
Lin K-F, Chang RC-C, Suen K-C, So K-F, Hugon J (2004) Modulation of calcium/calmodulin kinase-II provides partial neuroprotection against beta-amyloid peptide toxicity. Eur J Neurosci 19(8):2047–2055. doi:10.1111/j.0953-816X.2004.03245.x ArticlePubMed Google Scholar
Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80 PubMedCAS Google Scholar
Blass JP (2001) Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J Neurosci Res 66(5):851–856. doi:10.1002/jnr.10087 ArticlePubMedCAS Google Scholar
Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259(8):5301–5305 PubMedCAS Google Scholar
Gustke N, Steiner B, Mandelkow EM, Biernat J, Meyer HE, Goedert M, Mandelkow E (1992) The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs. FEBS Lett 307(2):199–205 ArticlePubMedCAS Google Scholar
Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22(8):1942–1950. doi:10.1111/j.1460-9568.2005.04391.x ArticlePubMed Google Scholar
Watanabe A, Takio K, Ihara Y (1999) Deamidation and isoaspartate formation in smeared tau in paired helical filaments: unusual properties of the microtubule-binding domain of tau. J Biol Chem 274(11):7368–7378. doi:10.1074/jbc.274.11.7368 ArticlePubMedCAS Google Scholar
Min S-W, Cho S-H, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966. doi:10.1016/j.neuron.2010.08.044 ArticlePubMed CentralPubMedCAS Google Scholar
Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VMY (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252. doi:10.1038/ncomms1255 ArticlePubMed CentralPubMed Google Scholar
Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS Jr, Hutton M, Burrows F, Petrucelli L (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658. doi:10.1172/JCI29715 ArticlePubMed CentralPubMedCAS Google Scholar
Skrabana R, Sevcik J, Novak M (2006) Intrinsically disordered proteins in the neurodegenerative processes: formation of tau protein paired helical filaments and their analysis. Cell Mol Neurobiol 26(7–8):1083–1095. doi:10.1007/s10571-006-9083-3 ArticleCAS Google Scholar
Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208 ArticlePubMedCAS Google Scholar
Uversky VN (2010) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteomics 7(4):543–564. doi:10.1586/epr.10.36 ArticlePubMed CentralPubMedCAS Google Scholar
Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DM, Akiyama H, Hasegawa M (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4(1):124–134. doi:10.1016/j.celrep.2013.06.007 ArticlePubMedCAS Google Scholar
Tsuiji H, Iguchi Y, Furuya A, Kataoka A, Hatsuta H, Atsuta N, Tanaka F, Hashizume Y, Akatsu H, Murayama S, Sobue G, Yamanaka K (2013) Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 5(2):221–234. doi:10.1002/emmm.201202303 ArticlePubMed CentralPubMedCAS Google Scholar
Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A, Staufenbiel M, Walker LC, Jucker M (2009) Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci U S A 106(31):12926–12931. doi:10.1073/pnas.0903200106 ArticlePubMed CentralPubMedCAS Google Scholar
Lee S-J, Desplats P, Sigurdson C, Tsigelny I, Masliah E (2010) Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 6(12):702–706 ArticlePubMedCAS Google Scholar
Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913. doi:10.1038/ncb1901 ArticlePubMed CentralPubMedCAS Google Scholar
Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M, Ghetti B, Goedert M, Tolnay M (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A 110(23):9535–9540. doi:10.1073/pnas.1301175110 ArticlePubMed CentralPubMedCAS Google Scholar
Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106(31):13010–13015. doi:10.1073/pnas.0903691106 ArticlePubMed CentralPubMedCAS Google Scholar
Mougenot A-L, Nicot S, Bencsik A, Morignat E, Verchère J, Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33(9):2225–2228. doi:10.1016/j.neurobiolaging.2011.06.022 ArticlePubMedCAS Google Scholar
Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DM, Hasegawa M (2013) Prion-like spreading of pathological alpha-synuclein in brain. Brain 136(Pt 4):1128–1138. doi:10.1093/brain/awt037 ArticlePubMed CentralPubMed Google Scholar
Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11(2):219–225. doi:10.1038/ncb1830 ArticlePubMed CentralPubMedCAS Google Scholar
Jaiswal JK, Fix M, Takano T, Nedergaard M, Simon SM (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A 104(35):14151–14156. doi:10.1073/pnas.0704935104 ArticlePubMed CentralPubMedCAS Google Scholar
Mohamed NV, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer’s disease by cell-to-cell transmission. Eur J Neurosci 37(12):1939–1948. doi:10.1111/ejn.12229 ArticlePubMed Google Scholar
Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336. doi:10.1038/ncb1841 ArticlePubMedCAS Google Scholar
Hershko A, Ciechanover A, Rose IA (1979) Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc Natl Acad Sci U S A 76(7):3107–3110 ArticlePubMed CentralPubMedCAS Google Scholar
Weissman AM, Shabek N, Ciechanover A (2011) The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol 12(9):605–620 ArticlePubMed CentralPubMedCAS Google Scholar
Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373(6509):81–83 ArticlePubMedCAS Google Scholar
Ciechanover A, Schwartz AL (2004) The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim Biophys Acta (BBA) - Mol Cell Res 1695(1–3):3–17. doi:10.1016/j.bbamcr.2004.09.018 ArticleCAS Google Scholar
Avela K, Lipsanen-Nyman M, Idänheimo N, Seemanová E, Rosengren S, Mäkelä TP, Perheentupa J, de la Chapelle A, Lehesjoki A-E (2000) Gene encoding a new RING-B-box-Coiled-coil protein is mutated in mulibrey nanism. Nat Genet 25(3):298–301 ArticlePubMedCAS Google Scholar
Horn EJ, Albor A, Liu Y, El-Hizawi S, Vanderbeek GE, Babcock M, Bowden GT, Hennings H, Lozano G, Weinberg WC, Kulesz-Martin M (2004) RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis 25(2):157–167. doi:10.1093/carcin/bgh003 ArticlePubMedCAS Google Scholar
Kudryashova E, Kudryashov D, Kramerova I, Spencer MJ (2005) Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J Mol Biol 354(2):413–424. doi:10.1016/j.jmb.2005.09.068 ArticlePubMedCAS Google Scholar
Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, Togo T, Katsuse O, Uchikado H, Furukawa Y, Kosaka K, Arai H (2007) Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294. doi:10.1016/j.brainres.2007.09.048 ArticlePubMedCAS Google Scholar
Ishizawa T, Mattila P, Davies P, Wang D, Dickson DW (2003) Colocalization of Tau and alpha‐synuclein epitopes in lewy bodies. J Neuropathol Exp Neurol 62(4):389–397
McNaught KSP, Björklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW (2002) Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 13(11):1437–1441 ArticlePubMedCAS Google Scholar
McNaught KSP, Mytilineou C, JnoBaptiste R, Yabut J, Shashidharan P, Jenner P, Olanow CW (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81(2):301–306. doi:10.1046/j.1471-4159.2002.00821.x ArticlePubMedCAS Google Scholar
Tashiro Y, Urushitani M, Inoue H, Koike M, Uchiyama Y, Komatsu M, Tanaka K, Yamazaki M, Abe M, Misawa H, Sakimura K, Ito H, Takahashi R (2012) Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J Biol Chem 287(51):42984–42994. doi:10.1074/jbc.M112.417600 ArticlePubMed CentralPubMedCAS Google Scholar
Giannini C, Kloß A, Gohlke S, Mishto M, Nicholson TP, Sheppard PW, Kloetzel P-M, Dahlmann B (2013) Poly-Ub-substrate-degradative activity of 26S proteasome is not impaired in the aging rat brain. PLoS ONE 8(5):e64042. doi:10.1371/journal.pone.0064042 ArticlePubMed CentralPubMedCAS Google Scholar
Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122 ArticlePubMed Google Scholar
Doyle SM, Genest O, Wickner S (2013) Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 14(10):617–629. doi:10.1038/nrm3660 ArticlePubMedCAS Google Scholar
Pratt WB, Morishima Y, Peng HM, Osawa Y (2010) Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 235(3):278–289. doi:10.1258/ebm.2009.009250 ArticleCAS Google Scholar
Cao W, Konsolaki M (2011) FKBP immunophilins and Alzheimer’s disease: a chaperoned affair. J Biosci 36(3):493–498 ArticlePubMedCAS Google Scholar
Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J (1993) Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 229(1):105–124 ArticlePubMed Google Scholar
Somarelli JA, Lee SY, Skolnick J, Herrera RJ (2008) Structure-based classification of 45 FK506-binding proteins. Proteins Struct Funct Bioinforma 72(1):197–208. doi:10.1002/prot.21908 ArticleCAS Google Scholar
Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66(4):807–815. doi:10.1016/0092-8674(91)90124-H ArticlePubMedCAS Google Scholar
Kang CB, Hong Y, Dhe-Paganon S, Yoon HS (2008) FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 16(4):318–325 ArticlePubMedCAS Google Scholar
Charters AR, Kobayashi M, Butcher SP (1994) The subcellular distribution of FK506 binding proteins in rat brain. Biochem Soc Trans 22(4):412 s
Shirane M, Nakayama KI (2003) Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat Cell Biol 5(1):28–37. doi:10.1038/ncb894 ArticlePubMedCAS Google Scholar
Wang H-Q, Nakaya Y, Du Z, Yamane T, Shirane M, Kudo T, Takeda M, Takebayashi K, Noda Y, Nakayama KI, Nishimura M (2005) Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2. Hum Mol Genet 14(13):1889–1902. doi:10.1093/hmg/ddi195 ArticlePubMedCAS Google Scholar
Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J (2003) Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Proc Natl Acad Sci U S A 100(3):868–873. doi:10.1073/pnas.0231020100 ArticlePubMed CentralPubMedCAS Google Scholar
Wu B, Li P, Liu Y, Lou Z, Ding Y, Shu C, Ye S, Bartlam M, Shen B, Rao Z (2004) 3D structure of human FK506-binding protein 52: implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex. Proc Natl Acad Sci U S A 101(22):8348–8353 ArticlePubMed CentralPubMedCAS Google Scholar
Boudko SP, Ishikawa Y, Nix J, Chapman MS, Bachinger HP (2014) Structure of human peptidyl-prolyl cis-trans isomerase FKBP22 containing two EF-hand motifs. Protein Sci 23(1):67–75. doi:10.1002/pro.2391 ArticlePubMed CentralPubMedCAS Google Scholar
van de Hoef DL, Bonner JM, Boulianne GL (2013) FKBP14 is an essential gene that regulates presenilin protein levels and Notch signaling in Drosophila. Development 140(4):810–819. doi:10.1242/dev.081356 ArticlePubMedCAS Google Scholar
Dickey CA, Yue M, Lin W-L, Dickson DW, Dunmore JH, Lee WC, Zehr C, West G, Cao S, Clark AMK, Caldwell GA, Caldwell KA, Eckman C, Patterson C, Hutton M, Petrucelli L (2006) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 26(26):6985–6996. doi:10.1523/jneurosci. 0746-06.2006 ArticlePubMedCAS Google Scholar
Karagoz GE, Duarte AM, Akoury E, Ippel H, Biernat J, Moran Luengo T, Radli M, Didenko T, Nordhues BA, Veprintsev DB, Dickey CA, Mandelkow E, Zweckstetter M, Boelens R, Madl T, Rudiger SG (2014) Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 156(5):963–974. doi:10.1016/j.cell.2014.01.037 ArticlePubMed CentralPubMedCAS Google Scholar
Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD (2006) Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet 15(9):1483–1496. doi:10.1093/hmg/ddl067 ArticlePubMedCAS Google Scholar
Jinwal UK, Koren J 3rd, Borysov SI, Schmid AB, Abisambra JF, Blair LJ, Johnson AG, Jones JR, Shults CL, O’Leary JC 3rd, Jin Y, Buchner J, Cox MB, Dickey CA (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30(2):591–599. doi:10.1523/jneurosci. 4815-09.2010 ArticlePubMed CentralPubMedCAS Google Scholar
Blair LJ, Nordhues BA, Hill SE, Scaglione KM, O’Leary JC 3rd, Fontaine SN, Breydo L, Zhang B, Li P, Wang L, Cotman C, Paulson HL, Muschol M, Uversky VN, Klengel T, Binder EB, Kayed R, Golde TE, Berchtold N, Dickey CA (2013) Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest 123(10):4158–4169. doi:10.1172/jci69003 ArticlePubMed CentralPubMedCAS Google Scholar
Chambraud B, Belabes H, Fontaine-Lenoir V, Fellous A, Baulieu EE (2007) The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation. FASEB J 21(11):2787–2797. doi:10.1096/fj.06-7667com ArticlePubMedCAS Google Scholar
Sanokawa-Akakura R, Cao W, Allan K, Patel K, Ganesh A, Heiman G, Burke R, Kemp FW, Bogden JD, Camakaris J, Birge RB, Konsolaki M (2010) Control of Alzheimer’s amyloid beta toxicity by the high molecular weight immunophilin FKBP52 and copper homeostasis in Drosophila. PLoS ONE 5(1):e8626. doi:10.1371/journal.pone.0008626 ArticlePubMed CentralPubMedCAS Google Scholar
Sugata H, Matsuo K, Nakagawa T, Takahashi M, Mukai H, Ono Y, Maeda K, Akiyama H, Kawamata T (2009) A peptidyl–prolyl isomerase, FKBP12, accumulates in Alzheimer neurofibrillary tangles. Neurosci Lett 459(2):96–99 ArticlePubMedCAS Google Scholar
Liu FL, Liu TY, Kung FL (2014) FKBP12 regulates the localization and processing of amyloid precursor protein in human cell lines. J Biosci 39(1):85–95 ArticlePubMedCAS Google Scholar
Gerard M, Deleersnijder A, Daniels V, Schreurs S, Munck S, Reumers V, Pottel H, Engelborghs Y, Van den Haute C, Taymans JM, Debyser Z, Baekelandt V (2010) Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson’s disease-like pathology. J Neurosci 30(7):2454–2463. doi:10.1523/JNEUROSCI. 5983-09.2010 ArticlePubMedCAS Google Scholar
Deleersnijder A, Van Rompuy AS, Desender L, Pottel H, Buee L, Debyser Z, Baekelandt V, Gerard M (2011) Comparative analysis of different peptidyl-prolyl isomerases reveals FK506-binding protein 12 as the most potent enhancer of alpha-synuclein aggregation. J Biol Chem 286(30):26687–26701. doi:10.1074/jbc.M110.182303 ArticlePubMed CentralPubMedCAS Google Scholar
Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, Uchida T, Bronson R, Bing G, Li X, Hunter T, Lu KP (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424(6948):556–561. doi:10.1038/nature01832 ArticlePubMedCAS Google Scholar
Holzer M, Gartner U, Stobe A, Hartig W, Gruschka H, Bruckner MK, Arendt T (2002) Inverse association of Pin1 and tau accumulation in Alzheimer’s disease hippocampus. Acta Neuropathol 104(5):471–481. doi:10.1007/s00401-002-0581-1 PubMedCAS Google Scholar
Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li SH, Li X, Xia W, Nicholson LK, Lu KP (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440(7083):528–534. doi:10.1038/nature04543 ArticlePubMedCAS Google Scholar
Perry G, Friedman R, Shaw G, Chau V (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci U S A 84(9):3033–3036 ArticlePubMed CentralPubMedCAS Google Scholar
Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85(1):115–122 ArticlePubMedCAS Google Scholar
Lindsten K, de Vrij FMS, Verhoef LGGC, Fischer DF, van Leeuwen FW, Hol EM, Masucci MG, Dantuma NP (2002) Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J Cell Biol 157(3):417–427. doi:10.1083/jcb.200111034 ArticlePubMed CentralPubMedCAS Google Scholar
de Vrij FMS, Jacqueline A, Gregori LF, David F, Hermens WTJMC, Goldgaber D, Verhaagen J, Van Leeuwen FW, Hol EM (2001) Mutant ubiquitin expressed in Alzheimer’s disease causes neuronal death. FASEB J 15(14):2680–2688. doi:10.1096/fj.01-0438com ArticlePubMed Google Scholar
Yen SS (2011) Proteasome degradation of brain cytosolic tau in Alzheimer’s disease. Int J Clin Exp Pathol 4(4):385–402 PubMed CentralPubMedCAS Google Scholar
Oh S, Hong HS, Hwang E, Sim HJ, Lee W, Shin SJ, Mook-Jung I (2005) Amyloid peptide attenuates the proteasome activity in neuronal cells. Mech Ageing Dev 126(12):1292–1299. doi:10.1016/j.mad.2005.07.006 ArticlePubMedCAS Google Scholar
Shringarpure R, Grune T, Sitte N, Davies* KJA (2000) 4-Hydroxynonenal-modified amyloid-β peptide inhibits the proteasome: possible importance in Alzheimer’s disease*. CMLS, Cell Mol Life Sci 57(12):1802–1809. doi: 10.1007/PL00000660
Gregori L, Fuchs C, Figueiredo-Pereira ME, Van Nostrand WE, Goldgaber D (1995) Amyloid β-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem 270(34):19702–19708. doi:10.1074/jbc.270.34.19702 ArticlePubMedCAS Google Scholar
Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Layfield R (2000) Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci U S A 97(18):9902–9906. doi:10.1073/pnas.170173897 ArticlePubMed CentralPubMedCAS Google Scholar
Klettner A, Baumgrass R, Zhang Y, Fischer G, Bürger E, Herdegen T, Mielke K (2001) The neuroprotective actions of FK506 binding protein ligands: neuronal survival is triggered by de novo RNA synthesis, but is independent of inhibition of JNK and calcineurin. Mol Brain Res 97(1):21–31. doi:10.1016/S0169-328X(01)00286-8 ArticlePubMedCAS Google Scholar
Lee KH, Won R, Kim UJ, Kim GM, Chung M-A, Sohn J-H, Lee BH (2010) Neuroprotective effects of FK506 against excitotoxicity in organotypic hippocampal slice culture. Neurosci Lett 474(3):126–130. doi:10.1016/j.neulet.2010.03.009 ArticlePubMedCAS Google Scholar
Winter C, Schenkel J, Bürger E, Eickmeier C, Zimmermann M, Herdegen T (1999) The immunophilin ligand FK506, but not GPI-1046, protects against neuronal death and inhibits c-Jun expression in the substantia nigra pars compacta following transection of the rat medial forebrain bundle. Neuroscience 95(3):753–762. doi:10.1016/S0306-4522(99)00486-8 Article Google Scholar
Karapetyan YE, Sferrazza GF, Zhou M, Ottenberg G, Spicer T, Chase P, Fallahi M, Hodder P, Weissmann C, Lasmézas CI (2013) Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. Proc Natl Acad Sci U S A 110(17):7044–7049. doi:10.1073/pnas.1303510110 ArticlePubMed CentralPubMedCAS Google Scholar
Harrington C, Rickard JE, Horsley D, Harrington KA, Hindley KP, Riedel G, Theuring F, Seng KM, Wischik CM (2008) O1-06-04: methylthioninium chloride (MTC) acts as a Tau aggregation inhibitor (TAI) in a cellular model and reverses Tau pathology in transgenic mouse models of Alzheimer’s disease. Alzheimers Dement 4(Supplement 4):T120–T121. doi:10.1016/j.jalz.2008.05.259 Article Google Scholar
Wischik CM, Bentham P, Wischik DJ, Seng KM (2008) O3-04-07: Tau aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer’s disease over 50 weeks. Alzheimers Dement 4(Supplement 4):T167. doi:10.1016/j.jalz.2008.05.438 Article Google Scholar
Hong X, Liu J, Zhu G, Zhuang Y, Suo H, Wang P, Huang D, Xu J, Huang Y, Yu M, Bian M, Sheng Z, Fei J, Song H, Behnisch T, Huang F (2014) Parkin overexpression ameliorates hippocampal long-term potentiation and β-amyloid load in an Alzheimer’s disease mouse model. Hum Mol Genet 23(4):1056–1072. doi:10.1093/hmg/ddt501 ArticlePubMedCAS Google Scholar
Mukherjee A, Morales-Scheihing D, Gonzalez-Romero D, Green K, Taglialatela G, Soto C (2010) Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival. PLoS Pathog 6(10):e1001138. doi:10.1371/journal.ppat.1001138 ArticlePubMed CentralPubMedCAS Google Scholar