Rosmarinic Acid Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway Under Conditions of Neuroinflammation (original) (raw)

References

  1. Chen, W.W., X. Zhang, and W.J. Huang. 2016. Role of neuroinflammation in neurodegenerative diseases (review). Molecular Medicine Reports 13: 3391–3396.
    Article CAS PubMed PubMed Central Google Scholar
  2. Benakis, C., L. Garcia-Bonilla, C. Iadecola, and J. Anrather. 2014. The role of microglia and myeloid immune cells in acute cerebral ischemia. Frontiers in Cellular Neuroscience 8: 461.
    PubMed Google Scholar
  3. Orihuela, R., C.A. McPherson, and G.J. Harry. 2016. Microglial M1/M2 polarization and metabolic states. British Journal of Pharmacology 173: 649–665.
    Article CAS PubMed Google Scholar
  4. Du, L., Y. Zhang, Y. Chen, J. Zhu, Y. Yang, and H.L. Zhang. 2017. Role of microglia in neurological disorders and their potentials as a therapeutic target. Molecular Neurobiology 54: 7567–7584.
    Article CAS PubMed Google Scholar
  5. Moehle, M.S., and A.B. West. 2015. M1 and M2 immune activation in Parkinson's disease: Foe and ally? Neuroscience 302: 59–73.
    Article CAS PubMed Google Scholar
  6. Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology 8: 958–969.
    Article CAS PubMed PubMed Central Google Scholar
  7. Ransohoff, R.M. 2016. A polarizing question: Do M1 and M2 microglia exist? Nature Neuroscience 19: 987–991.
    Article CAS PubMed Google Scholar
  8. Glass, C.K., K. Saijo, B. Winner, M.C. Marchetto, and F.H. Gage. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918–934.
    Article CAS PubMed PubMed Central Google Scholar
  9. Tao, Y., L. Li, B. Jiang, Z. Feng, L. Yang, J. Tang, Q. Chen, J. Zhang, Q. Tan, H. Feng, Z. Chen, and G. Zhu. 2016. Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model. Brain Behavior and Immunity 58: 118–129.
    Article CAS PubMed Google Scholar
  10. Yang, X., S. Xu, Y. Qian, and Q. Xiao. 2017. Resveratrol regulates microglia M1/M2 polarization via PGC-1alpha in conditions of neuroinflammatory injury. Brain Behavior and Immunity 64: 162–172.
    Article CAS PubMed Google Scholar
  11. Porro, C., A. Cianciulli, R. Calvello, and M.A. Panaro. 2015. Reviewing the role of resveratrol as a natural modulator of microglial activities. Current Pharmaceutical Design 21: 5277–5291.
    Article CAS PubMed Google Scholar
  12. Calvello, R., A. Cianciulli, G. Nicolardi, F. De Nuccio, L. Giannotti, R. Salvatore, C. Porro, T. Trotta, M.A. Panaro, and D.D. Lofrumento. 2017. Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson's disease, shifting M1 to M2 microglia responses. Journal of Neuroimmune Pharmacology 12: 327–339.
    Article PubMed Google Scholar
  13. Liu, J., X. Li, J. Lin, Y. Li, T. Wang, Q. Jiang, and D. Chen. 2016. Sarcandra glabra (Caoshanhu) protects mesenchymal stem cells from oxidative stress: A bioevaluation and mechanistic chemistry. BMC Complementary and Alternative Medicine 16: 423.
    Article PubMed PubMed Central CAS Google Scholar
  14. Zhou, H., J. Liang, D. Lv, Y. Hu, Y. Zhu, J. Si, and S. Wu. 2013. Characterization of phenolics of Sarcandra glabra by non-targeted high-performance liquid chromatography fingerprinting and following targeted electrospray ionisation tandem mass spectrometry/time-of-flight mass spectrometry analyses. Food Chemistry 138: 2390–2398.
    Article CAS PubMed Google Scholar
  15. Ghaffari, H., M. Venkataramana, G.B. Jalali, N.S. Chandra, A. Nataraju, N.P. Geetha, and H.S. Prakash. 2014. Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sciences 113: 7–13.
    Article CAS PubMed Google Scholar
  16. Yang, E.J., S.K. Ku, W. Lee, S. Lee, T. Lee, K.S. Song, and J.S. Bae. 2013. Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. Journal of Cellular Physiology 228: 975–982.
    Article CAS PubMed Google Scholar
  17. Rocha, J., M. Eduardo-Figueira, A. Barateiro, A. Fernandes, D. Brites, R. Bronze, C.M. Duarte, A.T. Serra, R. Pinto, M. Freitas, E. Fernandes, B. Silva-Lima, H. Mota-Filipe, and B. Sepodes. 2015. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic & Clinical Pharmacology & Toxicology 116: 398–413.
    Article CAS Google Scholar
  18. Luan, H., Z. Kan, Y. Xu, C. Lv, and W. Jiang. 2013. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: Relation to inflammation response. Journal of Neuroinflammation 10: 28.
    Article CAS PubMed PubMed Central Google Scholar
  19. Wei, Y., J. Chen, Y. Hu, W. Lu, X. Zhang, R. Wang, and K. Chu. 2018. Rosmarinic acid mitigates lipopolysaccharide-induced neuroinflammatory responses through the inhibition of TLR4 and CD14 expression and NF-κB and NLRP3 inflammasome activation. Inflammation 41: 732–740.
    Article CAS PubMed Google Scholar
  20. Van den Bossche, J., L.A. O'Neill, and D. Menon. 2017. Macrophage immunometabolism: Where are we (going)? Trends in Immunology 38: 395–406.
    Article PubMed CAS Google Scholar
  21. Van den Bossche, J., J. Baardman, N.A. Otto, S. van der Velden, A.E. Neele, S.M. van den Berg, R. Luque-Martin, H.J. Chen, M.C. Boshuizen, M. Ahmed, M.A. Hoeksema, A.F. de Vos, and M.P. de Winther. 2016. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Reports 17: 684–696.
    Article PubMed CAS Google Scholar
  22. Huang, S.C., A.M. Smith, B. Everts, M. Colonna, E.L. Pearce, J.D. Schilling, and E.J. Pearce. 2016. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45: 817–830.
    Article CAS PubMed PubMed Central Google Scholar
  23. Everts, B., E. Amiel, S.C. Huang, A.M. Smith, C.H. Chang, W.Y. Lam, V. Redmann, T.C. Freitas, J. Blagih, G.J. van der Windt, M.N. Artyomov, R.G. Jones, E.L. Pearce, and E.J. Pearce. 2014. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nature Immunology 15: 323–332.
    Article CAS PubMed PubMed Central Google Scholar
  24. Byles, V., A.J. Covarrubias, I. Ben-Sahra, D.W. Lamming, D.M. Sabatini, B.D. Manning, and T. Horng. 2013. The TSC-mTOR pathway regulates macrophage polarization. Nature Communications 4: 2834.
    Article PubMed CAS Google Scholar
  25. Cheng, S.C., J. Quintin, R.A. Cramer, K.M. Shepardson, S. Saeed, V. Kumar, E.J. Giamarellos-Bourboulis, J.H. Martens, N.A. Rao, A. Aghajanirefah, G.R. Manjeri, Y. Li, D.C. Ifrim, R.J. Arts, B.M. van der Veer, P.M. Deen, C. Logie, L.A. O'Neill, P. Willems, F.L. van de Veerdonk, J.W. van der Meer, A. Ng, L.A. Joosten, C. Wijmenga, H.G. Stunnenberg, R.J. Xavier, and M.G. Netea. 2014. MTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345: 1250684.
    Article PubMed PubMed Central CAS Google Scholar
  26. Covarrubias, A.J., H.I. Aksoylar, J. Yu, N.W. Snyder, A.J. Worth, S.S. Iyer, J. Wang, I. Ben-Sahra, V. Byles, T. Polynne-Stapornkul, E.C. Espinosa, D. Lamming, B.D. Manning, Y. Zhang, I.A. Blair, and T. Horng. 2016. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. eLife 5.
  27. Tan, Z., N. Xie, H. Cui, D.R. Moellering, E. Abraham, V.J. Thannickal, and G. Liu. 2015. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. Journal of Immunology 194: 6082–6089.
    Article CAS Google Scholar
  28. Feldhoff, L.M., C.M. Rueda, M.E. Moreno-Fernandez, J. Sauer, C.M. Jackson, C.A. Chougnet, and J. Rupp. 2017. IL-1beta induced HIF-1alpha inhibits the differentiation of human FOXP3(+) T cells. Scientific Reports 7: 465.
    Article PubMed PubMed Central CAS Google Scholar
  29. Sun, L., M. Zhao, X.J. Yu, H. Wang, X. He, J.K. Liu, and W.J. Zang. 2013. Cardioprotection by acetylcholine: A novel mechanism via mitochondrial biogenesis and function involving the PGC-1alpha pathway. Journal of Cellular Physiology 228: 1238–1248.
    Article CAS PubMed Google Scholar
  30. Wu, F., Q. Zou, X. Ding, D. Shi, X. Zhu, W. Hu, L. Liu, and H. Zhou. 2016. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. Journal of Neuroinflammation 13: 23.
    Article PubMed PubMed Central CAS Google Scholar
  31. Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40: 1297–1309.
    Article CAS PubMed Google Scholar
  32. Huang, S.C., B. Everts, Y. Ivanova, D. O'Sullivan, M. Nascimento, A.M. Smith, W. Beatty, L. Love-Gregory, W.Y. Lam, C.M. O'Neill, C. Yan, H. Du, N.A. Abumrad, J.J. Urban, M.N. Artyomov, E.L. Pearce, and E.J. Pearce. 2014. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nature Immunology 15: 846–855.
    Article CAS PubMed PubMed Central Google Scholar
  33. Kim, J.W., I. Tchernyshyov, G.L. Semenza, and C.V. Dang. 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism 3: 177–185.
    Article PubMed CAS Google Scholar
  34. Jantsch, J., D. Chakravortty, N. Turza, A.T. Prechtel, B. Buchholz, R.G. Gerlach, M. Volke, J. Glasner, C. Warnecke, M.S. Wiesener, K.U. Eckardt, A. Steinkasserer, M. Hensel, and C. Willam. 2008. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. Journal of Immunology 180: 4697–4705.
    Article CAS Google Scholar
  35. Nakamura, H., Y. Makino, K. Okamoto, L. Poellinger, K. Ohnuma, C. Morimoto, and H. Tanaka. 2005. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. Journal of Immunology 174: 7592–7599.
    Article CAS Google Scholar
  36. Lv, R., L. Du, X. Liu, F. Zhou, Z. Zhang, and L. Zhang. 2019. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson's disease. Life Sciences 223: 158–165.
    Article CAS PubMed Google Scholar
  37. Coelho, V.R., C.M. Viau, R.B. Staub, M.S. De Souza, P. Pfluger, G.G. Regner, P. Pereira, and J. Saffi. 2017. Rosmarinic acid attenuates the activation of murine microglial n9 cells through the downregulation of inflammatory cytokines and cleaved caspase-3. Neuroimmunomodulation 24: 171–181.
    Article CAS PubMed Google Scholar
  38. Song, G.J., and K. Suk. 2017. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Frontiers in Aging Neuroscience 9: 139.
    Article PubMed PubMed Central CAS Google Scholar
  39. Wang, L., S. Pavlou, X. Du, M. Bhuckory, H. Xu, and M. Chen. 2019. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Molecular Neurodegeneration 14: 2.
    Article PubMed PubMed Central Google Scholar
  40. Jung, Y.J., J.S. Isaacs, S. Lee, J. Trepel, and L. Neckers. 2003. IL-1beta-mediated up-regulation of HIF-1alpha via an NF κB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB Journal 17: 2115–2117.
    Article CAS PubMed Google Scholar
  41. Dang, E.V., J. Barbi, H.Y. Yang, D. Jinasena, H. Yu, Y. Zheng, Z. Bordman, J. Fu, Y. Kim, H.R. Yen, W. Luo, K. Zeller, L. Shimoda, S.L. Topalian, G.L. Semenza, C.V. Dang, D.M. Pardoll, and F. Pan. 2011. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. CELL 146: 772–784.
    Article CAS PubMed PubMed Central Google Scholar
  42. Bollinger, T., S. Gies, J. Naujoks, L. Feldhoff, A. Bollinger, W. Solbach, and J. Rupp. 2014. HIF-1alpha- and hypoxia-dependent immune responses in human CD4+CD25 high T cells and T helper 17 cells. Journal of Leukocyte Biology 96: 305–312.
    Article PubMed CAS Google Scholar
  43. Palazon, A., A.W. Goldrath, V. Nizet, and R.S. Johnson. 2014. HIF transcription factors, inflammation, and immunity. Immunity 41: 518–528.
    Article CAS PubMed PubMed Central Google Scholar
  44. Eltzschig, H.K., D.L. Bratton, and S.P. Colgan. 2014. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nature Reviews Drug Discovery 13: 852–869.
    Article CAS PubMed PubMed Central Google Scholar
  45. Shi, L.Z., R. Wang, G. Huang, P. Vogel, G. Neale, D.R. Green, and H. Chi. 2011. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. Journal of Experimental Medicine 208: 1367–1376.
    Article CAS PubMed PubMed Central Google Scholar
  46. Wang, Y., Y. Bi, X. Chen, C. Li, Y. Li, Z. Zhang, J. Wang, Y. Lu, Q. Yu, H. Su, H. Yang, and G. Liu. 2016. Histone deacetylase SIRT1 negatively regulates the differentiation of Interleukin-9-producing CD4(+) T cells. Immunity 44: 1337–1349.
    Article CAS PubMed Google Scholar
  47. Imtiyaz, H.Z., E.P. Williams, M.M. Hickey, S.A. Patel, A.C. Durham, L.J. Yuan, R. Hammond, P.A. Gimotty, B. Keith, and M.C. Simon. 2010. Hypoxia-inducible factor 2 alpha regulates macrophage function in mouse models of acute and tumor inflammation. Journal of Clinical Investigation 120: 2699–2714.
    Article CAS PubMed PubMed Central Google Scholar
  48. Takeda, N., E.L. O'Dea, A. Doedens, J.W. Kim, A. Weidemann, C. Stockmann, M. Asagiri, M.C. Simon, A. Hoffmann, and R.S. Johnson. 2010. Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes & Development 24: 491–501.
    Article CAS Google Scholar
  49. Arranz, A., C. Doxaki, E. Vergadi, D.L.T.Y. Martinez, K. Vaporidi, E.D. Lagoudaki, E. Ieronymaki, A. Androulidaki, M. Venihaki, A.N. Margioris, E.N. Stathopoulos, P.N. Tsichlis, and C. Tsatsanis. 2012. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proceedings of the National Academy of Sciences of the United States of America 109: 9517–9522.
    Article CAS PubMed PubMed Central Google Scholar
  50. Vergadi, E., K. Vaporidi, E.E. Theodorakis, C. Doxaki, E. Lagoudaki, E. Ieronymaki, V.I. Alexaki, M. Helms, E. Kondili, B. Soennichsen, E.N. Stathopoulos, A.N. Margioris, D. Georgopoulos, and C. Tsatsanis. 2014. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. Journal of Immunology 192: 394–406.
    Article CAS Google Scholar
  51. Lopez-Pelaez, M., I. Soria-Castro, L. Bosca, M. Fernandez, and S. Alemany. 2011. Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: Implications for NO synthase 2 expression. European Journal of Immunology 41: 1733–1741.
    Article CAS PubMed Google Scholar
  52. Luyendyk, J.P., G.A. Schabbauer, M. Tencati, T. Holscher, R. Pawlinski, and N. Mackman. 2008. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. Journal of Immunology 180: 4218–4226.
    Article CAS Google Scholar
  53. Polumuri, S.K., V.Y. Toshchakov, and S.N. Vogel. 2007. Role of phosphatidylinositol-3 kinase in transcriptional regulation of TLR-induced IL-12 and IL-10 by Fc gamma receptor ligation in murine macrophages. Journal of Immunology 179: 236–246.
    Article CAS Google Scholar
  54. Pengal, R.A., L.P. Ganesan, G. Wei, H. Fang, M.C. Ostrowski, and S. Tridandapani. 2006. Lipopolysaccharide-induced production of interleukin-10 is promoted by the serine/threonine kinase Akt. Molecular Immunology 43: 1557–1564.
    Article CAS PubMed Google Scholar
  55. Fang, C., J. Yu, Y. Luo, S. Chen, W. Wang, C. Zhao, Z. Sun, W. Wu, W. Guo, Z. Han, X. Hu, F. Liao, and X. Feng. 2015. Tsc1 is a critical regulator of macrophage survival and function. Cellular Physiology and Biochemistry 36: 1406–1418.
    Article CAS PubMed Google Scholar
  56. Brown, J., H. Wang, J. Suttles, D.T. Graves, and M. Martin. 2011. Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates toll-like receptor 4-mediated inflammatory response via FoxO1. Journal of Biological Chemistry 286: 44295–44305.
    Article CAS PubMed PubMed Central Google Scholar
  57. Festuccia, W.T., P. Pouliot, I. Bakan, D.M. Sabatini, and M. Laplante. 2014. Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS One 9: e95432.
    Article PubMed PubMed Central CAS Google Scholar
  58. Mercalli, A., I. Calavita, E. Dugnani, A. Citro, E. Cantarelli, R. Nano, R. Melzi, P. Maffi, A. Secchi, V. Sordi, and L. Piemonti. 2013. Rapamycin unbalances the polarization of human macrophages to M1. Immunology 140: 179–190.
    Article CAS PubMed PubMed Central Google Scholar
  59. Lobo-Silva, D., G.M. Carriche, A.G. Castro, S. Roque, and M. Saraiva. 2016. Balancing the immune response in the brain: IL-10 and its regulation. Journal of Neuroinflammation 13: 297.
    Article PubMed PubMed Central CAS Google Scholar
  60. Zhou, S., X. Guo, S. Chen, Z. Xu, W. Duan, and B. Zeng. 2019. Apelin-13 regulates LPS-induced N9 microglia polarization involving STAT3 signaling pathway. NEUROPEPTIDES 76: 101938.
    Article CAS PubMed Google Scholar
  61. Subedi, L., J.H. Lee, S. Yumnam, E. Ji, S.Y. Kim. 2019. Anti-inflammatory effect of sulforaphane on LPS-activated microglia potentially through JNK/AP-1/NF-κB inhibition and Nrf2/HO-1 activation. Cells 8.
  62. Gunzl, P., and G. Schabbauer. 2008. Recent advances in the genetic analysis of PTEN and PI3K innate immune properties. Immunobiology 213: 759–765.
    Article PubMed CAS Google Scholar

Download references