Cellular responses to endoplasmic reticulum stress and apoptosis (original) (raw)
Adesnik M, Lande M, Martin T, Sabatini DD (1976) Retention of mRNA on the endoplasmic reticulum membranes after in vivo disassembly of polysomes by an inhibitor of initiation. J Cell Biol 71:307–313. doi:10.1083/jcb.71.1.307 ArticlePubMedCAS Google Scholar
Lande MA, Adesnik M, Sumida M, Tashiro Y, Sabatini DD (1975) Direct association of messenger RNA with microsomal membranes in human diploid fibroblasts. J Cell Biol 65:513–528. doi:10.1083/jcb.65.3.513 ArticlePubMedCAS Google Scholar
Karplus M, Weaver DL (1994) Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci 3:650–668 ArticlePubMedCAS Google Scholar
Cheung MS, Garcia AE, Onuchic JN (2002) Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc Natl Acad Sci USA 99:685–690. doi:10.1073/pnas.022387699 ArticlePubMedCAS Google Scholar
Saliba RS, Munro PM, Luthert PJ, Cheetham ME (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115:2907–2918 PubMedCAS Google Scholar
Petkova AT, Ishii Y, Balbach JJ et al (2002) A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747. doi:10.1073/pnas.262663499 ArticlePubMedCAS Google Scholar
Munro S, Pelham HR (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300. doi:10.1016/0092-8674(86)90746-4 ArticlePubMedCAS Google Scholar
Hendershot L, Wei J, Gaut J, Melnick J, Aviel S, Argon Y (1996) Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants. Proc Natl Acad Sci USA 93:5269–5274. doi:10.1073/pnas.93.11.5269 ArticlePubMedCAS Google Scholar
Feldheim D, Rothblatt J, Schekman R (1992) Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Mol Cell Biol 12:3288–3296 PubMedCAS Google Scholar
Schlenstedt G, Harris S, Risse B, Lill R, Silver PA (1995) A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s. J Cell Biol 129:979–988. doi:10.1083/jcb.129.4.979 ArticlePubMedCAS Google Scholar
Cunnea PM, Miranda-Vizuete A, Bertoli G et al (2003) ERdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress. J Biol Chem 278:1059–1066. doi:10.1074/jbc.M206995200 ArticlePubMedCAS Google Scholar
Hong CS, Ganetzky B (1996) Molecular characterization of neurally expressing genes in the para sodium channel gene cluster of drosophila. Genetics 142:879–892 PubMedCAS Google Scholar
Price ER, Zydowsky LD, Jin MJ, Baker CH, McKeon FD, Walsh CT (1991) Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc Natl Acad Sci USA 88:1903–1907. doi:10.1073/pnas.88.5.1903 ArticlePubMedCAS Google Scholar
Bryant Z, Subrahmanyan L, Tworoger M et al (1999) Characterization of differentially expressed genes in purified Drosophila follicle cells: toward a general strategy for cell type-specific developmental analysis. Proc Natl Acad Sci USA 96:5559–5564. doi:10.1073/pnas.96.10.5559 ArticlePubMedCAS Google Scholar
Tien AC, Rajan A, Schulze KL et al (2008) Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster. J Cell Biol 182:1113–1125. doi:10.1083/jcb.200805001 ArticlePubMedCAS Google Scholar
Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3:246–255. doi:10.1038/nrm780 ArticlePubMedCAS Google Scholar
Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–1206. doi:10.1016/0092-8674(93)90648-A ArticlePubMedCAS Google Scholar
Mori K, Ma W, Gething MJ, Sambrook J (1993) A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74:743–756. doi:10.1016/0092-8674(93)90521-Q ArticlePubMedCAS Google Scholar
Koizumi N, Martinez IM, Kimata Y, Kohno K, Sano H, Chrispeels MJ (2001) Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol 127:949–962. doi:10.1104/pp.010636 ArticlePubMedCAS Google Scholar
Liu CY, Schroder M, Kaufman RJ (2000) Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 275:24881–24885. doi:10.1074/jbc.M004454200 ArticlePubMedCAS Google Scholar
Plongthongkum N, Kullawong N, Panyim S, Tirasophon W (2007) Ire1 regulated XBP1 mRNA splicing is essential for the unfolded protein response (UPR) in Drosophila melanogaster. Biochem Biophys Res Commun 354:789–794. doi:10.1016/j.bbrc.2007.01.056 ArticlePubMedCAS Google Scholar
Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17:5708–5717. doi:10.1093/emboj/17.19.5708 ArticlePubMedCAS Google Scholar
Tirasophon W, Welihinda AA, Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12:1812–1824. doi:10.1101/gad.12.12.1812 ArticlePubMedCAS Google Scholar
Bertolotti A, Wang X, Novoa I et al (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest 107:585–593. doi:10.1172/JCI11476 ArticlePubMedCAS Google Scholar
Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332. doi:10.1038/35014014 ArticlePubMedCAS Google Scholar
Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K (2000) Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 279:445–450. doi:10.1006/bbrc.2000.3987 ArticlePubMedCAS Google Scholar
Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K (2004) A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol 167:445–456. doi:10.1083/jcb.200405153 ArticlePubMedCAS Google Scholar
Oikawa D, Kimata Y, Kohno K (2007) Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1. J Cell Sci 120:1681–1688. doi:10.1242/jcs.002808 ArticlePubMedCAS Google Scholar
Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P (2005) On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci USA 102:18773–18784. doi:10.1073/pnas.0509487102 ArticlePubMedCAS Google Scholar
Shamu CE, Walter P (1996) Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J 15:3028–3039 PubMedCAS Google Scholar
Welihinda AA, Kaufman RJ (1996) The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem 271:18181–18187. doi:10.1074/jbc.271.30.18181 ArticlePubMedCAS Google Scholar
Liu CY, Wong HN, Schauerte JA, Kaufman RJ (2002) The protein kinase/endoribonuclease IRE1alpha that signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain. J Biol Chem 277:18346–18356. doi:10.1074/jbc.M112454200 ArticlePubMedCAS Google Scholar
Mori K, Kawahara T, Yoshida H, Yanagi H, Yura T (1996) Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1:803–817. doi:10.1046/j.1365-2443.1996.d01-274.x ArticlePubMedCAS Google Scholar
Nikawa J, Akiyoshi M, Hirata S, Fukuda T (1996) Saccharomyces cerevisiae IRE2/HAC1 is involved in IRE1-mediated KAR2 expression. Nucleic Acids Res 24:4222–4226. doi:10.1093/nar/24.21.4222 ArticlePubMedCAS Google Scholar
Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, Kaufman RJ (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107:893–903. doi:10.1016/S0092-8674(01)00612-2 ArticlePubMedCAS Google Scholar
Yoshida H, Okada T, Haze K et al (2001) Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol 21:1239–1248. doi:10.1128/MCB.21.4.1239-1248.2001 ArticlePubMedCAS Google Scholar
Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96. doi:10.1038/415092a ArticlePubMedCAS Google Scholar
Ruegsegger U, Leber JH, Walter P (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107:103–114. doi:10.1016/S0092-8674(01)00505-0 ArticlePubMedCAS Google Scholar
Yoshida H, Oku M, Suzuki M, Mori K (2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172:565–575. doi:10.1083/jcb.200508145 ArticlePubMedCAS Google Scholar
Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258. doi:10.1016/S0092-8674(00)80835-1 ArticlePubMedCAS Google Scholar
Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2:379–384. doi:10.1038/35017001 ArticlePubMedCAS Google Scholar
Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172:383–393. doi:10.1083/jcb.200507057 ArticlePubMedCAS Google Scholar
Sriburi R, Jackowski S, Mori K, Brewer JW (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 167:35–41. doi:10.1083/jcb.200406136 ArticlePubMedCAS Google Scholar
Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307. doi:10.1038/35085509 ArticlePubMedCAS Google Scholar
Reimold AM, Etkin A, Clauss I et al (2000) An essential role in liver development for transcription factor XBP-1. Genes Dev 14:152–157 PubMedCAS Google Scholar
Niwa M, Patil CK, DeRisi J, Walter P (2005) Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease. Genome Biol 6:R3. doi:10.1186/gb-2004-6-1-r3 ArticlePubMed Google Scholar
Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinase by transmembrane protein kinase IRE1. Science 287:664–666. doi:10.1126/science.287.5453.664 ArticlePubMedCAS Google Scholar
Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799 PubMedCAS Google Scholar
Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman RJ, Prywes R (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem 275:27013–27020 PubMedCAS Google Scholar
Yoshida H, Okada T, Haze K et al (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755–6767. doi:10.1128/MCB.20.18.6755-6767.2000 ArticlePubMedCAS Google Scholar
Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111. doi:10.1016/S1534-5807(02)00203-4 ArticlePubMedCAS Google Scholar
Hong M, Luo S, Baumeister P et al (2004) Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J Biol Chem 279:11354–11363. doi:10.1074/jbc.M309804200 ArticlePubMedCAS Google Scholar
Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741–33749. doi:10.1074/jbc.273.50.33741 ArticlePubMedCAS Google Scholar
van Huizen R, Martindale JL, Gorospe M, Holbrook NJ (2003) P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J Biol Chem 278:15558–15564. doi:10.1074/jbc.M212074200 ArticlePubMed Google Scholar
Kokame K, Kato H, Miyata T (2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 276:9199–9205. doi:10.1074/jbc.M010486200 ArticlePubMedCAS Google Scholar
Shi Y, Vattem KM, Sood R et al (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18:7499–7509 PubMedCAS Google Scholar
Shi Y, An J, Liang J et al (1999) Characterization of a mutant pancreatic eIF-2alpha kinase, PEK, and co-localization with somatostatin in islet delta cells. J Biol Chem 274:5723–5730. doi:10.1074/jbc.274.9.5723 ArticlePubMedCAS Google Scholar
Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274. doi:10.1038/16729 ArticlePubMedCAS Google Scholar
Marciniak SJ, Garcia-Bonilla L, Hu J, Harding HP, Ron D (2006) Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK. J Cell Biol 172:201–209. doi:10.1083/jcb.200508099 ArticlePubMedCAS Google Scholar
Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167:27–33. doi:10.1083/jcb.200408003 ArticlePubMedCAS Google Scholar
Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365. doi:10.1016/S0022-2836(02)00234-6 ArticlePubMedCAS Google Scholar
Pomar N, Berlanga JJ, Campuzano S, Hernandez G, Elias M, de Haro C (2003) Functional characterization of Drosophila melanogaster PERK eukaryotic initiation factor 2alpha (eIF2alpha) kinase. Eur J Biochem 270:293–306. doi:10.1046/j.1432-1033.2003.03383.x ArticlePubMedCAS Google Scholar
Yan W, Frank CL, Korth MJ et al (2002) Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci USA 99:15920–15925. doi:10.1073/pnas.252341799 ArticlePubMedCAS Google Scholar
Brush MH, Weiser DC, Shenolikar S (2003) Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23:1292–1303. doi:10.1128/MCB.23.4.1292-1303.2003 ArticlePubMedCAS Google Scholar
Ma Y, Hendershot LM (2003) Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem 278:34864–34873. doi:10.1074/jbc.M301107200 ArticlePubMedCAS Google Scholar
Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D (2003) Stress-induced gene expression requires programmed recovery from translational repression. EMBO J 22:1180–1187. doi:10.1093/emboj/cdg112 ArticlePubMedCAS Google Scholar
Hosokawa N, Wada I, Hasegawa K et al (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2:415–422 PubMedCAS Google Scholar
Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397–1400. doi:10.1126/science.1079474 ArticlePubMedCAS Google Scholar
Szathmary R, Bielmann R, Nita-Lazar M, Burda P, Jakob CA (2005) Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol Cell 19:765–775. doi:10.1016/j.molcel.2005.08.015 ArticlePubMedCAS Google Scholar
Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895. doi:10.1038/42276 ArticlePubMedCAS Google Scholar
Pilon M, Schekman R, Romisch K (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 16:4540–4548. doi:10.1093/emboj/16.15.4540 ArticlePubMedCAS Google Scholar
Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847. doi:10.1038/nature02656 ArticlePubMedCAS Google Scholar
Gauss R, Jarosch E, Sommer T, Hirsch C (2006) A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 8:849–854. doi:10.1038/ncb1445 ArticlePubMedCAS Google Scholar
Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–894. doi:10.1083/jcb.150.4.887 ArticlePubMedCAS Google Scholar
Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103. doi:10.1038/47513 ArticlePubMedCAS Google Scholar
Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA (2006) Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281:16016–16024. doi:10.1074/jbc.M601299200 ArticlePubMedCAS Google Scholar
Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294. doi:10.1074/jbc.M204973200 ArticlePubMedCAS Google Scholar
Rao RV, Castro-Obregon S, Frankowski H et al (2002) Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 277:21836–21842. doi:10.1074/jbc.M202726200 ArticlePubMedCAS Google Scholar
Hitomi J, Katayama T, Eguchi Y et al (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165:347–356. doi:10.1083/jcb.200310015 ArticlePubMedCAS Google Scholar
Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339(Pt 1):135–141. doi:10.1042/0264-6021:3390135 ArticlePubMedCAS Google Scholar
Zinszner H, Kuroda M, Wang X et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995. doi:10.1101/gad.12.7.982 ArticlePubMedCAS Google Scholar
McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259. doi:10.1128/MCB.21.4.1249-1259.2001 ArticlePubMedCAS Google Scholar
Marciniak SJ, Yun CY, Oyadomari S et al (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18:3066–3077. doi:10.1101/gad.1250704 ArticlePubMedCAS Google Scholar
Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17:3145–3156. doi:10.1038/sj.onc.1202237 ArticlePubMedCAS Google Scholar
He CH, Gong P, Hu B et al (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276:20858–20865. doi:10.1074/jbc.M101198200 ArticlePubMedCAS Google Scholar
Nguyen T, Sherratt PJ, Nioi P, Yang CS, Pickett CB (2005) Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1. J Biol Chem 280:32485–32492. doi:10.1074/jbc.M503074200 ArticlePubMedCAS Google Scholar
Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K (2002) Takeda. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355. doi:10.1101/gad.992302 ArticlePubMedCAS Google Scholar
Hetz C, Bernasconi P, Fisher J et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312:572–576. doi:10.1126/science.1123480 ArticlePubMedCAS Google Scholar
Mathai JP, Germain M, Shore GC (2005) BH3-only BIK regulates BAX, BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem 280:23829–23836. doi:10.1074/jbc.M500800200 ArticlePubMedCAS Google Scholar
Sevrioukov EA, Burr J, Huang EW et al (2007) Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis 45:184–193. doi:10.1002/dvg.20279 ArticlePubMedCAS Google Scholar
Galindo KA, Lu WJ, Park JH, Abrams JM (2009) The Bax/Bak ortholog in Drosophila, Debcl, exerts limited control over programmed cell death. Development 136:275–283. doi:10.1242/dev.019042 ArticlePubMedCAS Google Scholar
Doumanis J, Dorstyn L, Kumar S (2007) Molecular determinants of the subcellular localization of the Drosophila Bcl-2 homologues DEBCL and BUFFY. Cell Death Differ 14:907–915 PubMedCAS Google Scholar
Chami M, Oules B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Brechot P (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32:641–651. doi:10.1016/j.molcel.2008.11.014 ArticlePubMedCAS Google Scholar
Rutkowski DT, Arnold SM, Miller CN et al (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4:e374. doi:10.1371/journal.pbio.0040374 ArticlePubMedCAS Google Scholar
Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328. doi:10.1126/science.1129462 ArticlePubMedCAS Google Scholar
Galy A, Roux MJ, Sahel JA, Leveillard T, Giangrande A (2005) Rhodopsin maturation defects induce photoreceptor death by apoptosis: a fly model for RhodopsinPro23His human retinitis pigmentosa. Hum Mol Genet 14:2547–2557. doi:10.1093/hmg/ddi258 ArticlePubMedCAS Google Scholar
Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25:406–409. doi:10.1038/78085 ArticlePubMedCAS Google Scholar
Harding HP, Zeng H, Zhang Y et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–1163. doi:10.1016/S1097-2765(01)00264-7 ArticlePubMedCAS Google Scholar
Fonseca SG, Fukuma M, Lipson KL et al (2005) WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J Biol Chem 280:39609–39615. doi:10.1074/jbc.M507426200 ArticlePubMedCAS Google Scholar
Yamada T, Ishihara H, Tamura A et al (2006) WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells. Hum Mol Genet 15:1600–1609. doi:10.1093/hmg/ddl081 ArticlePubMedCAS Google Scholar
Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4:966–977. doi:10.1038/nrc1505 ArticlePubMedCAS Google Scholar
Koumenis C, Naczki C, Koritzinsky M et al (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22:7405–7416. doi:10.1128/MCB.22.21.7405-7416.2002 ArticlePubMedCAS Google Scholar
Koritzinsky M, Magagnin MG, van den Beucken T et al (2006) Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J 25:1114–1125. doi:10.1038/sj.emboj.7600998 ArticlePubMedCAS Google Scholar
Carrasco DR, Sukhdeo K, Protopopova M et al (2007) The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11:349–360. doi:10.1016/j.ccr.2007.02.015 ArticlePubMedCAS Google Scholar