Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis (original) (raw)
Jordan, S., Junker, A., Helmann, J. D. & Mascher, T. Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J. Bacteriol.188, 5153–5166 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jordan, S., Hutchings, M. I. & Mascher, T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol. Rev.32, 107–146 (2008). ArticleCASPubMed Google Scholar
Mascher, T., Margulis, N. G., Wang, T., Ye, R. W. & Helmann, J. D. Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol. Microbiol.50, 1591–1604 (2003). ArticleCASPubMed Google Scholar
Mascher, T., Zimmer, S. L., Smith, T. A. & Helmann, J. D. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob. Agents Chemother.48, 2888–2896 (2004). ArticleCASPubMedPubMed Central Google Scholar
Butcher, B. G., Lin, Y. P. & Helmann, J. D. The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the LiaRS two-component system. J. Bacteriol.189, 8616–8625 (2007). ArticleCASPubMedPubMed Central Google Scholar
Benjdia, A. & Berteau, O. Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota. Biochem. Soc. Trans.44, 109–115 (2016). ArticleCASPubMed Google Scholar
Vey, J. L. & Drennan, C. L. Structural insights into radical generation by the radical SAM superfamily. Chem. Rev.111, 2487–2506 (2011). ArticleCASPubMedPubMed Central Google Scholar
Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical _S_-adenosylmethionine enzymes. Chem. Rev.114, 4229–4317 (2014). ArticleCASPubMedPubMed Central Google Scholar
Walsby, C. J. et al. Electron-nuclear double resonance spectroscopic evidence that _S_-adenosylmethionine binds in contact with the catalytically active [4Fe–4S]+ cluster of pyruvate formate-lyase activating enzyme. J. Am. Chem. Soc.124, 3143–3151 (2002). ArticleCASPubMed Google Scholar
Nicolet, Y., Amara, P., Mouesca, J. M. & Fontecilla-Camps, J. C. Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins. Proc. Natl Acad. Sci. USA106, 14867–14871 (2009). ArticleCASPubMedPubMed Central Google Scholar
Frey, P. A., Hegeman, A. D. & Ruzicka, F. J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol.43, 63–88 (2008). ArticleCASPubMed Google Scholar
Pierre, S. et al. Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nat. Chem. Biol.8, 957–959 (2012). ArticleCASPubMed Google Scholar
Wang, S. C. & Frey, P. A. Binding energy in the one-electron reductive cleavage of _S_-adenosylmethionine in lysine 2,3-aminomutase, a radical SAM enzyme. Biochemistry46, 12889–12895 (2007). ArticleCASPubMed Google Scholar
Horitani, M. et al. Why nature uses radical SAM enzymes so widely: electron nuclear double resonance studies of lysine 2,3-aminomutase show the 5′-dAdo* ‘free radical’ is never free. J. Am. Chem. Soc.137, 7111–7121 (2015). ArticleCASPubMedPubMed Central Google Scholar
Wang, S. C. & Frey, P. A. _S_-adenosylmethionine as an oxidant: the radical SAM superfamily. Trends Biochem. Sci.32, 101–110 (2007). ArticleCASPubMed Google Scholar
Chandor, A. et al. Dinucleotide spore photoproduct, a minimal substrate of the DNA repair spore photoproduct lyase enzyme from Bacillus subtilis. J. Biol. Chem.281, 26922–26931 (2006). ArticleCASPubMed Google Scholar
Benjdia, A. DNA photolyases and SP lyase: structure and mechanism of light-dependent and independent DNA lyases. Curr. Opin. Struct. Biol.22, 711–720 (2012). ArticleCASPubMed Google Scholar
Benjdia, A., Heil, K., Barends, T. R. M., Carell, T. & Schlichting, I. Structural insights into recognition and repair of UV-DNA damage by spore photoproduct lyase, a radical SAM enzyme. Nucleic Acids Res40, 9308–9318 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sun, X. et al. The free radical of the anaerobic ribonucleotide reductase from Escherichia coli is at glycine 681. J. Biol. Chem.271, 6827–6831 (1996). ArticleCASPubMed Google Scholar
Benjdia, A., Deho, G., Rabot, S. & Berteau, O. First evidences for a third sulfatase maturation system in prokaryotes from E. coli aslB and ydeM deletion mutants. FEBS Lett.581, 1009–1014 (2007). ArticleCASPubMed Google Scholar
Benjdia, A. et al. Anaerobic sulfatase-maturating enzymes: radical SAM enzymes able to catalyze in vitro sulfatase post-translational modification. J. Am. Chem. Soc.129, 3462–3463 (2007). ArticleCASPubMed Google Scholar
Benjdia, A., Leprince, J., Sandstrom, C., Vaudry, H. & Berteau, O. Mechanistic investigations of anaerobic sulfatase-maturating enzyme: direct Cβ H-atom abstraction catalyzed by a radical AdoMet enzyme. J. Am. Chem. Soc.131, 8348–8349 (2009). ArticleCASPubMed Google Scholar
Benjdia, A. et al. Anaerobic sulfatase-maturating enzymes—first dual substrate radical _S_-adenosylmethionine enzymes. J. Biol. Chem.283, 17815–17826 (2008). ArticleCASPubMedPubMed Central Google Scholar
Arragain, S . et al. Post-translational modification of ribosomal proteins: structural and functional characterization of RimO from Thermotoga maritima, a radical-SAM methylthiotransferase. J. Biol. Chem.258, 5792–5801 (2009). Google Scholar
Lee, K. H. et al. Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry48, 10162–10174 (2009). ArticleCASPubMed Google Scholar
Flühe, L. K. et al. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat. Chem. Biol. 8, 350–357 (2012). ArticlePubMedCAS Google Scholar
Benjdia, A. et al. Thioether bond formation by SPASM domain radical SAM enzymes: Cα H-atom abstraction in subtilosin A biosynthesis. Chem. Commun.52, 6249–6252 (2016). ArticleCAS Google Scholar
Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep.30, 108–160 (2013). ArticleCASPubMedPubMed Central Google Scholar
Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science338, 387–390 (2012). ArticleCASPubMed Google Scholar
Huo, L., Rachid, S., Stadler, M., Wenzel, S. C. & Muller, R. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem. Biol.19, 1278–1287 (2012). ArticleCASPubMed Google Scholar
Duin, E. C. et al. [2Fe–2S] to [4Fe–4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry36, 11811–11820 (1997). ArticleCASPubMed Google Scholar
Bansal, P. S. et al. Substrate specificity of platypus venom L-to-D-peptide isomerase. J. Biol. Chem.283, 8969–8975 (2008). ArticleCASPubMed Google Scholar
Morinaka, B. I. et al. Radical _S_-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products. Angew. Chem. Int. Ed.53, 8503–8507 (2014). ArticleCAS Google Scholar
Burkhart, B. J., Hudson, G. A., Dunbar, K. L. & Mitchell, D. A. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol.11, 564–570 (2015). ArticleCASPubMedPubMed Central Google Scholar
Benjdia, A. et al. Anaerobic sulfatase-maturating enzyme—a mechanistic link with glycyl radical-activating enzymes? FEBS J.277, 1906–1920 (2010). ArticleCASPubMedPubMed Central Google Scholar
Grell, T. A., Goldman, P. J. & Drennan, C. L. SPASM and twitch domains in _S_-adenosylmethionine (SAM) radical enzymes. J. Biol. Chem.290, 3964–3971 (2015). ArticleCASPubMed Google Scholar
Kudo, F., Hoshi, S., Kawashima, T., Kamachi, T. & Eguchi, T. Characterization of a radical _S_-adenosyl-L-methionine epimerase, NeoN, in the last step of neomycin B biosynthesis. J. Am. Chem. Soc.136, 13909–13915 (2014). ArticleCASPubMed Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874 (2016). ArticleCASPubMedPubMed Central Google Scholar
Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci.8, 275–282 (1992). CASPubMed Google Scholar
Zharkikh, A. & Li, W. H. Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Mol. Phylogenet. Evol.4, 44–63 (1995). ArticleCASPubMed Google Scholar
Gerlt, J. A. et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta1854, 1019–1037 (2015). ArticleCASPubMedPubMed Central Google Scholar
Benjdia, A., Heil, K., Winkler, A., Carell, T. & Schlichting, I. Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase. Chem. Commun.50, 14201–14204 (2014). ArticleCAS Google Scholar
Chandor-Proust, A. et al. DNA repair and free radicals, new insights into the mechanism of spore photoproduct lyase revealed by single amino acid substitution. J. Biol. Chem.283, 36361–8 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wagner, A. F., Frey, M., Neugebauer, F. A., Schafer, W. & Knappe, J. The free radical in pyruvate formate-lyase is located on glycine-734. Proc. Natl Acad. Sci. USA89, 996–1000 (1992). ArticleCASPubMedPubMed Central Google Scholar
Reichard, P. & Ehrenberg, A. Ribonucleotide reductase—a radical enzyme. Science221, 514–519 (1983). ArticleCASPubMed Google Scholar
Moore, B. N. & Julian, R. R. Dissociation energies of X–H bonds in amino acids. Phys. Chem. Chem. Phys.14, 3148–3154 (2012). ArticleCASPubMed Google Scholar
Stubbe, J., Nocera, D. G., Yee, C. S. & Chang, M. C. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev.103, 2167–2201 (2003). ArticleCASPubMed Google Scholar
Stubbe, J. & van der Donk, W. A. Ribonucleotide reductases: radical enzymes with suicidal tendencies. Chem. Biol.2, 793–801 (1995). ArticleCASPubMed Google Scholar
Staples, C. R. et al. The function and properties of the iron–sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron–sulfur clusters. Biochemistry35, 11425–11434 (1996). ArticleCASPubMed Google Scholar
Bennati, M., Weiden, N., Dinse, K. P. & Hedderich, R. 57Fe ENDOR spectroscopy on the iron–sulfur cluster involved in substrate reduction of heterodisulfide reductase. J. Am. Chem. Soc.126, 8378–8379 (2004). ArticleCASPubMed Google Scholar
Duin, E. C., Madadi-Kahkesh, S., Hedderich, R., Clay, M. D. & Johnson, M. K. Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe–4S] cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett.512, 263–268 (2002). ArticleCASPubMed Google Scholar
Dai, S., Schwendtmayer, C., Schurmann, P., Ramaswamy, S. & Eklund, H. Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science287, 655–658 (2000). ArticleCASPubMed Google Scholar
Walters, E. M. et al. Spectroscopic characterization of site-specific [Fe4S4] cluster chemistry in ferredoxin:thioredoxin reductase: implications for the catalytic mechanism. J. Am. Chem. Soc.127, 9612–9624 (2005). ArticleCASPubMed Google Scholar
Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science335, 1103–1106 (2012). ArticleCASPubMed Google Scholar
Craig, R., Cortens, J. C., Fenyo, D. & Beavis, R. C. Using annotated peptide mass spectrum libraries for protein identification. J. Proteome Res.5, 1843–1849 (2006). ArticleCASPubMed Google Scholar
Radeck, J. et al. Anatomy of the bacitracin resistance network in Bacillus subtilis. Mol. Microbiol.100, 607–620 (2016). ArticleCASPubMed Google Scholar
Wolf, D., Dominguez-Cuevas, P., Daniel, R. A. & Mascher, T. Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis. Antimicrob. Agents Chemother.56, 5907–5915 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ellermeier, C. D., Hobbs, E. C., Gonzalez-Pastor, J. E. & Losick, R. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell124, 549–559 (2006). ArticleCASPubMed Google Scholar
Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature506, 58–62 (2014). ArticleCASPubMed Google Scholar
Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins—a viable alternative to antibiotics? Nat. Rev. Microbiol.11, 95–105 (2013). ArticleCASPubMed Google Scholar