Lymphoid neogenesis in chronic inflammatory diseases (original) (raw)
Söderström, N. & Biörklund, A. Organization of the invading lymphoid tissue in human lymphoid thyroiditis. Scand. J. Immunol.3, 295–301 (1974). Article Google Scholar
Levine, G. D. & Rosai, J. Thymic hyperplasia and neoplasia: a review of current concepts. Hum. Pathol.9, 495–515 (1978). ArticleCASPubMed Google Scholar
Prineas, J. W. Multiple sclerosis: Presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science103, 1123–1125 (1979). Article Google Scholar
Knecht, H., Saremaslani, P. & Hedinger, C. Immunohistological findings in Hashimoto's thyroiditis, focal lymphocytic thyroiditis and thyroiditis de Quervain. Virchows Arch.393, 251–231 (1981). Article Google Scholar
Thomas, J. A., Willcox, H. N. & Newsom-Davis, J. Immunohistological studies of the thymus in myasthenia gravis. Correlation with clinical state and thymocyte culture responses. J. Neuroimmunol.3, 319–335 (1982). ArticleCASPubMed Google Scholar
Young, C. L. & Adamson, T. C., Vaughan, J. H., Fox, R. I. Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum.27, 32–39 (1984). ArticleCASPubMed Google Scholar
Ruddle, N. Lymphoid neo-organogenesis: lymphotoxin's role in inflammation and development. Immunol. Res.19, 119–125 (1999). ArticleCASPubMed Google Scholar
Hjelmström, P. Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leukoc. Biol.69, 331–339 (2001). PubMed Google Scholar
Ansel, K. M. & Cyster, J. G. Chemokines in lymphopoiesis and lymphoid organ development. Curr. Opin. Immunol.13, 172–179 (2001). ArticleCASPubMed Google Scholar
Muller, G., Hopken, U. E. & Lipp, M. The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol. Rev.195, 117–135 (2003). ArticlePubMed Google Scholar
Mebius, R. E. Organogenesis of lymphoid tissues. Nature Rev. Immunol.3, 292–303 (2003). ArticleCAS Google Scholar
Nishikawa, S., Honda, K., Vieira, P. & Yoshida, H. Organogenesis of peripheral lymphoid organs. Immunol. Rev.195, 72–80 (2003). ArticleCASPubMed Google Scholar
Cupedo, T. & Mebius, R. E. Role of chemokines in the development of secondary and tertiary lymphoid tissue. Semin. Immunol.15, 243–248 (2003). ArticleCASPubMed Google Scholar
Magalhães, R., Stiehl, P., Morawietz, L. & Berek, C. Morphological and molecular pathology of the B cell response in synovitis of rheumatoid arthritis. Virchows Arch.441, 415–427 (2002). ArticlePubMedCAS Google Scholar
Armengol, M. P. et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am. J. Pathol.159, 861–873 (2001). This paper provides the first evidence of functionally competent germinal centres that produce pathogenic autoantibodies in the thyroid during autoimmune disease. ArticleCASPubMedPubMed Central Google Scholar
Salomonsson, S. et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjögren's syndrome. Arthritis Rheum.48, 3187–3201 (2003). ArticleCASPubMed Google Scholar
Manzo, A. et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur. J. Immunol.35, 1347–1359 (2005). ArticleCASPubMed Google Scholar
Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol.167, 1072–1080 (2001). ArticleCASPubMed Google Scholar
MacLennan, I. C. M. Germinal centers. Ann. Rev. Immunol.12, 117–139 (1994). ArticleCAS Google Scholar
Park, C. S. & Choi, Y. S. How do follicular dendritic cells interact intimately with B cells in the germinal center? Immunology114, 2–10 (2005). ArticleCASPubMedPubMed Central Google Scholar
Corcione, A. et al. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc. Natl Acad. Sci. USA101, 11064–11069 (2004). ArticleCASPubMedPubMed Central Google Scholar
Moser, B. & Eberl, L. Lymphocyte traffic control by chemokines: follicular B helper T cells. Immunol. Lett.22, 105–112 (2003). Article Google Scholar
Brandtzaeg, P. & Pabst R. Let's go mucosal: communication on slippery ground. Trends Immunol.25, 570–577 (2004). ArticleCASPubMed Google Scholar
von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph node. Nature Rev. Immunol.3, 867–878 (2003). ArticleCAS Google Scholar
Fu, Y. & Chaplin, D. D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol.17, 399–433 (1999). ArticleCASPubMed Google Scholar
Gommerman, J. L. & Browning, J. L. Lymphotoxin/LIGHT, lymphoid microenvironments and autoimmune disease. Nature Rev. Immunol.3, 642–655 (2003). ArticleCAS Google Scholar
Ware, C. F. Network communications: lymphotoxins, LIGHT and TNF. Annu. Rev. Immunol.23, 787–819 (2005). ArticleCASPubMed Google Scholar
Kratz, A., Campos-Neto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med.183, 1461–1472 (1996). This paper was the first to show that expression of LTα in a non-lymphoid tissue induces inflammation with lymphoid neogenesis. ArticleCASPubMed Google Scholar
Cuff C. A. et al. Lymphotoxin α3 induces chemokines and adhesion molecules: insight into the role of LTα in inflammation and lymphoid organ development. J. Immunol.161, 6853–6860 (1998). CASPubMed Google Scholar
Hjelmström, P. et al. Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am. J. Pathol.156, 1133–1138 (2000). ArticlePubMedPubMed Central Google Scholar
Drayton, D. L. et al. Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med.197, 1153–1163 (2003). ArticleCASPubMedPubMed Central Google Scholar
Schrama, D. et al. Targeting of lymphotoxin-α to the tumour elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity14, 111–121 (2001). This paper shows that delivery of LTα into an experimental tumour leads to the formation of ectopic lymphoid tissue, which sustains an antitumour immune response. ArticleCASPubMed Google Scholar
Kim, H. -J. et al. Establishment of early lymphoid infrastructure in transplanted tumours mediated by local production of lymphotoxin α in the combined absence of functional B and T cells. J. Immunol.172, 4037–4047 (2004). ArticleCASPubMed Google Scholar
Yu, P. et al. Priming of naive T cells inside tumours leads to eradication of established tumours. Nature Immunol.5, 141–149 (2004). ArticleCAS Google Scholar
Fan, L., Reilly, C. R., Luo, Y., Dorf, M. E. & Lo, D. Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J. Immunol.164, 3955–3959 (2000). ArticleCASPubMed Google Scholar
Chen, S. C. et al. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J. Immunol.168, 1001–1008 (2002). This study highlights the influence of tissue-specific microenvironments on the induction of lymphoid neogenesis. ArticleCASPubMed Google Scholar
Luther, S. A., Lopez, T., Bai, W., Hanahan, D. & Cyster, J. G. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity12, 471–481 (2000). This paper shows that ectopically expressed CXCL13 is sufficient to induce lymphoid neogenesis. ArticleCASPubMed Google Scholar
Luther, S. A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol.169, 424–433 (2002). ArticleCASPubMed Google Scholar
Martin, A. P. et al. A novel model for lymphocytic infiltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21. J. Immunol.173, 4791–4798 (2004). ArticleCASPubMed Google Scholar
Mazzucchelli, L. et al. BCA-1 is highly expressed in _Helicobacter pylori_-induced mucosa-associated lymphoid tissue and gastric lymphoma. J. Clin. Invest.104, R49–R54 (1999). This paper was the first to show that lymphoid chemokine expression is associated with lymphoid neogenesis in an infectious disease. ArticleCASPubMedPubMed Central Google Scholar
Shi, K. et al. Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J. Immunol.166, 650–655 (2001). ArticleCASPubMed Google Scholar
Grant, A. J. et al. Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am. J. Pathol.160, 1445–1455 (2002). ArticleCASPubMedPubMed Central Google Scholar
Armengol, M. P. et al. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J. Immunol.170, 6320–6328 (2003). ArticleCASPubMed Google Scholar
Aust, G. et al. The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases. Eur. J. Endocrinol.150, 225–234 (2004). ArticleCASPubMed Google Scholar
Page, G. & Miossec, P. Paired synovium and lymph nodes from rheumatoid arthritis patients differ in dendritic cell and chemokine expression. J. Pathol.204, 28–38 (2004). ArticleCASPubMed Google Scholar
Serafini, B., Rosicarelli, B., Magliozzi, R. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol.14, 164–174 (2004). This paper was the first to describe fully developed B-cell follicles in the meninges of patients with multiple sclerosis. ArticlePubMed Google Scholar
Faveeuw, C., Gagnerault, M. C. & Lepault, F. Expression of homing and adhesion molecules in infiltrated islets of Langerhans and salivary glands of nonobese diabetic mice. J. Immunol.152, 5969–5978 (1994). CASPubMed Google Scholar
Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med.193, 35–49 (2001). ArticleCASPubMedPubMed Central Google Scholar
Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Th1-biased tertiary lymphoid tissue supported by CXC chemokine ligand-13-producing stromal network in chronic lesions of autoimmune gastritis. J. Immunol.171, 4359–4368 (2003). ArticleCASPubMed Google Scholar
Shomer, N. H., Fox, J. G., Juedes, A. E. & Ruddle, N. H. _Helicobacter_-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue. Infect. Immun.71, 3572–3577 (2003). ArticleCASPubMedPubMed Central Google Scholar
Magliozzi, R., Columba-Cabezas, S., Serafini, B. & Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol.148, 11–23 (2004). ArticleCASPubMed Google Scholar
Bistrup, A. et al. Detection of a sulfontranserase (HEC-GlcNac6ST) in high endothelial venules of lymph nodes and in high endothelial venule-like vessels within ectopic lymphoid aggregates: relationship to the MECA-79 epitope. Am. J. Pathol.164, 1635–1644 (2004). ArticleCASPubMedPubMed Central Google Scholar
Carlsen, H. S., Baekkevold, E. S., Johansen, F. -E., Haraldsen, G. & Brandtzaeg, P. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut51, 364–371 (2002). ArticleCASPubMedPubMed Central Google Scholar
Carlsen, H. S., Baekkevold, E. S., Morton, H. C., Haraldsen, G. & Brandtzaeg, P. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood104, 3021–3027 (2004). ArticleCASPubMed Google Scholar
Amft, N. et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjogren's syndrome. Arthritis Rheum.44, 2633–2641 (2001). ArticleCASPubMed Google Scholar
Grant, A. J., Lalor, P., Hubscher, S. G., Briskin, M. & Adams, D. H. MAdCAM-1 expression is increased in primary sclerosing cholangitis and supports lymphocyte adhesion to hepatic endothelium: a mechanism to explain the recruitment of mucosal lymphocytes to the liver in inflammatory liver disease. Hepatology33, 1065–1073 (2001). ArticleCASPubMed Google Scholar
Kobayashi, M. et al. Induction of peripheral lymph node addressin in human gastric mucosa infected by Helicobacter pylori. Proc. Natl Acad. Sci. USA101, 17807–17812 (2004). ArticleCASPubMedPubMed Central Google Scholar
Barone, F. et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjogren's syndrome. Arthritis Rheum.52, 1773–1784 (2005). ArticleCASPubMed Google Scholar
Wyatt, J. I. & Rathbone, B. J. Immune response of the gastric mucosa to Campylobacter pylori. Scand. J. Gastroenterol. Suppl.142, 44–49 (1988). ArticleCASPubMed Google Scholar
Schröder, A. E., Greiner, A., Seyfert, C. & Berek, C. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc. Natl Acad. Sci. USA93, 221–225 (1996). This study provides the first evidence for antigen-driven B-cell responses in an autoimmune lesion. ArticlePubMedPubMed Central Google Scholar
Sims, G. P., Shiono, H., Willcox, N. & Stott, D. I. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J. Immunol.167, 1935–1944 (2001). ArticleCASPubMed Google Scholar
Camacho, S. A., Kosco-Vilbois, M. H. & Berek, C. The dynamic structure of the germinal center. Immunol. Today19, 511–514 (1998). ArticleCASPubMed Google Scholar
Genta, R. M., Hammer, H. W. & Graham, D. Y. Gastric lymphoid follicles in Helicobacter pylori infection: frequency, distribution, and response to triple therapy. Hum. Pathol.24, 577–583 (1993). ArticleCASPubMed Google Scholar
Kang, Y. M. et al. CD8 T cells are required for the formation of ectopic germinal centers in rheumatoid synovitis. J. Exp. Med.195, 1325–1336 (2002). This paper highlights the importance of B-cell–T-cell interactions in the induction of ectopic germinal centres. ArticleCASPubMedPubMed Central Google Scholar
Cupedo T., Jansen, W., Krall, G. & Mebius, R. E. Induction of secondary and tertiary lymphoid structures in the skin. Immunity21, 655–667 (2004). This study provides evidence that immune activation is required for complete organization of ectopic lymphoid tissue. ArticleCASPubMed Google Scholar
Ludewig, B., Odermatt, B., Landmann, S., Hentgartner, H. & Zinkernagel, R. M. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med.188, 1493–1501 (1998). ArticleCASPubMedPubMed Central Google Scholar
Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nature Med.10, 927–934 (2004). This study shows that an infectious challenge can induce lymphoid neogenesis in LTα-deficient mice, which lack SLOs. ArticleCASPubMed Google Scholar
Perrier, P. et al. Distinct transcriptional programs activated by interleukin-10 with or without lipopolysaccharide in dendritic cells: induction of the B cell-activating chemokine, CXC chemokine ligand 13. J. Immunol.172, 7031–7042 (2004). ArticleCASPubMed Google Scholar
Christopherson, K. W., Hood, A. F., Travers, J. B., Ramsey, H. & Hromas, R. A. Endothelial induction of the T-cell chemokine CCL21 in T-cell autoimmune diseases. Blood101, 801–806 (2003). ArticleCASPubMed Google Scholar
Weninger, W. et al. Naive T cell recruitment to nonlymphoid tissues: a role for endothelium-expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis. J. Immunol.170, 4638–4648 (2003). ArticleCASPubMed Google Scholar
Chen, S. C. et al. Central nervous system inflammation and neurological disease in transgenic mice expressing the CC chemokine CCL21 in oligodendrocytes. J. Immunol.168, 1009–1017 (2002). ArticleCASPubMed Google Scholar
Burman A. et al. A chemokine-dependent stromal induction mechanism for aberrant lymphocyte accumulation and compromised lymphatic return in rheumatoid arthritis. J. Immunol.174, 1693–1700 (2005). ArticleCASPubMed Google Scholar
Carlsen, H. S., Haraldsen, G., Brandtzaeg, P. & Baekkevold, E. S. Disparate lymphoid chemokine expression in mice and men: no evidence of CCL21 synthesis by human high endothelial venules. Blood106, 444–446 (2005). ArticleCASPubMed Google Scholar
Lindhout, E. et al. Fibroblast-like synoviocytes from rheumatoid arthritis patients have intrinsic properties of follicular dendritic cells. J. Immunol.162, 5949–5956 (1999). CASPubMed Google Scholar
Ambrosini, E. et al. Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol.64, 706–715 (2005). ArticleCASPubMed Google Scholar
Bofill, M. et al. Microenvironments in the normal thymus and the thymus in myasthenia gravis. Am. J. Pathol.119, 462–473 (1985). CASPubMedPubMed Central Google Scholar
Roxanis, I., Micklem, K., McConville, J., Newsom-Davis, J. & Willcox, N. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J. Neuroimmunol.125, 185–197 (2002). ArticleCASPubMed Google Scholar
Randen, I., Mellbye, O. J., Forre, O. & Natvig, J. B. The identification of germinal centers and follicular dendritic cell networks in rheumatoid synovial tissue. Scand. J. Immunol.41, 481–486 (1995). ArticleCASPubMed Google Scholar
Aziz, K. E., McCluskey, P. J. & Wakefield, D. Characterization of follicular dendritic cells in labial salivary glands of patients with primary Sjögren's syndrome: comparison with tonsillar lymphoid follicles. Ann. Rheum. Dis.56, 140–143 (1997). ArticleCASPubMedPubMed Central Google Scholar
Uccelli, A., Aloisi, F. & Pistoia, V. Unveiling the enigma of the CNS as a B-cell fostering environment. Trends Immunol.26, 254–259 (2005). ArticleCASPubMed Google Scholar
Campbell, D. A., Poulter, L. W., Janossy, G. & du Bois, R. M. Immunohistological analysis of lung tissue from patients with cryptogenic fibrosing alveolitis suggesting local expression of immune hypersensitivity. Thorax40, 405–411 (1985). ArticleCASPubMedPubMed Central Google Scholar
Wallace, W. The immunological architecture of B-lymphocyte aggregates in cryptogenic fibrosing alveolitis. J. Pathol.178, 323–329 (1996). ArticleCASPubMed Google Scholar
Stott, D. I., Hiepe, F., Hummel, M., Steinhauser, G. & Berek, C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjogren's sindrome. J. Clin. Invest.102, 938–946 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kim, H. -J., Krenn, V., Steinhauser, G. & Berek, C. Plasma cell development in synovial germinal centers in patients with rheumatoid and reactive arthritis. J. Immunol.162, 3053–3062 (1999). CASPubMed Google Scholar
Qin, Y. et al. Clonal expansion and somatic hypermutation of VH genes of B cells from cerebrospinal fluid in multiple sclerosis. J. Clin. Invest.102, 1045–1050 (1998). ArticleCASPubMedPubMed Central Google Scholar
Itoh, K et al. Immunoglobulin heavy chain variable region gene replacement as a mechanism for receptor revision in rheumatoid arthritis synovial tissue B lymphocytes. J. Exp. Med.192, 1151–1164 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Z., Wu, X., Limbaugh, B. H. & Bridges, S. L. Jr Expression of recombination-activating genes and terminal deoxynucleotidyl transferase and secondary rearrangement of immunoglobulin κ light chains in rheumatoid arthritis synovial tissue. Arthritis Rheum.44, 2275–2284 (2001). This study shows that B-cell-receptor revision occurs in an autoimmune lesion, which indicates that there is a risk of generating new autoreactive B cells. ArticleCASPubMed Google Scholar
Szodoray P., Jellestad, P., Teague, M. & Jonsson, R. Attenuated apoptosis of B cell activating factor-expressing cells in primary Sjogren's syndrome. Lab. Invest.83, 357–365 (2003). ArticleCASPubMed Google Scholar
Ohata, J. et al. Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J. Immunol.174, 864–870 (2005). ArticleCASPubMed Google Scholar
Krumbholz, M. et al. BAFF is produced by astrocytes and upregulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med.201, 195–200 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shiono, H. et al. Failure to downregulate Bcl-2 protein in thymic germinal center B cells in myasthenia gravis. Eur. J. Immunol.27, 805–809 (1997). ArticleCASPubMed Google Scholar
Takemura, S., Klimiuk, P. A., Braun, A., Goronzy, J. J. & Weyand, C. M. T cell activation in rheumatoid synovium is B cell dependent. J. Immunol.167, 4710–4718 (2001). ArticleCASPubMed Google Scholar
Holmoy, T. et al. Cerebrospinal fluid T cell clones from patients with multiple sclerosis: recognition of idiotopes on monoclonal IgG secreted by autologous cerebrospinal fluid B cells. Eur. J. Immunol.35, 1786–1794 (2005). ArticleCASPubMed Google Scholar
McMahon, E. J., Bailey, S. L., Vanderlugt Castenada, C., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med.11, 335–349 (2005). ArticleCASPubMed Google Scholar
Stolte, M. & Eidt, S. Lymphoid follicles in antral mucosa: immune response to Campylobacter pylori?J. Clin. Pathol.42, 1269–1271 (1989). ArticleCASPubMedPubMed Central Google Scholar
Mosnier, J. F. et al. The intraportal lymphoid nodule and its environment in chronic active hepatitis C: an immunohistochemical study. Hepatology17, 366–371 (1993). ArticleCASPubMed Google Scholar
Murakami, J. et al. Functional B-cell response in intrahepatic lymphoid follicles in chronic hepatitis C. Hepatology30, 143–150 (1999). ArticleCASPubMed Google Scholar
Sansonno, D. et al. Intrahepatic B cell clonal expansions and extrahepatic manifestations of chronic HCV infection. Eur. J. Immunol.34, 126–136 (2004). ArticleCASPubMed Google Scholar
Matsumoto, M. et al. Hepatitis C virus core protein interacts with the cytoplasmic tail of lymphotoxin-β receptor. J. Virol.71, 1301–1309 (1997). ArticleCASPubMedPubMed Central Google Scholar
Steere, A. C., Duray, P. H. & Butcher, E. C. Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Arthritis Rheum.31, 487–495 (1988). ArticleCASPubMed Google Scholar
Ghosh, S., Steere, A. C., Stollar, B. D. & Huber, B. T. In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J. Immunol.174, 2860–2869 (2005). ArticleCASPubMed Google Scholar
Slavin, R. G. et al. Localization of IgE to lung germinal lymphoid follicles in a patient with allergic bronchopulmonary aspergillosis. J. Allergy Clin. Immunol.90, 1006–1008 (1992). ArticleCASPubMed Google Scholar
Chvatchko, Y., Kosco-Vilbois, M. H., Herren, S., Lefort, J. & Bonnefoy, J. -Y. Germinal center formation and local immunoglobulin E (IgE) production in the lung after an airway antigenic challenge. J. Exp. Med.184, 2353–2360 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ramshaw, A. L. & Parums, D. V. Immunohistochemical characterization of inflammatory cells associated with advanced atherosclerosis. Histopathology17, 543–552 (1990). ArticleCASPubMed Google Scholar
Houtkamp, M. A. et al. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol.193, 263–269 (2001). ArticleCASPubMed Google Scholar
Coronella, J. A. et al. Antigen-driven oligoclonal expansion of tumour-infiltrating B cells in infiltrating ductal carcinoma of the breast. J. Immunol.169, 1829–1836 (2002). ArticleCASPubMed Google Scholar
Nzula, S., Going, J. J. & Stott, D. I. Antigen-driven clonal proliferation, somatic hypermutation, and selection of B lymphocytes infiltrating human ductal breast carcinoma. Cancer Res.63, 3275–3280 (2003). CASPubMed Google Scholar
Baddoura, F. K. et al. Lymphoid neogenesis in murine cardiac allografts undergoing chronic rejection. Am. J. Transplant.5, 510–516 (2005). ArticlePubMed Google Scholar
Zinkernagel, R. M. Localization dose and time of antigen determine immune reactivity. Semin. Immunol.12, 163–171 (2000). ArticleCASPubMed Google Scholar
Von Herrath, M. G., Fujinami, R. S. & Whitton, J. L. Microorganisms and autoimmunity: making the barren field fertile? Nature Rev. Microbiol.1, 151–157 (2003). ArticleCAS Google Scholar
Mattsson, A., Lönroth, H., Quiding-Järbrink, M. & Svennerholm, A. M. Induction of B cell responses in the stomach of _Helicobacter pylori_-infected subjects after oral cholera vaccination. J. Clin. Invest.102, 51–56 (1998). ArticleCASPubMedPubMed Central Google Scholar
Buljevac, D. et al. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain125, 952–960 (2002). ArticleCASPubMed Google Scholar
Wu, Q. et al. Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J. Exp. Med.193, 1327–1332 (2001). This paper shows that treatment of NOD mice with an inhibitor of the lymphotoxin pathway reverses insulitis and causes disruption of pancreatic lymphoid aggregates. ArticleCASPubMedPubMed Central Google Scholar
Zheng, B. et al. CXCL13 neutralization reduces the severity of collagen-induced arthritis. Arthritis Rheum.52, 620–626 (2005). ArticleCASPubMed Google Scholar
Gross, J. A. et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease: impaired B cell maturation in mice lacking BLyS. Immunity15, 289–302 (2001). ArticleCASPubMed Google Scholar
Gommerman, J. L. et al. Manipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway. J. Clin. Invest.110, 1359–1369 (2002). ArticleCASPubMedPubMed Central Google Scholar
Monson, N. L. et al. Effect of Rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch. Neurol.62, 258–264 (2005). ArticlePubMed Google Scholar
Saccardi R. et al. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood105, 2601–2607 (2005). ArticleCASPubMed Google Scholar
Vissers, J. L. M., Hartgers, F. C., Lindhout, E., Figdor, C. G. & Adema, G. J. BLC (CXCL13) is expressed by different dendritic cell subsets in vitro and in vivo. Eur. J. Immunol.31, 1544–1549 (2001). ArticleCASPubMed Google Scholar
Surawicz, C. M. & Belic L. Rectal biopsy helps to distinguish acute self-limiting colitis from idiopathic inflammatory bowel disease. Gastroenterology86, 104–113 (1984). ArticleCASPubMed Google Scholar
Kaiserling, E. Newly formed lymph nodes in the submucosa in chronic inflammatory bowel disease. Lymphology34, 22–29 (2001). CASPubMed Google Scholar
Mooij, P., de Wit, H. J. & Drexhage, H. A. An excess of dietary iodine accelerates the development of a thyroid-associated lymphoid tissue in autoimmune prone BB rats. Clin. Immunol. Immunopathol.69, 189–198 (1993). ArticleCASPubMed Google Scholar
Oshima, C. et al. Induction of follicular gastritis following postthymectomy autoimmune gastritis in _Helicobacter-pylori_-infected BALB/c mice. Infect. Immun.68, 100–106 (2000). ArticleCASPubMedPubMed Central Google Scholar