Pizzo, P. & Pozzan, T. Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol.17, 511–517 (2007). ArticleCASPubMed Google Scholar
Ma, Y. & Hendershot, L. M. ER chaperone functions during normal and stress conditions. J. Chem. Neuroanat.28, 51–65 (2004). ArticleCASPubMed Google Scholar
Rizzuto, R., Duchen, M. R. & Pozzan, T. Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci. STKE2004, re1 (2004). PubMed Google Scholar
Schroder, M. & Kaufman, R. J. ER stress and the unfolded protein response. Mutat. Res.569, 29–63 (2005). An overview of the roles of ER stress and the UPR. ArticleCASPubMed Google Scholar
Rao, R. V., Ellerby, H. M. & Bredesen, D. E. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ.11, 372–380 (2004). ArticleCASPubMed Google Scholar
Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev. Mol. Cell. Biol.8, 519–529 (2007). ArticleCAS Google Scholar
Malhotra, J. D. & Kaufman, R. J. The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol.18, 716–731 (2007). ArticleCASPubMedPubMed Central Google Scholar
Frand, A. R., Cuozzo, J. W. & Kaiser, C. A. Pathways for protein disulphide bond formation. Trends Cell Biol.10, 203–210 (2000). ArticleCASPubMed Google Scholar
Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science306, 457–461 (2004). The first observation that ER-stress-induced signalling contributes to disease progression (in type 2 diabetes). ArticleCASPubMed Google Scholar
Cooper, A. A. et al. Alpha-synuclein blocks ER–Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science313, 324–328 (2006). ArticleCASPubMedPubMed Central Google Scholar
Delaunay, A. et al. The ER-bound ring finger protein 5 (RNF5/RMA1) causes degenerative myopathy in transgenic mice and is deregulated in inclusion body myositis. PLoS ONE3, e1609 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lindholm, D., Wootz, H. & Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ.13, 385–392 (2006). ArticleCASPubMed Google Scholar
Yoshida, H. ER stress and diseases. FEBS J.274, 630–658 (2007). An overview of ER-stress-related diseases. ArticleCASPubMed Google Scholar
Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplamic reticulum stress: cell life and death decisions. J. Clin. Invest.115, 2656–2664 (2005). An overview of ER stress and related cell death machinery. ArticleCASPubMedPubMed Central Google Scholar
Wu, J. & Kaufman, R. J. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ.13, 374–384 (2006). ArticleCASPubMed Google Scholar
Kaneko, M., Niinuma, Y. & Nomura, Y. Activation signal of nuclear factor-κB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol. Pharm. Bull.26, 931–935 (2003). ArticleCASPubMed Google Scholar
Egger, L. et al. Serine proteases mediate apoptosis-like cell death and phagocytosis under caspase-inhibiting conditions. Cell Death Differ.10, 1188–1203 (2003). ArticleCASPubMed Google Scholar
Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol.4, e423 (2006). ArticleCASPubMedPubMed Central Google Scholar
Todd, D. J., Lee, A. H. & Glimcher, L. H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nature Rev. Immunol.8, 663–674 (2008). ArticleCAS Google Scholar
Rao, R. V. & Bredesen, D. E. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr. Opin. Cell Biol.16, 653–662 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kruse, K. B. et al. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease. Am. J. Pathol.168, 1299–1308 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science313, 104–107 (2006). ArticleCASPubMed Google Scholar
Zhang, K. et al. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest.115, 268–281 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lee, K. et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev.16, 452–466 (2002). ArticleCASPubMedPubMed Central Google Scholar
Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell101, 249–258 (2000). ArticleCASPubMed Google Scholar
Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science287, 664–666 (2000). ArticleCASPubMed Google Scholar
Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev.16, 1345–1355 (2002). ArticleCASPubMedPubMed Central Google Scholar
Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell116, 205–219 (2004). ArticleCASPubMed Google Scholar
Hetz, C. et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science312, 572–576 (2006). ArticleCASPubMed Google Scholar
Lei, K. & Davis, R. J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc. Natl Acad. Sci. USA100, 2432–2437 (2003). ArticleCASPubMedPubMed Central Google Scholar
Putcha, G. V. et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron38, 899–914 (2003). ArticleCASPubMed Google Scholar
Yamamoto, K., Ichijo, H. & Korsmeyer, S. J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol. Cell. Biol.19, 8469–8478 (1999). ArticleCASPubMedPubMed Central Google Scholar
Srivastava, R. K. et al. Bcl-2 and Bcl-XL block thapsigargin-induced nitric oxide generation, c-Jun NH2-terminal kinase activity, and apoptosis. Mol. Cell. Biol.19, 5659–5674 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yoneda, T. et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem.276, 13935–13940 (2001). ArticleCASPubMed Google Scholar
Fischer, H., Koenig, U., Eckhart, L. & Tschachler, E. Human caspase-12 has acquired deleterious mutations. Biochem. Biophys. Res. Comm.293, 722–726 (2002). ArticleCASPubMed Google Scholar
Szegezdi, E., Fitzgerald, U. & Samali, A. Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann. NY Acad. Sci.1010, 186–194 (2003). ArticleCASPubMed Google Scholar
Hitomi, J. et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J. Cell Biol.165, 347–356 (2004). This showed the role of CASP4 in ER-stress-induced cell death. ArticleCASPubMedPubMed Central Google Scholar
Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature397, 271–274 (1999). ArticleCASPubMed Google Scholar
Lu, P. D., Harding, H. P. & Ron, D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol.167, 27–33 (2004). ArticleCASPubMedPubMed Central Google Scholar
Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell11, 619–633 (2003). ArticleCASPubMed Google Scholar
Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell5, 897–904 (2000). ArticleCASPubMed Google Scholar
Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell7, 1165–1176 (2001). ArticleCASPubMed Google Scholar
Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science307, 935–939 (2005). Describes the identification of a chemical compound that inhibits ER-stress-induced cell death by modulating a UPR signal transduction event (EIF2α phosphorylation). ArticleCASPubMed Google Scholar
Kouroku, Y. et al. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ.14, 230–239 (2007). ArticleCASPubMed Google Scholar
Fujita, E. et al. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum. Mol. Genet.16, 618–629 (2007). ArticleCASPubMed Google Scholar
Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell6, 1355–1364 (2000). ArticleCASPubMed Google Scholar
Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell13, 365–376 (2007). ArticleCASPubMed Google Scholar
Wu, J. et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell13, 351–364 (2007). ArticleCASPubMed Google Scholar
Thuerauf, D. J., Marcinko, M., Belmont, P. J. & Glembotski, C. C. Effects of the isoform-specific characteristics of ATF6α and ATF6β on endoplasmic reticulum stress response gene expression and cell viability. J. Biol. Chem.282, 22865–22878 (2007). ArticleCASPubMed Google Scholar
Belmont, P. J. et al. Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin 1 (RCAN1), a novel ATF6-inducible gene. J. Biol. Chem.283, 14012–14021 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. G. et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science284, 339–343 (1999). ArticleCASPubMed Google Scholar
Ma, Y., Brewer, J. W., Diehl, J. A. & Hendershot, L. M. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol.318, 1351–1365 (2002). ArticleCASPubMed Google Scholar
Oyadomari, S. & Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ.11, 381–389 (2004). ArticleCASPubMed Google Scholar
Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell6, 1099–1108 (2000). ArticleCASPubMed Google Scholar
Wang, X. Z. & Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science272, 1347–1349 (1996). ArticleCASPubMed Google Scholar
Bruhat, A. et al. Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol. Cell. Biol.20, 7192–7204 (2000). ArticleCASPubMedPubMed Central Google Scholar
McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. & Holbrook, N. J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol.21, 1249–1259 (2001). ArticleCASPubMedPubMed Central Google Scholar
Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev.18, 3066–3077 (2004). ArticleCASPubMedPubMed Central Google Scholar
Song, B., Scheuner, D., Ron, D., Pennathur, S. & Kaufman, R. J. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Invest.118, 3378–3389 (2008). ArticleCASPubMedPubMed Central Google Scholar
Puthalakath, H. et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell129, 1337–1349 (2007). Demonstrated a role for the BH3-only protein BIM in ER-stress-induced cell death. CASPubMed Google Scholar
Ubeda, M. et al. Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol. Cell. Biol.16, 1479–1489 (1996). ArticleCASPubMedPubMed Central Google Scholar
Thomenius, M. J. & Distelhorst, C. W. Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J. Cell Sci.116, 4493–4499 (2003). ArticleCASPubMed Google Scholar
Foyouzi-Youssefi, R. et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl Acad. Sci. USA97, 5723–5728 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jones, R. G. et al. The proapoptotic factors Bax and Bak regulate T Cell proliferation through control of endoplasmic reticulum Ca2+ homeostasis. Immunity27, 268–280 (2007). ArticleCASPubMedPubMed Central Google Scholar
Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science300, 135–139 (2003). ArticleCASPubMed Google Scholar
Oakes, S. A. et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA102, 105–110 (2005). ArticleCASPubMed Google Scholar
Chen, R. et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J. Cell Biol.166, 193–203 (2004). ArticleCASPubMedPubMed Central Google Scholar
Li, C. et al. Apoptosis regulation by Bcl-xL modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc. Natl Acad. Sci. USA104, 12565–12570 (2007). ArticleCASPubMedPubMed Central Google Scholar
White, C. et al. The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nature Cell Biol.7, 1021–1028 (2005). ArticleCASPubMed Google Scholar
Zhu, W., Cowie, A., Wasfy, L., Leber, B. & Andrews, D. Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J.15, 4130–4141 (1996). ArticleCASPubMedPubMed Central Google Scholar
Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell122, 927–939 (2005). ArticleCASPubMed Google Scholar
Xu, Q. & Reed, J. C. BAX inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell1, 337–346 (1998). ArticleCASPubMed Google Scholar
Blais, J. D. et al. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol. Cell. Biol.24, 7469–7482 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chae, H.-J. et al. Evolutionarily conserved cytoprotection provided by Bax Inhibitor-1 (BI-1) homologs from animals, plants, and yeast. Gene323, 101–113 (2003). ArticleCASPubMed Google Scholar
Chae, H. J. et al. BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol. Cell15, 355–366 (2004). ArticleCASPubMed Google Scholar
Xu, C., Xu, W., Palmer, A. E. & Reed, J. C. BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2-family proteins. J. Biol. Chem.283, 11477–11484 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ng, F. W. et al. p28 Bap31, a Bcl-2/Bcl-XL-and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell Biol.139, 327–338 (1997). ArticleCASPubMedPubMed Central Google Scholar
Xu, K., Tavernarakis, N. & Driscoll, M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron31, 957–971 (2001). ArticleCASPubMed Google Scholar
Lam, D. & Golstein, P. A specific pathway inducing autophagic cell death is marked by an IP3R mutation. Autophagy4, 349–350 (2008). ArticleCASPubMed Google Scholar
Criollo, A. et al. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ.14, 1029–1039 (2007). ArticleCASPubMed Google Scholar
Sakaki, K., Wu, J. & Kaufman, R. J. Protein kinase Cθ is required for autophagy in response to stress in the endoplasmic reticulum. J. Biol. Chem.283, 15370–15380 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hoyer-Hansen, M. et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol. Cell25, 193–205 (2007). ArticleCASPubMed Google Scholar
Unterberger, U. et al. Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J. Neuropathol. Exp. Neurol.65, 348–357 (2006). ArticleCASPubMed Google Scholar
Katayama, T. et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biol.1, 479–485 (1999). ArticleCASPubMed Google Scholar
Terro, F. et al. Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. J. Neurosci. Res.69, 530–539 (2002). ArticleCASPubMed Google Scholar
Milhavet, O. et al. Involvement of Gadd153 in the pathogenic action of presenilin-1 mutations. J. Neurochem.83, 673–681 (2002). ArticleCASPubMed Google Scholar
Niwa, M., Sidrauski, C., Kaufman, R. & Walter, P. A role for presenilin-1 in nuclear accumulation of ire1 fragments and induction of the mammalian unfolded protein response. Cell99, 691–702 (1999). ArticleCASPubMed Google Scholar
Dawson, T. M. & Dawson, V. L. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J. Clin. Invest.111, 145–151 (2003). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, R., Imai, Y., Hattori, N. & Mizuno, Y. Parkin and endoplasmic reticulum stress. Ann. NY Acad. Sci.991, 101–106 (2003). ArticleCASPubMed Google Scholar
Imai, Y., Soda, M. & Takahashi, R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem.275, 35661–35664 (2000). ArticleCASPubMed Google Scholar
Petrucelli, L. et al. Parkin protects against the toxicity associated with mutant α-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron36, 1007–1019 (2002). ArticleCASPubMed Google Scholar
Ryu, E. J. et al. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J. Neurosci.22, 10690–10698 (2002). ArticleCASPubMedPubMed Central Google Scholar
Paulson, H. L., Bonini, N. M. & Roth, K. A. Polyglutamine disease and neuronal cell death. Proc. Natl Acad. Sci. USA97, 12957–12958 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nishitoh, H. et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev.22, 1451–1464 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kouroku, Y. et al. Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum. Mol. Genet.11, 1505–1515 (2002). ArticleCASPubMed Google Scholar
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science292, 1552–1555 (2001). ArticleCASPubMed Google Scholar
Harjes, P. & Wanker, E. E. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci.28, 425–433 (2003). ArticleCASPubMed Google Scholar
Gervais, F. G. et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nature Cell Biol.4, 95–105 (2002). ArticleCASPubMed Google Scholar
Ybe, J. A., Mishra, S., Helms, S. & Nix, J. Crystal Structure at 2.8 Å of the DLLRKN-containing coiled-coil domain of Huntingtin-interacting protein 1 (HIP1) reveals a surface suitable for clathrin light chain binding. J. Mol. Biol.367, 8–15 (2006). ArticleCASPubMedPubMed Central Google Scholar
Reed, J. C., Doctor, K. S. & Godzik, A. The domains of apoptosis: a genomics perspective. Science STKE2004, rE9 (2004). Google Scholar
Roth, W. et al. Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways. Cell Death Differ.10, 1178–1187 (2003). ArticleCASPubMed Google Scholar
Nasir, J. et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell81, 811–823 (1995). ArticleCASPubMed Google Scholar
Hetz, C., Russelakis-Carneiro, M., Maundrell, K., Castilla, J. & Soto, C. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J.22, 5435–5445 (2003). ArticleCASPubMedPubMed Central Google Scholar
Smith, W. W. et al. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant α-synuclein-induced toxicity. Hum. Mol. Genet.14, 3801–3811 (2005). ArticleCASPubMed Google Scholar
Reijonen, S., Putkonen, N., Norremolle, A., Lindholm, D. & Korhonen, L. Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp. Cell Res.314, 950–960 (2008). ArticleCASPubMed Google Scholar
Costa-Mattioli, M. et al. eIF2α phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell129, 195–206 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kawaguchi, M. et al. Development of a novel fluorescent probe for fluorescence correlation spectroscopic detection of kinase inhibitors. Bioorg. Med. Chem. Lett.18, 3752–3755 (2008). ArticleCASPubMed Google Scholar
Salh, B. c-Jun N-terminal kinases as potential therapeutic targets. Expert Opin. Ther. Targets.11, 1339–1353 (2007). ArticleCASPubMed Google Scholar
Zhang, L. et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl Acad. Sci. USA104, 19023–19028 (2007). ArticlePubMedPubMed Central Google Scholar
Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nature Chem. Biol.3, 331–338 (2007). References 117 and 118 describe the identification of chemical compounds that induce autophagy and suppress neuronal cell death. ArticleCAS Google Scholar
Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008). ArticleCASPubMedPubMed Central Google Scholar
Serradeil-Le Gal, C. et al. Characterization of SR 121463A, a highly potent and selective, orally active vasopressin V2 receptor antagonist. J. Clin. Invest.98, 2729–2738 (1996). ArticleCASPubMedPubMed Central Google Scholar
Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest.105, 887–895 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tamarappoo, B. K. & Verkman, A. S. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J. Clin. Invest.101, 2257–2267 (1998). ArticleCASPubMedPubMed Central Google Scholar
Burrows, J. A., Willis, L. K. & Perlmutter, D. H. Chemical chaperones mediate increased secretion of mutant α1-antitrypsin (α1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α1-AT deficiency. Proc. Natl Acad. Sci. USA97, 1796–1801 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. et al. Therapeutic gene silencing delivered by a chemically modified small interfering RNA against mutant SOD1 slows amyotrophic lateral sclerosis progression. J. Biol. Chem.283, 15845–15852 (2008). ArticleCASPubMedPubMed Central Google Scholar
Uehara, T. et al. _S_-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature441, 513–517 (2006). ArticleCASPubMed Google Scholar
Yao, D. et al. Nitrosative stress linked to sporadic Parkinson's disease: _S_-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl Acad. Sci. USA101, 10810–10814 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gotoh, T. & Mori, M. Nitric oxide and endoplasmic reticulum stress. Arterioscler. Thromb. Vasc. Biol.26, 1439–1446 (2006). ArticleCASPubMed Google Scholar
Tanaka, S., Uehara, T. & Nomura, Y. Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J. Biol. Chem.275, 10388–10393 (2000). ArticleCASPubMed Google Scholar
Xu, L., Eu, J. P., Meissner, G. & Stamler, J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-_S_-nitrosylation. Science279, 234–237 (1998). ArticleCASPubMed Google Scholar
Viner, R. I., Ferrington, D. A., Williams, T. D., Bigelow, D. J. & Schoneich, C. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem. J.340, 657–669 (1999). ArticleCASPubMedPubMed Central Google Scholar
Xu, K. Y., Huso, D. L., Dawson, T. M., Bredt, D. S. & Becker, L. C. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc. Natl Acad. Sci. USA96, 657–662 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kumar, R. et al. Brain ischemia and reperfusion activates the eukaryotic initiation factor 2α kinase, PERK. J. Neurochem.77, 1418–1421 (2001). ArticleCASPubMed Google Scholar
Paschen, W., Gissel, C., Linden, T., Althausen, S. & Doutheil, J. Activation of gadd153 expression through transient cerebral ischemia: evidence that ischemia causes endoplasmic reticulum dysfunction. Brain Res. Mol. Brain Res.60, 115–122 (1998). ArticleCASPubMed Google Scholar
Tajiri, S. et al. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ.11, 403–415 (2004). ArticleCASPubMed Google Scholar
Kohno, K., Higuchi, T., Ohta, S., Kumon, Y. & Sakaki, S. Neuroprotective nitric oxide synthase inhibitor reduces intracellular calcium accumulation following transient global ischemia in the gerbil. Neurosci. Lett.224, 17–20 (1997). ArticleCASPubMed Google Scholar
Iadecola, C., Zhang, F., Casey, R., Nagayama, M. & Ross, M. E. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci.17, 9157–9164 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hynes, J. Jr & Leftheri, K. Small molecule p38 inhibitors: novel structural features and advances from 2002–2005 Curr. Top. Med. Chem.5, 967–985 (2005). ArticleCASPubMed Google Scholar
Lee, M. R. & Dominguez, C. MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38α protein. Curr. Med. Chem.12, 2979–2994 (2005). ArticleCASPubMed Google Scholar
Zhai, D. et al. Humanin binds and nullifies Bid activity by blocking its activation of Bax and Bak. J. Biol. Chem.280, 15815–15824 (2005). ArticleCASPubMed Google Scholar
Luciano, F. et al. Cytoprotective peptide Humanin binds and inhibits pro-apoptotic Bcl-2/Bax-family protein BimEL. J. Biol. Chem.280, 15825–15835 (2005). ArticleCASPubMed Google Scholar
Reed, J. C. Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ.13, 1378–1386 (2006). ArticleCASPubMed Google Scholar
Kudo, T., Imaizumi, K. & Hara, H. A molecular chaperone inducer as potential therapeutic agent for neurodegenerative disease. Nihon Shinkei Seishin Yakurigaku Zasshi27, 63–67 (2007) (in Japanese). CASPubMed Google Scholar
Kudo, T. et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ.15, 364–375 (2008). References 145 and 146 describe the identification of a cytoprotective chemical compound that upregulates a chaperone protein (GRP78). ArticleCASPubMed Google Scholar
Sokka, A. L. et al. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J. Neurosci.27, 901–908 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sekiguchi, F. et al. The potent inducible nitric oxide synthase inhibitor ONO-1714 inhibits neuronal NOS and exerts antinociception in rats. Neurosci. Lett.365, 111–115 (2004). ArticleCASPubMed Google Scholar
Bossy-Wetzel, E. & Green, D. R. Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J. Biol. Chem.274, 17484–17490 (1999). ArticleCASPubMed Google Scholar
Becattini, B. et al. Structure–activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc. Natl Acad. Sci. USA103, 12602–12606 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kakiuchi, C. et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nature Genet.35, 171–175 (2003). ArticleCASPubMed Google Scholar
Cichon, S. et al. Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nature Genet.36, 783–784; author reply 784–785 (2004). ArticleCASPubMed Google Scholar
Kakiuchi, C. et al. Functional polymorphisms of HSPA5: possible association with bipolar disorder. Biochem. Biophys. Res. Commun.336, 1136–1143 (2005). ArticleCASPubMed Google Scholar
Bown, C. D., Wang, J. F., Chen, B. & Young, L. T. Regulation of ER stress proteins by valproate: therapeutic implications. Bipolar Disord.4, 145–151 (2002). ArticleCASPubMed Google Scholar
Hiroi, T., Wei, H., Hough, C., Leeds, P. & Chuang, D. M. Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, GRP78 and Bcl-2. Pharmacogenomics J.5, 102–111 (2005). ArticleCASPubMed Google Scholar
Shao, L., Sun, X., Xu, L., Young, L. T. & Wang, J. F. Mood stabilizing drug lithium increases expression of endoplasmic reticulum stress proteins in primary cultured rat cerebral cortical cells. Life Sci.78, 1317–1323 (2006). ArticleCASPubMed Google Scholar
Glembotski, C. C. The role of the unfolded protein response in the heart. J. Mol. Cell Cardiol.44, 453–459 (2008). ArticleCASPubMed Google Scholar
Okada, K. et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation110, 705–712 (2004). ArticlePubMed Google Scholar
Thuerauf, D. J. et al. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ. Res.99, 275–282 (2006). ArticleCASPubMed Google Scholar
Shintani-Ishida, K., Nakajima, M., Uemura, K. & Yoshida, K. Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78. Biochem. Biophys. Res. Commun.345, 1600–1605 (2006). ArticleCASPubMed Google Scholar
Pan, Y. X. et al. HSP70 and GRP78 induced by endothelin-1 pretreatment enhance tolerance to hypoxia in cultured neonatal rat cardiomyocytes. J. Cardiovasc. Pharmacol.44, S117–S120 (2004). ArticleCASPubMed Google Scholar
Vitadello, M. et al. Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. FESEB J.17, 923–925 (2003). ArticleCAS Google Scholar
Yamaguchi, O. et al. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc. Natl Acad. Sci. USA100, 15883–15888 (2003). ArticleCASPubMedPubMed Central Google Scholar
Matsukawa, J., Matsuzawa, A., Takeda, K. & Ichijo, H. The ASK1–MAP kinase cascades in mammalian stress Response. J. Biochem. (Tokyo)136, 261–265 (2004). ArticleCAS Google Scholar
Nickson, P., Toth, A. & Erhardt, P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc. Res.73, 48–56 (2007). ArticleCASPubMed Google Scholar
Toth, A. et al. Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia–reperfusion. Am. J. Physiol. Heart Circ. Physiol.291, H52–H60 (2006). ArticleCASPubMed Google Scholar
Ramadan, S. et al. p73 induces apoptosis by different mechanisms. Biochem. Biophys. Res. Commun.331, 713–717 (2005). ArticleCASPubMed Google Scholar
Terrinoni, A. et al. p73-α is capable of inducing scotin and ER stress. Oncogene23, 3721–3725 (2004). ArticleCASPubMed Google Scholar
Melino, G. et al. p73 induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J. Biol. Chem.279, 8076–8083 (2004). ArticleCASPubMed Google Scholar
Martindale, J. J. et al. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ. Res.98, 1186–1193 (2006). ArticleCASPubMed Google Scholar
Severino, A. et al. Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. J. Am. Coll. Cardiol.50, 1029–1037 (2007). ArticleCASPubMed Google Scholar
Gargalovic, P. S. et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler. Thromb. Vasc. Biol.26, 2490–2496 (2006). ArticleCASPubMed Google Scholar
Li, Y. et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: model of NF-κB- and MAP kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem.280, 21763–21772 (2005). ArticleCASPubMed Google Scholar
Zhang, C. et al. Activation of JNK and transcriptional repressor ATF3/LRF1 through the IRE1/TRAF2 pathway is implicated in human vascular endothelial cell death by homocysteine. Biochem. Biophys. Res. Commun.289, 718–724 (2001). ArticleCASPubMed Google Scholar
Lee, A. H., Scapa, E. F., Cohen, D. E. & Glimcher, L. H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science320, 1492–1496 (2008). ArticleCASPubMedPubMed Central Google Scholar
Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell7, 1153–1163 (2001). ArticleCASPubMed Google Scholar
Araki, E., Oyadomari, S. & Mori, M. Endoplasmic reticulum stress and diabetes mellitus. Intern. Med.42, 7–14 (2003). ArticlePubMed Google Scholar
Fonseca, S. G. et al. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic β-cells. J. Biol. Chem.280, 39609–39615 (2005). ArticleCASPubMed Google Scholar
Yamada, T. et al. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic β-cells. Hum. Mol. Genet.15, 1600–1609 (2006). ArticleCASPubMed Google Scholar
Ishihara, H. et al. Disruption of the WFS1 gene in mice causes progressive β-cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum. Mol. Genet.13, 1159–1170 (2004). ArticleCASPubMed Google Scholar
Oyadomari, S. et al. Nitric oxide-induced apoptosis in pancreatic β cells is mediated by the endoplasmic reticulum stress pathway. Proc. Natl Acad. Sci. USA98, 10845–10850 (2001). ArticleCASPubMedPubMed Central Google Scholar
Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest.109, 525–532 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cnop, M. et al. Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic β-cell dysfunction and apoptosis. J. Biol. Chem.282, 3989–3997 (2007). ArticleCASPubMed Google Scholar
Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science313, 1137–1140 (2006). Describes the use of a chemical chaperone to reduce ER stress for treatment of type 2 diabetes in rodents. ArticleCASPubMedPubMed Central Google Scholar
Jeffrey, K. D. et al. Carboxypeptidase E mediates palmitate-induced β-cell ER stress and apoptosis. Proc. Natl Acad. Sci. USA105, 8452–8457 (2008). ArticlePubMedPubMed Central Google Scholar
Shuda, M. et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J. Hepatol.38, 605–614 (2003). ArticleCASPubMed Google Scholar
Fujimoto, T. et al. Upregulation and overexpression of human X-box binding protein 1 (hXBP-1) gene in primary breast cancers. Breast Cancer10, 301–306 (2003). ArticlePubMed Google Scholar
Jamora, C., Dennert, G. & Lee, A. S. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc. Natl Acad. Sci. USA93, 7690–7694 (1996). ArticleCASPubMedPubMed Central Google Scholar
Romero-Ramirez, L. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res.64, 5943–5947 (2004). ArticleCASPubMed Google Scholar
Bi, M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J.24, 3470–3481 (2005). ArticleCASPubMedPubMed Central Google Scholar
Park, H. R. et al. Effect on tumor cells of blocking survival response to glucose deprivation. J. Natl Cancer Inst.96, 1300–1310 (2004). ArticleCASPubMed Google Scholar
Lee, A. S. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res.67, 3496–3499 (2007). ArticleCASPubMed Google Scholar
Dent, P., Yacoub, A., Grant, S., Curiel, D. T. & Fisher, P. B. MDA-7/IL-24 regulates proliferation, invasion and tumor cell radiosensitivity: a new cancer therapy? J. Cell Biochem.95, 712–719 (2005). ArticleCASPubMed Google Scholar
Lee, A. H., Iwakoshi, N. N., Anderson, K. C. & Glimcher, L. H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl Acad. Sci. USA100, 9946–9951 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nawrocki, S. T. et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res.65, 11510–11519 (2005). ArticleCASPubMed Google Scholar
Nawrocki, S. T. et al. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res.65, 11658–11666 (2005). ArticleCASPubMed Google Scholar
Pyrko, P. et al. HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Res.67, 10920–10928 (2007). ArticleCASPubMed Google Scholar
Gills, J. J. et al. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin. Cancer Res.13, 5183–5194 (2007). ArticleCASPubMed Google Scholar
Phillips, L. R., Wolfe, T. L., Malspeis, L. & Supko, J. G. Analysis of brefeldin A and the prodrug breflate in plasma by gas chromatography with mass selective detection. J. Pharm. Biomed. Anal.16, 1301–1309 (1998). ArticleCASPubMed Google Scholar
Carew, J. S. et al. Targeting endoplasmic reticulum protein transport: a novel strategy to kill malignant B cells and overcome fludarabine resistance in CLL. Blood107, 222–231 (2006). ArticleCASPubMedPubMed Central Google Scholar
Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature412, 300–307 (2001). ArticleCASPubMed Google Scholar
Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nature Med.14, 748–755 (2008). ArticleCASPubMed Google Scholar
Iwakoshi, N. N., Pypaert, M. & Glimcher, L. H. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med.204, 2267–2275 (2007). ArticleCASPubMedPubMed Central Google Scholar
Paton, A. W. et al. AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature443, 548–552 (2006). ArticleCASPubMed Google Scholar
Nagaraju, K. et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum.52, 1824–1835 (2005). ArticleCASPubMed Google Scholar
Blass, S. et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum.44, 761–771 (2001). ArticleCASPubMed Google Scholar
Corrigall, V. M. et al. The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J. Immunol.166, 1492–1498 (2001). ArticleCASPubMed Google Scholar
Lin, W. et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J. Clin. Invest.117, 448–456 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ito, Y. et al. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol.21, 6233–6242 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bourdon, J. C., Renzing, J., Robertson, P. L., Fernandes, K. N. & Lane, D. P. Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane. J. Cell Biol.158, 235–246 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lotz, K., Pyrowolakis, G. & Jentsch, S. BRUCE, a giant E2/E3 ubiquitin ligase and inhibitor of apoptosis protein of the _trans_-Golgi network, is required for normal placenta development and mouse survival. Mol. Cell. Biol.24, 9339–9350 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hao, Y. et al. Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nature Cell Biol.6, 849–860 (2004). ArticleCASPubMed Google Scholar
Qiu, X. B. & Goldberg, A. L. The membrane-associated inhibitor of apoptosis protein, BRUCE/Apollon, antagonizes both the precursor and mature forms of Smac and caspase-9. J. Biol. Chem.280, 174–182 (2005). ArticleCASPubMed Google Scholar
Sekine, K. et al. HtrA2 cleaves Apollon and induces cell death by IAP-binding motif in Apollon-deficient cells. Biochem. Biophys. Res. Commun.330, 279–285 (2005). ArticleCASPubMed Google Scholar
Tenev, T., Zachariou, A., Wilson, R., Paul, A. & Meier, P. Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO J.21, 5118–5129 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kang, K. W., Lee, S. J. & Kim, S. G. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid. Redox Signal.7, 1664–1673 (2005). ArticleCASPubMed Google Scholar
Satoh, T. et al. Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic [correction of electrophillic] phase II inducers. Proc. Natl Acad. Sci. USA103, 768–773 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kraft, A. D., Johnson, D. A. & Johnson, J. A. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J. Neurosci.24, 1101–1112 (2004). ArticleCASPubMedPubMed Central Google Scholar
Shih, A. Y., Li, P. & Murphy, T. H. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J. Neurosci.25, 10321–10335 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dinkova-Kostova, A. T. et al. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc. Natl Acad. Sci. USA102, 4584–4589 (2005). ArticleCASPubMedPubMed Central Google Scholar
Satoh, T. et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S.-alkylation of targeted cysteines on Keap1. J. Neurochem.104, 1116–1131 (2008). ArticleCASPubMed Google Scholar
Lee, G. H. et al. Bax inhibitor-1 regulates endoplasmic reticulum stress-associated reactive oxygen species and heme oxygenase-1 expression. J. Biol. Chem.282, 21618–21628 (2007). ArticleCASPubMed Google Scholar
Szabadkai, G. et al. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol. Cell16, 59–68 (2004). ArticleCASPubMed Google Scholar
Lutter, M. et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nature Cell Biol.2, 754–756 (2000). ArticleCASPubMed Google Scholar
Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell111, 331–342 (2002). ArticleCASPubMed Google Scholar
Benhar, M., Forrester, M. T. & Stamler, J. S. Nitrosative stress in the ER: a new role for _S_-nitrosylation in neurodegenerative diseases. ACS Chem. Biol.1, 355–358 (2006). ArticleCASPubMed Google Scholar
Wood, D. E. et al. Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene17, 1069–1078 (1998). ArticleCASPubMed Google Scholar
Chen, M. et al. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J. Biol. Chem.276, 30724–30728 (2001). ArticleCASPubMed Google Scholar
Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biol.8, 1124–1132 (2006). ArticleCASPubMed Google Scholar
Bernardi, P. et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J.273, 2077–2099 (2006). ArticleCASPubMed Google Scholar
Wang, J. F., Bown, C. & Young, L. T. Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78. Mol. Pharmacol.55, 521–527 (1999). ArticleCASPubMed Google Scholar
Youn, H., Sun, L., Prywes, R. & Liu, J. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor Mef2. Science286, 790–793 (1999). ArticleCASPubMed Google Scholar
Liu, H., Peng, H. W., Cheng, Y. S., Yuan, H. S. & Yang-Yen, H. F. Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol. Cell. Biol.25, 3117–3126 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shohat, G., Shani, G., Eisenstein, M. & Kimchi, A. The DAP-kinase family of proteins: study of a novel group of calcium-regulated death-promoting kinases. Biochim. Biophys. Acta1600, 45–50 (2002). ArticleCASPubMed Google Scholar
Bialik, S. & Kimchi, A. DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death. Semin. Cancer Biol.14, 283–294 (2004). ArticleCASPubMed Google Scholar
Uchikawa, O., Sakai, N., Terao, Y. & Suzuki, H. Fused heterocyclic compound. WO2008016131 (2008).