Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis (original) (raw)
Pfeffer, S. R. & Rothman, J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem.56, 829–852 (1987). ArticleCAS Google Scholar
Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol.9, 833–845 (2008). ArticleCAS Google Scholar
St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell141, 757–774 (2010). ArticleCAS Google Scholar
Bryant, D. M. et al. A molecular network for de novo generation of the apical surface and lumen. Nat. Cell Biol.12, 1035–1045 (2010). ArticleCAS Google Scholar
Martin-Belmont, F. & Rodriguez-Foretell, A. E. Acquisition of membrane polarity in epithelial tube formation patterns, signalling pathways, molecular mechanisms, and disease. Int. Rev. Cell Mol. Biol.274, 129–182 (2009). ArticleCAS Google Scholar
Kemphues, K. J., Press, J. R., Morton, D. G. & Chang, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell52, 311–320 (1988). ArticleCAS Google Scholar
Nelson, W. J. Adaptation of core mechanisms to generate cell polarity. Nature422, 766–774 (2003). ArticleCAS Google Scholar
Rodriguez-Boolean, E., Kibitzer, G. & Müsch, A. Organisation of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol.6, 233–247 (2005). ArticleCAS Google Scholar
Di Paolo, G. & De Camilla, P. Phosphoinositides in cell regulation and membrane dynamics. Nature443, 651–657 (2006). ArticleCAS Google Scholar
Lippincott-Schwartz, J. & Phair, R. D. Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu. Rev. Biophys.39, 559–578 (2010). ArticleCAS Google Scholar
Mays, R. W. et al. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J. Cell Biol.130, 1105–1115 (1995). ArticleCAS Google Scholar
Sprong, H. et al. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J. Cell Biol.155, 369–380 (2001). ArticleCAS Google Scholar
Hoekstra, D., Maier, O., van der Wouden, J. M., Slimane, T. A. & van Ijzendoorn, S. C. D. Membrane dynamics and cell polarity: the role of sphingolipids. J. Lipid Res.44, 869–877 (2003). ArticleCAS Google Scholar
Degroote, S., Wolthoorn, J. & van Meer, G. The cell biology of glycosphingolipids. Semin. Cell Dev. Biol.15, 375–387 (2004). ArticleCAS Google Scholar
Mayor, S. & Riezman, H. Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell Biol.5, 110–120 (2004). ArticleCAS Google Scholar
Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry27, 6197–6202 (1988). ArticleCAS Google Scholar
van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol.9, 112–124 (2008). ArticleCAS Google Scholar
Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science327, 46–50 (2010). ArticleCAS Google Scholar
Furukawa, K., Tokuda, N., Okuda, T. & Tajima, O. Glycosphingolipids in engineered mice: insights into function. Semin. Cell Dev. Biol.15, 389–396 (2004). ArticleCAS Google Scholar
Lynch, A. M. & Hardin, J. The assembly and maintenance of epithelial junctions in C. elegans. Front. Biosci.14, 1414–1432 (2009). ArticleCAS Google Scholar
Knight, C. G., Patel, M. N., Azevedo, R. B. & Leroi, A. M. A novel mode of ecdysozoan growth in Caenorhabditis elegans. Evol. Dev.4, 16–27 (2002). Article Google Scholar
Baugh, L. R. & Sternberg, P. W. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr. Biol.16, 780–785 (2006). ArticleCAS Google Scholar
Entchev, E. V. et al. LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans. J. Biol. Chem.283, 17550–17560 (2008). ArticleCAS Google Scholar
Kniazeva, M., Euler, T. & Han, M. A branched-chain fatty acid is involved in post-embryonic growth control in parallel to the insulin receptor pathway and its biosynthesis is feedback-regulated in C. elegans. Genes Dev.22, 2102–2110 (2008). ArticleCAS Google Scholar
Rappleye, C. A., Tagawa, A., Le Bot, N., Ahringer, J. & Aroian, R. V. Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC Dev. Biol.3, 8 (2003). Article Google Scholar
Kuervers, L. M., Jones, C. L., O’Neil, N. J. & Baillie, D. L. The sterol modifying enzyme LET-767 is essential for growth, reproduction and development in Caenorhabditis elegans. Mil. Genet. Genomics270, 121–131 (2003). ArticleCAS Google Scholar
Kniazeva, M., Crawford, Q. T., Seiber, M., Wang, C. Y. & Han, M. Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol.2, E257 (2004). ArticleCAS Google Scholar
Brock, T. J., Browse, J. & Watts, J. L. Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics176, 865–875 (2007). ArticleCAS Google Scholar
Watts, J. L. & Browse, J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA99, 5854–5859 (2002). ArticleCAS Google Scholar
Van Ijzendoorn, S. C. D., Van Der Wouden, J. M., Liebisch, G., Schmitz, G. & Hoekstra, D. Polarized membrane traffic and cell polarity development is dependent on dihydroceramide synthase-regulated sphinganine turnover. Mol. Biol. Cell15, 4115–4124 (2004). ArticleCAS Google Scholar
Chitwood, D. J., Lusby, W. R., Thompson, M. J., Kochansky, J. P. & Howarth, O. W. The glycosylceramides of the nematode Caenorhabditis elegans contain an unusual, branched-chain sphingoid base. Lipids30, 567–573 (1995). ArticleCAS Google Scholar
Ichikawa, S. & Hirabayashi, Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol.8, 198–202 (1998). ArticleCAS Google Scholar
Leipelt, M. et al. Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J. Biol. Chem.276, 33621–33629 (2001). ArticleCAS Google Scholar
Marza, E., Simonsen, K. T., Faergeman, N. J. & Lesa, G. M. Expression of ceramide glucosyltransferases, which are essential for glycosphingolipid synthesis, is only required in a small subset of C. elegans cells. J. Cell Sci.122, 822–833 (2009). ArticleCAS Google Scholar
Nomura, K. H. et al. Ceramide glucosyltransferase of the nematode Caenorhabditis elegans is involved in oocyte formation and in early embryonic cell division. Glycobiology21, 834–848 (2011). ArticleCAS Google Scholar
Maier, O., Oberle, V. & Hoekstra, D. Fluorescent lipid probes: some properties and applications (a review). Chem. Phys. Lipids116, 3–18 (2002). ArticleCAS Google Scholar
Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol.9, 139–150 (2008). ArticleCAS Google Scholar
Varki, A. Essentials of Glycobiology 2nd edn (Cold Spring Harbor Laboratory Press, 2009). Google Scholar
Griffitts, J. S. et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science307, 922–925 (2005). ArticleCAS Google Scholar
Gerdt, S., Lochnit, G., Dennis, R. D. & Geyer, R. Isolation and structural analysis of three neutral glycosphingolipids from a mixed population of Caenorhabditis elegans (Nematoda:Rhabditida). Glycobiology7, 265–275 (1997). ArticleCAS Google Scholar
Futerman, A. H. & Riezman, H. The ins and outs of sphingolipid synthesis. Trends Cell Biol.15, 312–318 (2005). ArticleCAS Google Scholar
Weisz, O. A. & Rodriguez-Boolean, E. Apical trafficking in epithelial cells: signals, clusters and motors. J. Cell Sci.122, 4253–4266 (2009). ArticleCAS Google Scholar
Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell17, 1286–1297 (2006). ArticleCAS Google Scholar
Rolls, M. M., Hall, D. H., Victor, M., Stelzer, E. H. & Rapoport, T. A. Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. Mol. Biol. Cell13, 1778–1791 (2002). ArticleCAS Google Scholar
Yamashita, T. et al. A vital role for glycosphingolipid synthesis during development and differentiation. Proc. Natl Acad. Sci. USA96, 9142–9147 (1999). ArticleCAS Google Scholar
Rao, R. P. & Acharya, J. K. Sphingolipids and membrane biology as determined from genetic models. Prostaglandins Other Lipid Mediat.85, 1–16 (2008). ArticleCAS Google Scholar
Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci.117, 5955–5964 (2004). ArticleCAS Google Scholar
Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat. Cell Biol.8, 963–970 (2006). ArticleCAS Google Scholar
Martin-Belmont, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell128, 383–397 (2007). ArticleCAS Google Scholar
Haucke, V. & Di Paolo, G. Lipids and lipid modifications in the regulation of membrane traffic. Curr. Opin. Cell Biol.19, 426–435 (2007). ArticleCAS Google Scholar
Simons, K. & Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol.11, 688–699 (2010). ArticleCAS Google Scholar
Seamen, E., Blanchette, J. M. & Han, M. P-type ATPase TAT-2 negatively regulates monomethyl branched-chain fatty acid mediated function in post-embryonic growth and development in C. elegans. PLoS Genet.5, e1000589 (2009). ArticleCAS Google Scholar
Wandall, H. H. et al. Egghead and brainiac are essential for glycosphingolipid biosynthesis in vivo. J. Biol. Chem.280, 4858–4863 (2005). ArticleCAS Google Scholar
Mishra, R., Grzybek, M., Niki, T., Hirashima, M. & Simons, K. Galectin-9 trafficking regulates apical-basal polarity in Madin–Darby canine kidney epithelial cells. Proc. Natl Acad. Sci. USA107, 17633–17638 (2010). Article Google Scholar
Sampaio, J. L. et al. Membrane lipidome of an epithelial cell line. Proc. Natl Acad. Sci. USA108, 1903–1907 (2011). Article Google Scholar
Vance, D. E. & Vance, J. E. Biochemistry of lipids, lipoproteins and membranes 5th edn (Elsevier, 2008). Google Scholar
Gobel, V., Barrett, P. L., Hall, D. H. & Fleming, J. T. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev. Cell6, 865–873 (2004). Article Google Scholar
Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol.56, 110–156 (1977). ArticleCAS Google Scholar
Legouis, R. et al. LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nat. Cell Biol.2, 415–422 (2000). ArticleCAS Google Scholar
Kurzchalia, T. V. & Ward, S. Why do worms need cholesterol? Nat. Cell Biol.5, 684–688 (2003). ArticleCAS Google Scholar
Martinez-Alonso, E., Egea, G., Ballesta, J. & Martinez-Menarguez, J. A. Structure and dynamics of the Golgi complex at 15 °C: low temperature induces the formation of Golgi-derived tubules. Traffic6, 32–44 (2005). ArticleCAS Google Scholar
Onelli, E., Prescianotto-Baschong, C., Caccianiga, M. & Moscatelli, A. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J. Exp. Bot.59, 3051–3068 (2008). ArticleCAS Google Scholar
Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene263, 103–112 (2001). ArticleCAS Google Scholar
Curran, S. P. & Ruvkun, G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet.3, e56 (2007). ArticleCAS Google Scholar
Hobert, O. PCR fusion-based approach to create reporter gene constructsfor expression analysis in transgenic C. elegans. Biotechniques32, 728–730 (2002). ArticleCAS Google Scholar
Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J.10, 3959–3970 (1991). ArticleCAS Google Scholar
Miller, D. M. & Shakes, D. C. Immunofluorescence microscopy. Methods Cell Biol.48, 365–394 (1995). ArticleCAS Google Scholar
Hall, D. H. Electron microscopy and three-dimensional image reconstruction. Methods Cell Biol.48, 395–436 (1995). ArticleCAS Google Scholar
Sullards, M. C., Wang, E., Peng, Q. & Merrill, A. H. Jr Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry. Cell Mil. Biol. (Noisy-le-grand)49, 789–797 (2003). CAS Google Scholar