Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target (original) (raw)
Gonzalez H, Elgueta D, Montoya A, Pacheco R (2014) Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 274(1–2):1–13. doi:10.1016/j.jneuroim.2014.07.012 ArticleCASPubMed Google Scholar
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi:10.1038/nn1472 ArticleCASPubMed Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647 ArticleCASPubMed Google Scholar
Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:10.1038/nn1997 ArticleCASPubMed Google Scholar
Hanisch U (2013) Proteins in microglial activation-inputs and outputs by subsets. Curr Protein Pept Sci 14(1):3–15 ArticleCASPubMed Google Scholar
Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39(1):3–18. doi:10.1111/nan.12011 ArticleCASPubMed Google Scholar
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637 ArticleCASPubMedPubMed Central Google Scholar
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi:10.1126/science.1219179 ArticleCASPubMed Google Scholar
Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P et al (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38(4):792–804. doi:10.1016/j.immuni.2013.04.004 ArticleCASPubMed Google Scholar
Perdiguero EG (2014) Tissue-resident macrophages originate from yolk sac-derived erythro-myeloid progenitors. Immunology 143:26–26 Google Scholar
Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL et al (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40(1):91–104. doi:10.1016/j.immuni.2013.11.019 ArticleCASPubMedPubMed Central Google Scholar
Perdiguero EG, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518(7540):547–551. doi:10.1038/nature13989 ArticleCAS Google Scholar
Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553. doi:10.1038/nn2015 ArticleCASPubMed Google Scholar
Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, Thal DR, Charo IF et al (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci U S A 109(44):18150–18155. doi:10.1073/pnas.1210150109 ArticleCASPubMedPubMed Central Google Scholar
Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi:10.1038/nn2014 ArticleCASPubMed Google Scholar
Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, Beaudin AE, Lum J et al (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42(4):665–678. doi:10.1016/j.immuni.2015.03.011 ArticleCASPubMedPubMed Central Google Scholar
Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218. doi:10.1038/nn.3469 ArticleCASPubMedPubMed Central Google Scholar
Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15(5):300–312. doi:10.1038/nrn3722 ArticleCASPubMed Google Scholar
Suzumura A (2013) Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci 14(1):16–20 ArticleCASPubMed Google Scholar
Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. doi:10.1038/nrn2038 ArticleCASPubMed Google Scholar
Mahad DJ, Ransohoff RM (2003) The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol 15(1):23–32 ArticleCASPubMed Google Scholar
Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 7(4):366–377. doi:10.1016/j.nurt.2010.07.002 ArticleCAS Google Scholar
David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399. doi:10.1038/nrn3053 ArticleCASPubMed Google Scholar
Raj DD, Jaarsma D, Holtman IR, Olah M, Ferreira FM, Schaafsma W, Brouwer N, Meijer MM et al (2014) Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol Aging 35(9):2147–2160. doi:10.1016/j.neurobiolaging.2014.03.025 ArticleCASPubMed Google Scholar
Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS (2015) Roles of microglia in brain development, tissue maintenance and repair. Brain J Neurol 138(Pt 5):1138–1159. doi:10.1093/brain/awv066 Article Google Scholar
Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci Off J Soc Neurosci 26(1):328–332. doi:10.1523/JNEUROSCI.2615-05.2006 ArticleCAS Google Scholar
Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, Chang MW, Beckman SK et al (2012) Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J Immunol 188(11):5752–5765. doi:10.4049/jimmunol.1103426 ArticleCASPubMed Google Scholar
Sierra-Filardi E, Puig-Kröger A, Blanco FJ, Nieto C, Bragado R, Palomero MI, Bernabéu C, Vega MA (2011) Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 117(19):5092–5101. doi:10.1182/blood-201009-306993 ArticleCASPubMed Google Scholar
Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ (2015) Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. doi:10.1177/0271678X15620204 Google Scholar
Liu Y, Luo B, Han F, Li X, Xiong J, Jiang M, Yang X, Wu Y et al (2014) Erythropoietin-derived nonerythropoietic peptide ameliorates experimental autoimmune neuritis by inflammation suppression and tissue protection. PLoS One 9(3):e90942. doi:10.1371/journal.pone.0090942 ArticlePubMedPubMed CentralCAS Google Scholar
Dentesano G, Serratosa J, Tusell JM, Ramon P, Valente T, Saura J, Sola C (2014) CD200R1 and CD200 expression are regulated by PPAR-gamma in activated glial cells. Glia 62(6):982–998. doi:10.1002/glia.22656 ArticlePubMed Google Scholar
Fitzgerald DC, Fonseca-Kelly Z, Cullimore ML, Safabakhsh P, Saris CJ, Zhang GX, Rostami A (2013) Independent and interdependent immunoregulatory effects of IL-27, IFN-beta, and IL-10 in the suppression of human Th17 cells and murine experimental autoimmune encephalomyelitis. J Immunol 190(7):3225–3234. doi:10.4049/jimmunol.1200141 ArticleCASPubMedPubMed Central Google Scholar
Jiang HR, Milovanovic M, Allan D, Niedbala W, Besnard AG, Fukada SY, Alves-Filho JC, Togbe D et al (2012) IL-33 attenuates EAE by suppressing IL-17 and IFN-gamma production and inducing alternatively activated macrophages. Eur J Immunol 42(7):1804–1814. doi:10.1002/eji.201141947 ArticleCASPubMed Google Scholar
Yu Z, Sun D, Feng J, Tan W, Fang X, Zhao M, Zhao X, Pu Y et al (2015) MSX3 switches microglia polarization and protects from inflammation-induced demyelination. J Neurosci 35(16):6350–6365. doi:10.1523/jneurosci.2468-14.2015 ArticleCASPubMed Google Scholar
Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S (2014) TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83(5):1098–1116. doi:10.1016/j.neuron.2014.07.027 ArticleCASPubMed Google Scholar
Ajmone-Cat MA, Mancini M, De Simone R, Cilli P, Minghetti L (2013) Microglial polarization and plasticity: evidence from organotypic hippocampal slice cultures. Glia 61(10):1698–1711. doi:10.1002/glia.22550 ArticlePubMed Google Scholar
Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S, Perego C, Parotto E et al (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 11(3):679–695. doi:10.1007/s13311-014-0277-y ArticleCAS Google Scholar
Neubrand VE, Pedreno M, Caro M, Forte-Lago I, Delgado M, Gonzalez-Rey E (2014) Mesenchymal stem cells induce the ramification of microglia via the small RhoGTPases Cdc42 and Rac1. Glia 62(12):1932–1942. doi:10.1002/glia.22714 ArticlePubMed Google Scholar
Mazzon C, Zanotti L, Wang L, Del Prete A, Fontana E, Salvi V, Poliani PL, Sozzani S (2016) CCRL2 regulates M1/M2 polarization during EAE recovery phase. J Leukoc Biol. doi:10.1189/jlb.3MA0915-444RR PubMed Google Scholar
Chakrabarty P, Tianbai L, Herring A, Ceballos-Diaz C, Das P, Golde T (2012) Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Mol Neurodegener 7:36 ArticleCASPubMedPubMed Central Google Scholar
Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7(4):483–495. doi:10.1016/j.stem.2010.08.014 ArticleCASPubMedPubMed Central Google Scholar
Marín-Teva J, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41(4):535–547 ArticlePubMed Google Scholar
Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P (2007) Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 37(5):1290–1301. doi:10.1002/eji.200636837 ArticleCASPubMed Google Scholar
Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y, Gilfillan S, Colonna M (2015) TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest 125(5):2161–2170. doi:10.1172/jci77983ds1 ArticlePubMedPubMed Central Google Scholar
Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, Yuede CM, Galimberti D et al (2015) TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol 129(3):429–447. doi:10.1007/s00401-015-1388-1 ArticleCASPubMedPubMed Central Google Scholar
Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C (2013) TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener:8–19. doi:10.1186/1750-1326-8-19
Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, Ravits J et al (2014) TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA neurology 71(4):449–453. doi:10.1001/jamaneurol.2013.6237 ArticlePubMedPubMed Central Google Scholar
Pottier C, Wallon D, Rousseau S, Rovelet-Lecrux A, Richard AC, Rollin-Sillaire A, Frebourg T, Campion D et al (2013) TREM2 R47H variant as a risk factor for early-onset Alzheimer’s disease. J Alzheimers Dis 35(1):45–49. doi:10.3233/jad-122311 CASPubMed Google Scholar
Lill CM, Rengmark A, Pihlstrom L, Fogh I, Shatunov A, Sleiman PM, Wang LS, Liu T et al (2015) The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimer’s & dementia: the journal of the Alzheimer’s Association 11(12):1407–1416. doi:10.1016/j.jalz.2014.12.009 Article Google Scholar
Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu G, Margevicius D et al (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med 212(3):287–295. doi:10.1084/jem.20142322 ArticleCASPubMedPubMed Central Google Scholar
Takeuchi H, Mizoguchi H, Doi Y, Jin S, Noda M, Liang J, Li H, Zhou Y et al (2011) Blockade of gap junction hemichannel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer’s disease. PLoS One 6(6):e21108. doi:10.1371/journal.pone.0021108 ArticleCASPubMedPubMed Central Google Scholar
Sumi N, Nishioku T, Takata F, Matsumoto J, Watanabe T, Shuto H, Yamauchi A, Dohgu S et al (2010) Lipopolysaccharide-activated microglia induce dysfunction of the blood-brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 30(2):247–253. doi:10.1007/s10571-009-9446-7 ArticleCASPubMed Google Scholar
Nakajima K, Tohyama Y, Maeda S, Kohsaka S, Kurihara T (2007) Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons. Neurochem Int 50(6):807–820 ArticleCASPubMed Google Scholar
Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci Off J Soc Neurosci 34(6):2231–2243. doi:10.1523/JNEUROSCI.1619-13.2014 ArticleCAS Google Scholar
Nikolakopouloua A, Duttaa R (2015) Activated microglia enhance neurogenesis via trypsinogen secretion. Proc Natl Acad Sci U S A 110(21):8714–8719 Article Google Scholar
Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N, Schwartz A, Smirnov I et al (2006) Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 116(4):905–915. doi:10.1172/JCI26836 ArticleCASPubMedPubMed Central Google Scholar
Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci Off J Soc Neurosci 33(10):4216–4233. doi:10.1523/JNEUROSCI.3441-12.2013 ArticleCAS Google Scholar
Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840. doi:10.1182/blood-2009-12-257832 ArticleCASPubMedPubMed Central Google Scholar
Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco CA et al (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13(10):1202–1213. doi:10.1038/ncb2331 ArticleCASPubMedPubMed Central Google Scholar
Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. doi:10.1016/j.cell.2013.11.030 ArticleCASPubMedPubMed Central Google Scholar
Hefendehl JK, Neher JJ, Sühs RB, Kohsaka S, Skodras A, Jucker M (2014) Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13(1):60–69 ArticleCASPubMed Google Scholar
Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, Wes PD, Moller T et al (2015) Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun 3:31. doi:10.1186/s40478-015-0203-5 ArticlePubMedPubMed CentralCAS Google Scholar
Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J: Official publication of the Federation of American Societies for Experimental Biology
Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55(4):412–424. doi:10.1002/glia.20468 ArticlePubMed Google Scholar
Fenn AM, Henry CJ, Huang Y, Dugan A, Godbout JP (2012) Lipopolysaccharide-induced interleukin (IL)-4 receptor-alpha expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav Immun 26(5):766–777. doi:10.1016/j.bbi.2011.10.003 ArticleCASPubMed Google Scholar
Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23(3):309–317. doi:10.1016/j.bbi.2008.09.002 ArticleCASPubMed Google Scholar
Olariu A, Cleaver KM, Cameron HA (2007) Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. J Comp Neurol 501(4):659–667. doi:10.1002/cne.21268 ArticlePubMed Google Scholar
Ojo B, Rezaie P, Gabbott PL, Davies H, Colyer F, Cowley TR, Lynch M, Stewart MG (2012) Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain Behav Immun 26(5):778–788. doi:10.1016/j.bbi.2011.09.013 ArticleCASPubMed Google Scholar
Ojo B, Davies H, Rezaie P, Gabbott P, Colyer F, Kraev I, Stewart MG (2013) Age-induced loss of mossy fibre synapses on CA3 thorns in the CA3 stratum Lucidum. Neurosci J 2013:839535. doi:10.1155/2013/839535 ArticlePubMedPubMed Central Google Scholar
Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O'Keeffe S, Phatnani HP, Muratet M, Carroll MC et al (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4(2):385–401. doi:10.1016/j.celrep.2013.06.018 ArticleCASPubMedPubMed Central Google Scholar
Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 91(9):1143–1151. doi:10.1002/jnr.23242 ArticleCASPubMedPubMed Central Google Scholar
Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–1905. doi:10.1038/nn.3554 ArticleCASPubMedPubMed Central Google Scholar
Ma W, Cojocaru R, Gotoh N, Gieser L, Villasmil R, Cogliati T, Swaroop A, Wong WT (2013) Gene expression changes in aging retinal microglia: relationship to microglial support functions and regulation of activation. Neurobiol Aging 34(10):2310–2321. doi:10.1016/j.neurobiolaging.2013.03.022 ArticleCASPubMedPubMed Central Google Scholar
Orre M, Kamphuis W, Osborn LM, Melief J, Kooijman L, Huitinga I, Klooster J, Bossers K et al (2014) Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging 35(1):1–14. doi:10.1016/j.neurobiolaging.2013.07.008 ArticleCASPubMed Google Scholar
Wes PD, Holtman IR, Boddeke EW, Moller T, Eggen BJ (2015) Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia. doi:10.1002/glia.22866 PubMed Google Scholar
Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143. doi:10.1038/nn.3599 ArticleCASPubMed Google Scholar
Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, Hudson CE, Cole MJ et al (2011) Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32(11):2030–2044. doi:10.1016/j.neurobiolaging.2009.11.022 ArticleCASPubMed Google Scholar
von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124. doi:10.3389/fnagi.2015.00124 Google Scholar
Wehrspaun CC, Haerty W, Ponting CP (2015) Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex. Neurobiol Aging 36(8). doi:10.1016/j.neurobiolaging.2015.04.008
Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 7(4):354–365. doi:10.1016/j.nurt.2010.05.014 ArticleCAS Google Scholar
Ma L, Morton AJ, Nicholson LF (2003) Microglia density decreases with age in a mouse model of Huntington’s disease. Glia 43(3):274–280. doi:10.1002/glia.10261 ArticlePubMed Google Scholar
Schwarz H, Hickey C, Zimmerman C, Mazzoni P, Moskowitz C, Rosas D, McCall M, Sanchez-Ramos J et al (2010) A futility study of minocycline in Huntington’s disease. Movement Disord 25(13):2219–2224. doi:10.1002/mds.23236 Article Google Scholar
Stoop MP, Rosenling T, Attali A, Meesters RJW, Stingl C, Dekker LJ, van Aken H, Suidgeest E et al (2012) Minocycline effects on the cerebrospinal fluid proteome of experimental autoimmune encephalomyelitis rats. J Proteome Res 11(8):4315–4325. doi:10.1021/pr300428e ArticleCASPubMed Google Scholar
Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22(5):1763–1771 CASPubMed Google Scholar
Hunter CL, Quintero EM, Gilstrap L, Bhat NR, Granholm AC (2004) Minocycline protects basal forebrain cholinergic neurons from mu p75-saporin immunotoxic lesioning. Eur J Neurosci 19(12):3305–3316. doi:10.1111/j.1460-9568.2004.03439.x ArticlePubMed Google Scholar
Keller AF, Gravel M, Kriz J (2011) Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice. Exp Neurol 228(1):69–79. doi:10.1016/j.expneurol.2010.12.010 ArticleCASPubMed Google Scholar
Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, Walker Z, Kennedy A (2009) Microglial activation and amyloid deposition in mild cognitive impairment. Neurology
Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y, Nozaki S, Takahashi S et al (2012) Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [(1)(1)C]DAA1106. Psychiatry Res 203(1):67–74. doi:10.1016/j.pscychresns.2011.08.013 ArticleCASPubMed Google Scholar
Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci Off J Soc Neurosci 28(33):8354–8360. doi:10.1523/JNEUROSCI.0616-08.2008 ArticleCAS Google Scholar
Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177(5):2549–2562. doi:10.2353/ajpath.2010.100265 ArticleCASPubMedPubMed Central Google Scholar
Zhao W, Zhang J, Davis EG, Rebeck GW (2014) Aging reduces glial uptake and promotes extracellular accumulation of Abeta from a lentiviral vector. Front Aging Neurosci 6:210. doi:10.3389/fnagi.2014.00210 PubMedPubMed Central Google Scholar
Weiner HL, Frenkel D (2006) Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 6(5):404–416 ArticleCASPubMed Google Scholar
El Khoury J, Toft M, Hickman S, Geula C, Means T, Luster A (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer’s disease. Clin Immunol 123:S138. doi:10.1016/j.clim.2007.03.030 Article Google Scholar
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM et al (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724. doi:10.1038/nature06616 ArticleCASPubMedPubMed Central Google Scholar
Yokokura M, Mori N, Yagi S, Yoshikawa E, Kikuchi M, Yoshihara Y, Wakuda T, Sugihara G et al (2011) In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 38(2):343–351. doi:10.1007/s00259-010-1612-0 ArticleCASPubMed Google Scholar
Koenigsknecht-Talboo J, Landreth GE (2005) Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci Off J Soc Neurosci 25(36):8240–8249. doi:10.1523/JNEUROSCI.1808-05.2005 ArticleCAS Google Scholar
Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 210(1–2):3–12. doi:10.1016/j.jneuroim.2009.02.003 ArticleCASPubMed Google Scholar
Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, Maxfield FR (2007) Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 18(4):1490–1496. doi:10.1091/mbc.E06-10-0975 ArticleCASPubMedPubMed Central Google Scholar
Balce DR, Li B, Allan ER, Rybicka JM, Krohn RM, Yates RM (2011) Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. Blood 118(15):4199–4208. doi:10.1182/blood-2011-01-328906 ArticleCASPubMed Google Scholar
Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M et al (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci Off J Soc Neurosci 28(45):11650–11661. doi:10.1523/jneurosci.3024-08.2008 ArticleCAS Google Scholar
Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp 60(4):251–266. doi:10.1007/s00005-012-0181-2 ArticleCAS Google Scholar
He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, Staufenbiel M, Li R et al (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178(5):829–841. doi:10.1083/jcb.200705042 ArticleCASPubMedPubMed Central Google Scholar
Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM, Gendelman HE, Ikezu T (2007) Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 170(2):680–692. doi:10.2353/ajpath.2007.060378 ArticleCASPubMedPubMed Central Google Scholar
Yamamoto M, Kiyota T, Walsh SM, Liu J, Kipnis J, Ikezu T (2008) Cytokine-mediated inhibition of fibrillar amyloid-beta peptide degradation by human mononuclear phagocytes. J Immunol 181(6):3877–3886 ArticleCASPubMedPubMed Central Google Scholar
von Bernhardi R, Tichauer JE, Eugenin J (2010) Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem 112(5):1099–1114. doi:10.1111/j.1471-4159.2009.06537.x ArticleCAS Google Scholar
Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, Citron M, Landreth G (2003) Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 23(20):7504–7509 CAS Google Scholar
Wegiel J, Wang KC, Imaki H, Rubenstein R, Wronska A, Osuchowski M, Lipinski WJ, Walker LC et al (2001) The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP (SW) mice. Neurobiol Aging 22(1):49–61 ArticleCASPubMed Google Scholar
Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci Off J Soc Neurosci 20(15):5709–5714 CAS Google Scholar
Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT (2012) PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci Off J Soc Neurosci 32(48):17321–17331. doi:10.1523/jneurosci.1569-12.2012 ArticleCAS Google Scholar
Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL et al (2012) ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335(6075):1503–1506. doi:10.1126/science.1217697 ArticleCASPubMedPubMed Central Google Scholar
Varvel NH, Bhaskar K, Kounnas MZ, Wagner SL, Yang Y, Lamb BT, Herrup K (2009) NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease. J Clin Invest 119(12):3692–3702. doi:10.1172/jci39716 ArticleCASPubMedPubMed Central Google Scholar
Imbimbo BP (2009) An update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer’s disease. Expert opinion on investigational drugs 18(8):1147–1168. doi:10.1517/13543780903066780 ArticleCASPubMed Google Scholar
Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412. doi:10.1016/j.nbd.2005.08.002 ArticleCASPubMed Google Scholar
Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 19(6):533–542. doi:10.1096/fj.04-2751com ArticleCAS Google Scholar
Park JY, Paik SR, Jou I, Park SM (2008) Microglial phagocytosis is enhanced by monomeric alpha-synuclein, not aggregated alpha-synuclein: implications for Parkinson’s disease. Glia 56(11):1215–1223. doi:10.1002/glia.20691 ArticlePubMed Google Scholar
Wang XJ, Ye M, Zhang YH, Chen SD (2007) CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson’s disease. J Neuroimmune Pharmacol 2(3):259–264. doi:10.1007/s11481-007-9075-1 ArticlePubMed Google Scholar
McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, Tansey KE, Tansey MG (2006) Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Off J Soc Neurosci 26(37):9365–9375. doi:10.1523/JNEUROSCI.1504-06.2006 ArticleCAS Google Scholar
Marinova-Mutafchieva L, Sadeghian M, Broom L, Davis JB, Medhurst AD, Dexter DT (2009) Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. J Neurochem 110(3):966–975. doi:10.1111/j.1471-4159.2009.06189.x ArticleCASPubMed Google Scholar
Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A, Zucca FA, Faust R, Qian SY et al (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res 19(1):63–72. doi:10.1007/s12640-009-9140-z ArticlePubMedCAS Google Scholar
Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 88(2):494–501 ArticleCASPubMed Google Scholar
Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR (2014) Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol Dis 71:280–291. doi:10.1016/j.nbd.2014.08.011 ArticleCASPubMed Google Scholar
Kim BW, Koppula S, Kumar H, Park JY, Kim IW, More SV, Kim IS, Han SD et al (2015) Alpha-asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTP-induced behavioral deficits in a mouse model of Parkinson’s disease. Neuropharmacology 97:46–57. doi:10.1016/j.neuropharm.2015.04.037 ArticleCASPubMed Google Scholar
Yang W, Chen YH, Liu H, Qu HD (2015) Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease mouse model. Int J Mol Med 36(5):1369–1376. doi:10.3892/ijmm.2015.2356 ArticleCASPubMed Google Scholar
Machado V, Haas SJ, von Bohlen Und Halbach O, Wree A, Krieglstein K, Unsicker K, Spittau B (2016) Growth/differentiation factor-15 deficiency compromises dopaminergic neuron survival and microglial response in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiol Dis 88:1–15. doi:10.1016/j.nbd.2015.12.016 ArticleCASPubMed Google Scholar
Gagne JJ, MC. Power (2010) Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology
Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Kim S, Lee D et al (2009) Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 15(4):332–347. doi:10.1007/s12640-009-9037-x ArticleCASPubMed Google Scholar
Magnus T, Carmen J, Deleon J, Xue H, Pardo AC, Lepore AC, Mattson MP, Rao MS et al (2008) Adult glial precursor proliferation in mutant SOD1G93A mice. Glia 56(2):200–208. doi:10.1002/glia.20604 ArticlePubMed Google Scholar
Henkel JS, Beers DR, Siklos L, Appel SH (2006) The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. Mol Cell Neurosci 31(3):427–437. doi:10.1016/j.mcn.2005.10.016 ArticleCASPubMed Google Scholar
Lee JC, Seong J, Kim SH, Lee SJ, Cho YJ, An J, Nam DH, Joo KM et al (2012) Replacement of microglial cells using Clodronate liposome and bone marrow transplantation in the central nervous system of SOD1(G93A) transgenic mice as an in vivo model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 418(2):359–365. doi:10.1016/j.bbrc.2012.01.026 ArticleCASPubMed Google Scholar
Nikodemova M, Small AL, Smith SM, Mitchell GS, Watters JJ (2014) Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiol Dis 69:43–53. doi:10.1016/j.nbd.2013.11.009 ArticleCASPubMed Google Scholar
Boivin A, Pineau I, Barrette B, Filali M, Vallieres N, Rivest S, Lacroix S (2007) Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci Off J Soc Neurosci 27(46):12565–12576. doi:10.1523/JNEUROSCI.3027-07.2007 ArticleCAS Google Scholar
Gowing G, Lalancette-Hebert M, Audet JN, Dequen F, Julien JP (2009) Macrophage colony stimulating factor (M-CSF) exacerbates ALS disease in a mouse model through altered responses of microglia expressing mutant superoxide dismutase. Exp Neurol 220(2):267–275. doi:10.1016/j.expneurol.2009.08.021 ArticleCASPubMed Google Scholar
Saba R, Gushue S, Huzarewich RL, Manguiat K, Medina S, Robertson C, Booth SA (2012) MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One 7(2):e30832. doi:10.1371/journal.pone.0030832 ArticleCASPubMedPubMed Central Google Scholar
Ponomarev ED, Veremeyko T, Weiner HL (2013) MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 61(1):91–103. doi:10.1002/glia.22363 ArticlePubMed Google Scholar
Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM et al (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122(9):3063–3087. doi:10.1172/JCI62636 ArticleCASPubMedPubMed Central Google Scholar
Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, Greco DJ, Wu PM et al (2015) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77(1):75–99. doi:10.1002/ana.24304 ArticleCASPubMed Google Scholar
Tonges L, Gunther R, Suhr M, Jansen J, Balck A, Saal KA, Barski E, Nientied T et al (2014) Rho kinase inhibition modulates microglia activation and improves survival in a model of amyotrophic lateral sclerosis. Glia 62(2):217–232. doi:10.1002/glia.22601 ArticlePubMed Google Scholar
Schutz B, Reimann J, Dumitrescu-Ozimek L, Kappes-Horn K, Landreth GE, Schurmann B, Zimmer A, Heneka MT (2005) The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci Off J Soc Neurosci 25(34):7805–7812. doi:10.1523/jneurosci.2038-05.2005 ArticleCAS Google Scholar
Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain J Neurol 130(Pt 7):1759–1766. doi:10.1093/brain/awm044 Article Google Scholar
Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP et al (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60(2):161–172 ArticleCASPubMed Google Scholar
Paulsen JS, Hayden M, Stout JC, Langbehn DR, Aylward E, Ross CA, Guttman M, Nance M (2006) Preparing for preventive clinical trials: the predict-HD study. Arch Neurol 63(6):883–890 ArticlePubMed Google Scholar
Thevandavakkam MASR, Muchowski PJ, Giorgini F (2010) Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington’s disease. CNS & neurological disorders drug targets 9(6):791–800 ArticleCAS Google Scholar
Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66(11):1638–1643 ArticleCASPubMed Google Scholar
Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ, Tabrizi SJ, Barker RA et al (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32(2):258–270. doi:10.1002/hbm.21008 ArticlePubMed Google Scholar
Franciosi S, Ryu JK, Shim Y, Hill A, Connolly C, Hayden MR, McLarnon JG, Leavitt BR (2012) Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol Dis 45(1):438–449. doi:10.1016/j.nbd.2011.09.003 ArticleCASPubMed Google Scholar
Crotti A, Benner C, Kerman BE, Gosselin D, Lagier-Tourenne C, Zuccato C, Cattaneo E, Gage FH et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17(4):513–521. doi:10.1038/nn.3668 ArticleCASPubMedPubMed Central Google Scholar
Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, Sagredo O, Benito C et al (2009) Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain J Neurol 132(Pt 11):3152–3164. doi:10.1093/brain/awp239 Article Google Scholar
Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T et al (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11(2):146–152. doi:10.1038/nm1177 ArticleCASPubMed Google Scholar
Bhasin M, Wu M, Tsirka SE (2007) Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunol 8:10. doi:10.1186/1471-2172-8-10 ArticlePubMedPubMed CentralCAS Google Scholar
Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, Brochet B, Canron MH et al (2011) Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17(1):2–15. doi:10.1177/1352458510379243 ArticleCASPubMed Google Scholar
Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, Dijkstra CD, van der Valk P et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63(1):16–25. doi:10.1002/ana.21311 ArticleCASPubMed Google Scholar
Peferoen LA, Vogel DY, Ummenthum K, Breur M, Heijnen PD, Gerritsen WH, Peferoen-Baert RM, van der Valk P (2014) Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis. J Neuropathol Exp Neurol 74(1):48–63 ArticleCAS Google Scholar
van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, Gerritsen W, Kooi EJ et al (2012) Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation 9:156. doi:10.1186/1742-2094-9-156 PubMedPubMed Central Google Scholar
van Noort JM, Bsibsi M, Gerritsen WH, van der Valk P, Bajramovic JJ, Steinman L, Amor S (2010) Alphab-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol 69(7):694–703 ArticlePubMedCAS Google Scholar
Meza-Romero R, Benedek G, Yu X, Mooney JL, Dahan R, Duvshani N, Bucala R, Offner H et al (2014) HLA-DRalpha1 constructs block CD74 expression and MIF effects in experimental autoimmune encephalomyelitis. J Immunol 192(9):4164–4173. doi:10.4049/jimmunol.1303118 ArticleCASPubMedPubMed Central Google Scholar
Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ (2011) Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 237(1–2):73–79. doi:10.1016/j.jneuroim.2011.06.006 ArticleCASPubMed Google Scholar
Vogel D, Vereyken E, Glim J, Heijnen P, Moeton M, van der Valk P, Amor S, Teunissen CE (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status lesions have an intermediate activation status. J Neuroinflammation 10:35 ArticleCASPubMedPubMed Central Google Scholar
Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J 2nd, Naismith RT et al (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain J Neurol 131(Pt 11):3081–3091. doi:10.1093/brain/awn217 Article Google Scholar
Palazuelos J, Davoust N, Julien B, Hatterer E, Aguado T, Mechoulam R, Benito C, Romero J et al (2008) The CB(2) cannabinoid receptor controls myeloid progenitor trafficking: involvement in the pathogenesis of an animal model of multiple sclerosis. J Biol Chem 283(19):13320–13329. doi:10.1074/jbc.M707960200 ArticleCASPubMed Google Scholar
Hernangomez M, Mestre L, Correa FG, Loria F, Mecha M, Inigo PM, Docagne F, Williams RO et al (2012) CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia 60(9):1437–1450. doi:10.1002/glia.22366 ArticlePubMed Google Scholar
Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HW (2012) Identification of a microglia phenotype supportive of remyelination. Glia 60(2):306–321. doi:10.1002/glia.21266 ArticlePubMed Google Scholar
Liuzzi GM, Latronico T, Fasano A, Carlone G, Riccio P (2004) Interferon-beta inhibits the expression of metalloproteinases in rat glial cell cultures: implications for multiple sclerosis pathogenesis and treatment. Mult Scler 10(3):290–297 ArticleCASPubMed Google Scholar
Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C et al (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28(5):675–686. doi:10.1016/j.immuni.2008.03.011 ArticleCASPubMed Google Scholar
Ratchford JN, Endres CJ, Hammoud DA, Pomper MG, Shiee N, McGready J, Pham DL, Calabresi PA (2012) Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 259(6):1199–1205. doi:10.1007/s00415-011-6337-x ArticleCASPubMed Google Scholar
Takeuchi H, Wang J, Kawanokuchi J, Mitsuma N, Mizuno T, Suzumura A (2006) Interferon-gamma induces microglial-activation-induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis. Neurobiol Dis 22(1):33–39. doi:10.1016/j.nbd.2005.09.014 ArticleCASPubMed Google Scholar
Kong W, Li H, Tuma RF, Ganea D (2014) Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS. Cell Immunol 287(1):1–17. doi:10.1016/j.cellimm.2013.11.002 ArticleCASPubMed Google Scholar
Lourbopoulos A, Grigoriadis N, Lagoudaki R, Touloumi O, Polyzoidou E, Mavromatis I, Tascos N, Breuer A et al (2011) Administration of 2-arachidonoylglycerol ameliorates both acute and chronic experimental autoimmune encephalomyelitis. Brain Res 1390:126–141. doi:10.1016/j.brainres.2011.03.020 ArticleCASPubMed Google Scholar
Liu Y, Holdbrooks AT, De Sarno P, Rowse AL, Yanagisawa LL, McFarland BC, Harrington LE, Raman C et al (2014) Therapeutic efficacy of suppressing the Jak/STAT pathway in multiple models of experimental autoimmune encephalomyelitis. J Immunol 192(1):59–72. doi:10.4049/jimmunol.1301513 ArticleCASPubMed Google Scholar
Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51(2):215–223 ArticleCASPubMed Google Scholar
Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R (2010) Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 7:30. doi:10.1186/1742-2094-7-30 ArticlePubMedPubMed CentralCAS Google Scholar
Zhou J, Cai W, Jin M, Xu J, Wang Y, Xiao Y, Hao L, Wang B et al (2015) 18beta-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination. Scientific reports 5:13713. doi:10.1038/srep13713 ArticlePubMedPubMed Central Google Scholar
Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 27(3):488–500. doi:10.1038/sj.jcbfm.9600362 ArticleCAS Google Scholar
Ribot E, Bouzier-Sore AK, Bouchaud V, Miraux S, Delville MH, Franconi JM, Voisin P (2007) Microglia used as vehicles for both inducible thymidine kinase gene therapy and MRI contrast agents for glioma therapy. Cancer Gene Ther 14(8):724–737. doi:10.1038/sj.cgt.7701060 ArticleCASPubMed Google Scholar
Laroni A, Novi G, Kerlero de Rosbo N, Uccelli A (2013) Towards clinical application of mesenchymal stem cells for treatment of neurological diseases of the central nervous system. J Neuroimmune Pharmacol 8(5):1062–1076. doi:10.1007/s11481-013-9456-6 ArticlePubMed Google Scholar
Ho L, Qin W, Stetka BS, Pasinetti GM (2006) Is there a future for cyclo-oxygenase inhibitors in Alzheimer’s disease? CNS drugs 20(2):85–98 ArticleCASPubMed Google Scholar
Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A (2005) Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 58(6):963–967. doi:10.1002/ana.20682 ArticleCASPubMed Google Scholar