Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). ArticleCASPubMed Google Scholar
Selkoe, D. J. Alzheimer's disease: a central role for amyloid. J. Neuropathol. Exp. Neurol.53, 438–447 (1994). This article explains the amyloid hypothesis in Alzheimer's disease. ArticleCASPubMed Google Scholar
Gouras, G. K., Almeida, C. G. & Takahashi, R. H. Intraneuronal Aβ accumulation and origin of plaques in Alzheimer's disease. Neurobiol. Aging26, 1235–1244 (2005). ArticleCASPubMed Google Scholar
Turner, P. R., O'Connor, K., Tate, W. P. & Abraham, W. C. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol.70, 1–32 (2003). ArticleCASPubMed Google Scholar
Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature373, 523–527 (1995). ArticleCASPubMed Google Scholar
Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science274, 99–102 (1996). This article shows a correlation between amyloid-β load and cognitive memory deficits inAPP-transgenic mice. ArticleCASPubMed Google Scholar
Routtenberg, A. Measuring memory in a mouse model of Alzheimer's disease. Science277, 839–841 (1997). ArticleCASPubMed Google Scholar
Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl Acad. Sci. USA94, 13287–13292 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bronfman, F. C., Moechars, D. & Van Leuven, F. Acetylcholinesterase-positive fiber deafferentation and cell shrinkage in the septohippocampal pathway of aged amyloid precursor protein London mutant transgenic mice. Neurobiol. Dis.7, 152–168 (2000). ArticleCASPubMed Google Scholar
Dewachter, I. et al. Modeling Alzheimer's disease in transgenic mice: effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Exp. Gerontol.35, 831–841 (2000). ArticleCASPubMed Google Scholar
Kuo, Y. M. et al. Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer's disease brains. J. Biol. Chem.276, 12991–12998 (2001). ArticleCASPubMed Google Scholar
Morgan, D. et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature408, 982–985 (2000). ArticleCASPubMed Google Scholar
Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature408, 979–982 (2000). ArticleCASPubMed Google Scholar
McGeer, P. L. & McGeer, E. G. Inflammation, autotoxicity and Alzheimer disease. Neurobiol. Aging22, 799–809 (2001). This article describes the innate immune response in Alzheimer's disease. ArticleCASPubMed Google Scholar
Togo, T. et al. Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases. J. Neuroimmunol.124, 83–92 (2002). ArticleCASPubMed Google Scholar
McGeer, E. G. & McGeer, P. L. Innate immunity in Alzheimer's disease: a model for local inflammatory reactions. Mol. Interv.1, 22–29 (2001). References 18 and 19 show that lowering amyloid-β by anti-amyloid therapy improves cognitive behaviour inAPP-transgenic mice. CASPubMed Google Scholar
Webster, S. & Rogers, J. Relative efficacies of amyloid β peptide (Aβ) binding proteins in Aβ aggregation. J. Neurosci. Res.46, 58–66 (1996). ArticleCASPubMed Google Scholar
McGreal, E. & Gasque, P. Structure-function studies of the receptors for complement C1q. Biochem. Soc. Trans.30, 1010–1014 (2002). ArticleCASPubMed Google Scholar
Hafer-Macko, C. E., Dyck, P. J. & Koski, C. L. Complement activation in acquired and hereditary amyloid neuropathy. J. Peripher. Nerv. Syst.5, 131–139 (2000). ArticleCASPubMed Google Scholar
Webster, S. D. et al. Antibody-mediated phagocytosis of the amyloid β-peptide in microglia is differentially modulated by C1q. J. Immunol.166, 7496–7503 (2001). ArticleCASPubMed Google Scholar
El Khoury, J. et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature382, 716–719 (1996). A description of the importance of scavenger receptors on microglial cells for amyloid uptake. ArticleCASPubMed Google Scholar
Minghetti, L. Role of inflammation in neurodegenerative diseases. Curr. Opin. Neurol.18, 315–321 (2005). ArticleCASPubMed Google Scholar
Bianca, V. D., Dusi, S., Bianchini, E., Dal Pra, I. & Rossi, F. β-amyloid activates the O2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease. J. Biol. Chem.274, 15493–15499 (1999). ArticleCASPubMed Google Scholar
Weldon, D. T. et al. Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J. Neurosci.18, 2161–2173 (1998). ArticleCASPubMedPubMed Central Google Scholar
McGeer, E. G. & McGeer, P. L. The importance of inflammatory mechanisms in Alzheimer disease. Exp. Gerontol.33, 371–378 (1998). ArticleCASPubMed Google Scholar
Van Muiswinkel, F. L. et al. The amino-terminus of the amyloid-β protein is critical for the cellular binding and consequent activation of the respiratory burst of human macrophages. J. Neuroimmunol.96, 121–130 (1999). ArticleCASPubMed Google Scholar
Ishii, K. et al. Subacute NO generation induced by Alzheimer's β-amyloid in the living brain: reversal by inhibition of the inducible NO synthase. FASEB J.14, 1485–1489 (2000). CASPubMed Google Scholar
Heneka, M. T. et al. Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumour necrosis factor-α/lipopolysaccharide. J. Neurochem.71, 88–94 (1998). ArticleCASPubMed Google Scholar
Combs, C. K., Karlo, J. C., Kao, S. C. & Landreth, G. E. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci.21, 1179–1188 (2001). ArticleCASPubMedPubMed Central Google Scholar
Butovsky, O., Talpalar, A. E., Ben-Yaakov, K. & Schwartz, M. Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol. Cell. Neurosci.29, 381–393 (2005). ArticleCASPubMed Google Scholar
Streit, W. J. Microglia and Alzheimer's disease pathogenesis. J. Neurosci. Res.77, 1–8 (2004). ArticleCASPubMed Google Scholar
Nicoll, J. A. et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nature Med.9, 448–452 (2003). A case report of neuropathology in a patient who developed meningoencephalitis following immunization with amyloid-β peptide. ArticleCASPubMed Google Scholar
Akiyama, H. & McGeer, P. L. Specificity of mechanisms for plaque removal after Aβ immunotherapy for Alzheimer disease. Nature Med.10, 117–119 (2004). ArticleCASPubMed Google Scholar
Weiner, H. L. & Selkoe, D. J. Inflammation and therapeutic vaccination in CNS diseases. Nature420, 879–884 (2002). ArticleCASPubMed Google Scholar
Monsonego, A. & Weiner, H. L. Immunotherapeutic approaches to Alzheimer's disease. Science302, 834–838 (2003). ArticleCASPubMed Google Scholar
Meda, L., Baron, P. & Scarlato, G. Glial activation in Alzheimer's disease: the role of Aβ and its associated proteins. Neurobiol. Aging22, 885–893 (2001). ArticleCASPubMed Google Scholar
Bamberger, M. E. & Landreth, G. E. Microglial interaction with β-amyloid: implications for the pathogenesis of Alzheimer's disease. Microsc. Res. Tech.54, 59–70 (2001). ArticleCASPubMed Google Scholar
Kitazawa, M., Yamasaki, T. R. & Laferla, F. M. Microglia as a potential bridge between the amyloid β-peptide and Tau. Ann. N.Y. Acad. Sci.1035, 85–103 (2004). ArticleCASPubMed Google Scholar
DeWitt, D. A., Perry, G., Cohen, M., Doller, C. & Silver, J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer's disease. Exp. Neurol.149, 329–340 (1998). ArticleCASPubMed Google Scholar
Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nature Med.9, 453–457 (2003). ArticleCASPubMed Google Scholar
Koistinaho, M. et al. Apolipoprotein E promotes astrocyte co-localization and degradation of deposited amyloid-β peptides. Nature Med.10, 719–726 (2004). ArticleCASPubMed Google Scholar
Dolev, I. & Michaelson, D. M. A nontransgenic mouse model shows inducible amyloid-β (Aβ) peptide deposition and elucidates the role of apolipoprotein E in the amyloid cascade. Proc. Natl Acad. Sci. USA101, 13909–13914 (2004). ArticleCASPubMedPubMed Central Google Scholar
McGeer, P. L., Schulzer, M. & McGeer, E. G. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology47, 425–432 (1996). ArticleCASPubMed Google Scholar
Myriad. Molecule of the month. MPC-7869 (Flurizan). Drug News Perspect. 18, 141 (2005).
Yasojima, K., Schwab, C., McGeer, E. G. & McGeer, P. L. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res.830, 226–236 (1999). ArticleCASPubMed Google Scholar
Xiang, Z. et al. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology. Gene Expr.10, 271–278 (2002). ArticleCASPubMed Google Scholar
Nogawa, S., Zhang, F., Ross, M. E. & Iadecola, C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J. Neurosci.17, 2746–2755 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hoozemans, J. J., Veerhuis, R., Rozemuller, A. J. & Eikelenboom, P. Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer's disease. Curr. Drug Targets4, 461–468 (2003). ArticleCASPubMed Google Scholar
Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature414, 212–216 (2001). A description of lowering of amyloid load inAPP-transgenic mice by NSAIDs that is independent of their anti-inflammatory activity. ArticleCASPubMed Google Scholar
Takahashi, Y. et al. Sulindac sulfide is a noncompetitive γ-secretase inhibitor that preferentially reduces Aβ42 generation. J. Biol. Chem.278, 18664–18670 (2003). ArticleCASPubMed Google Scholar
Reid, G. et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc. Natl Acad. Sci. USA100, 9244–9249 (2003). ArticleCASPubMedPubMed Central Google Scholar
Warner, T. D. & Mitchell, J. A. Nonsteroidal antiinflammatory drugs inhibiting prostanoid efflux: as easy as ABC? Proc. Natl Acad. Sci. USA100, 9108–9110 (2003). ArticleCASPubMedPubMed Central Google Scholar
Xu, H., Sweeney, D., Greengard, P. & Gandy, S. Metabolism of Alzheimer β-amyloid precursor protein: regulation by protein kinase A in intact cells and in a cell-free system. Proc. Natl Acad. Sci. USA93, 4081–4084 (1996). ArticleCASPubMedPubMed Central Google Scholar
Marambaud, P., Ancolio, K., Lopez-Perez, E. & Checler, F. Proteasome inhibitors prevent the degradation of familial Alzheimer's disease-linked presenilin 1 and potentiate Aβ42 recovery from human cells. Mol. Med.4, 147–157 (1998). ArticleCASPubMedPubMed Central Google Scholar
Aisen, P. S. et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA289, 2819–2826 (2003). ArticleCASPubMed Google Scholar
Jantzen, P. T. et al. Microglial activation and β-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J. Neurosci.22, 2246–2254 (2002). ArticleCASPubMedPubMed Central Google Scholar
Solomon, B., Koppel, R., Hanan, E. & Katzav, T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl Acad. Sci. USA93, 452–455 (1996). ArticleCASPubMedPubMed Central Google Scholar
Solomon, B., Koppel, R., Frenkel, D. & Hanan-Aharon, E. Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc. Natl Acad. Sci. USA94, 4109–4112 (1997). A demonstration that antibody can reduce amyloid-β fibril formationin vitro. ArticleCASPubMedPubMed Central Google Scholar
Frenkel, D., Balass, M. & Solomon, B. N-terminal EFRH sequence of Alzheimer's β-amyloid peptide represents the epitope of its anti-aggregating antibodies. J. Neuroimmunol.88, 85–90 (1998). ArticleCASPubMed Google Scholar
Frenkel, D., Balass, M., Katchalski-Katzir, E. & Solomon, B. High affinity binding of monoclonal antibodies to the sequential epitope EFRH of β-amyloid peptide is essential for modulation of fibrillar aggregation. J. Neuroimmunol.95, 136–142 (1999). ArticleCASPubMed Google Scholar
Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400, 173–177 (1999). A demonstration that immunization ofAPP-transgenic mice with amyloid-β clears amyloid. ArticleCASPubMed Google Scholar
Weiner, H. L. et al. Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. Ann. Neurol.48, 567–579 (2000). Mucosal amyloid immunization reduces amyloid plaquesin vivo. ArticleCASPubMed Google Scholar
Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med.6, 916–919 (2000). Passive administration of amyloid-β-specific antibody can clear amyloid plaquesin vivo. ArticleCASPubMed Google Scholar
Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nature Neurosci.5, 452–457 (2002). ArticleCASPubMed Google Scholar
DeMattos, R. B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA98, 8850–8855 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sigurdsson, E. M., Scholtzova, H., Mehta, P. D., Frangione, B. & Wisniewski, T. Immunization with a nontoxic/nonfibrillar amyloid-β homologous peptide reduces Alzheimer's disease-associated pathology in transgenic mice. Am. J. Pathol.159, 439–447 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vehmas, A. K. et al. β-amyloid peptide vaccination results in marked changes in serum and brain Aβ levels in APPswe/PS1ΔE9 mice, as detected by SELDI-TOF-based ProteinChip technology. DNA Cell Biol.20, 713–721 (2001). ArticleCASPubMed Google Scholar
Li, Q. et al. Overcoming antigen masking of anti-amyloid-β antibodies reveals breaking of B cell tolerance by virus-like particles in amyloid-β immunized amyloid precursor protein transgenic mice. BMC Neurosci.5, 21 (2004). ArticleCASPubMedPubMed Central Google Scholar
Das, P. et al. Amyloid-β immunization effectively reduces amyloid deposition in FcRγ−/− knock-out mice. J. Neurosci.23, 8532–8538 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. et al. A novel recombinant adeno-associated virus vaccine reduces behavioural impairment and β-amyloid plaques in a mouse model of Alzheimer's disease. Neurobiol. Dis.14, 365–379 (2003). ArticleCASPubMed Google Scholar
Lemere C. A. et al. Evidence for peripheral clearance of cerebral Aβ protein following chronic, active Aβ immunization in PSAPP mice. Neurobiol. Dis.14, 10–18 (2003). ArticleCASPubMed Google Scholar
Schiltz, J. G. et al. Antibodies from a DNA peptide vaccination decrease the brain amyloid burden in a mouse model of Alzheimer's disease. J. Mol. Med.82, 706–714 (2004). ArticlePubMedCAS Google Scholar
Hara, H. et al. Development of a safe oral Aβ vaccine using recombinant adeno-associated virus vector for Alzheimer's disease. J. Alzheimers Dis.6, 483–488 (2004). ArticleCASPubMed Google Scholar
Frenkel, D., Katz, O. & Solomon, B. Immunization against Alzheimer's β-amyloid plaques via EFRH phage administration. Proc. Natl Acad. Sci. USA97, 11455–11459 (2000). ArticleCASPubMedPubMed Central Google Scholar
Frenkel, D., Dewachter, I., Van Leuven, F. & Solomon, B. Reduction of β-amyloid plaques in brain of transgenic mouse model of Alzheimer's disease by EFRH-phage immunization. Vaccine21, 1060–1065 (2003). ArticleCASPubMed Google Scholar
Lavie, V. et al. EFRH-phage immunization of Alzheimer's disease animal model improves behavioural performance in Morris water maze trials. J. Mol. Neurosci.24, 105–113 (2004). ArticleCASPubMed Google Scholar
Lee, E. B. et al. Targeting Aβ oligomers by passive immunization with a conformation selective monoclonal antibody improves learning and memory in APP transgenic mice. J. Biol. Chem.281, 4292–4299 (2005). ArticlePubMedCAS Google Scholar
Levites, Y. et al. Anti-Aβ42- and anti-Aβ40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J. Clin. Invest.116, 193–201 (2006). ArticleCASPubMed Google Scholar
McLaurin, J. et al. Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nature Med.8, 1263–1269 (2002). ArticleCASPubMed Google Scholar
Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron43, 321–332 (2004). ArticleCASPubMed Google Scholar
Morgan, D. & Gitter, B. D. Evidence supporting a role for anti-Aβ antibodies in the treatment of Alzheimer's disease. Neurobiol. Aging25, 605–608 (2004). ArticleCASPubMed Google Scholar
Klyubin, I. et al. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nature Med.11, 556–561 (2005). ArticleCASPubMed Google Scholar
Wilcock, D. M. et al. Microglial activation facilitates Aβ plaque removal following intracranial anti-Aβ antibody administration. Neurobiol. Dis.15, 11–20 (2004). ArticleCASPubMed Google Scholar
Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology64, 1553–1562 (2005). Clinical and pathological effects following amyloid-β immunization of humans are described. ArticleCASPubMed Google Scholar
Bayer, A. J. et al. Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology64, 94–101 (2005). ArticleCASPubMed Google Scholar
Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology61, 46–54 (2003). ArticleCASPubMed Google Scholar
Hock, C. et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron38, 547–554 (2003). Cognitive improvement in patients with Alzheimer's disease with high amyloid-β-specific antibody titres following amyloid-β immunization. ArticleCASPubMed Google Scholar
Fox, N. C. et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology64, 1563–1572 (2005). ArticleCASPubMed Google Scholar
Ferrer, I., Boada Rovira, M., Sanchez Guerra, M. L., Rey, M. J. & Costa-Jussa, F. Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease. Brain Pathol.14, 11–20 (2004). ArticleCASPubMed Google Scholar
Masliah, E. et al. Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology64, 129–131 (2005). ArticleCASPubMed Google Scholar
Monsonego, A. et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest.112, 415–422 (2003). Elderly subjects and Alzheimer's disease patients have increased T-cell responses to amyloid-β in peripheral blood. ArticleCASPubMedPubMed Central Google Scholar
O'Toole, M. et al. Risk factors associated with β-amyloid1–42 immunotherapy in preimmunization gene expression patterns of blood cells. Arch. Neurol.62, 1531–1536 (2005). ArticlePubMed Google Scholar
Schenk, D., Hagen, M. & Seubert, P. Current progress in β-amyloid immunotherapy. Curr. Opin. Immunol.16, 599–606 (2004). ArticleCASPubMed Google Scholar
Pfeifer, M. et al. Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science298, 1379 (2002). ArticleCASPubMed Google Scholar
DiCarlo, G., Wilcock, D., Henderson, D., Gordon, M. & Morgan, D. Intrahippocampal LPS injections reduce Aβ load in APP+PS1 transgenic mice. Neurobiol. Aging22, 1007–1012 (2001). ArticleCASPubMed Google Scholar
Wyss-Coray, T. et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc. Natl Acad. Sci. USA99, 10837–10842 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wilcock, D. M. et al. Intracranially administered anti-Aβ antibodies reduce β-amyloid deposition by mechanisms both independent of and associated with microglial activation. J. Neurosci.23, 3745–37451 (2003). ArticleCASPubMedPubMed Central Google Scholar
Frenkel, D., Maron, R., Burt, D. S. & Weiner, H. L. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears β-amyloid in a mouse model of Alzheimer disease. J. Clin. Invest.115, 2423–2433 (2005). Antibody-independent reduction of amyloid inAPP-transgenic mice following microglial-cell activation by myelin antigens and glatiramer acetate. ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, Y. et al. Brain trauma in aged transgenic mice induces regression of established Aβ deposits. Exp. Neurol.163, 244–252 (2000). ArticleCASPubMed Google Scholar
Wyss-Coray, T. et al. TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nature Med.7, 612–618 (2001). ArticleCASPubMed Google Scholar
Rogers, J., Strohmeyer, R., Kovelowski, C. J. & Li, R. Microglia and inflammatory mechanisms in the clearance of amyloid β peptide. Glia40, 260–269 (2002). ArticlePubMed Google Scholar
Bacskai, B. J. et al. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nature Med.7, 369–372 (2001). ArticleCASPubMed Google Scholar
Mitrasinovic, O. M. & Murphy, G. M. Jr. Microglial overexpression of the M-CSF receptor augments phagocytosis of opsonized Aβ. Neurobiol. Aging24, 807–815 (2003). ArticleCASPubMed Google Scholar
Bacskai, B. J. et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-β in vivo by immunotherapy. J. Neurosci.22, 7873–7878 (2002). ArticleCASPubMedPubMed Central Google Scholar
Frenkel, D., Solomon, B. & Benhar, I. Modulation of Alzheimer's β-amyloid neurotoxicity by site-directed single-chain antibody. J. Neuroimmunol.106, 23–31 (2000). ArticleCASPubMed Google Scholar
Thomas, C. J. et al. Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Lett.531, 184–188 (2002). ArticleCASPubMed Google Scholar
Hauss-Wegrzyniak, B., Vraniak, P. D. & Wenk, G. L. LPS-induced neuroinflammatory effects do not recover with time. Neuroreport11, 1759–1763 (2000). ArticleCASPubMed Google Scholar
Stalder, A. K. et al. Lipopolysaccharide-induced IL-12 expression in the central nervous system and cultured astrocytes and microglia. J. Immunol.159, 1344–1351 (1997). CASPubMed Google Scholar
Sly, L. M. et al. Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Res. Bull.56, 581–588 (2001). ArticleCASPubMed Google Scholar
Qiao, X., Cummins, D. J. & Paul, S. M. Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur. J. Neurosci.14, 474–482 (2001). ArticleCASPubMed Google Scholar
Sheng, J. G. et al. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid β peptide in APPswe transgenic mice. Neurobiol. Dis.14, 133–145 (2003). ArticleCASPubMed Google Scholar
Herber, D. L. et al. Time-dependent reduction in Aβ levels after intracranial LPS administration in APP transgenic mice. Exp. Neurol.190, 245–253 (2004). ArticleCASPubMed Google Scholar
Quinn, J. et al. Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer's disease. J. Neuroimmunol.137, 32–41 (2003). ArticleCASPubMed Google Scholar
Jones, T. et al. Protollin: a novel adjuvant for intranasal vaccines. Vaccine22, 3691–3697 (2004). ArticleCASPubMed Google Scholar
Coraci, I. S. et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am. J. Pathol.160, 101–112 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J. & Landreth, G. E. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J. Neurosci.23, 2665–2674 (2003). ArticleCASPubMedPubMed Central Google Scholar
Porter, J. C. & Hogg, N. Integrins take partners: cross-talk between integrins and other membrane receptors. Trends Cell Biol.8, 390–396 (1998). ArticleCASPubMed Google Scholar
Paresce, D. M., Ghosh, R. N. & Maxfield, F. R. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. Neuron17, 553–565 (1996). ArticleCASPubMed Google Scholar
Iribarren, P. et al. CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid β1–42 peptide by upregulating the expression of the G-protein-coupled receptor mFPR2. FASEB J.19, 2032–2034 (2005). ArticleCASPubMed Google Scholar
Iribarren, P., Zhou, Y., Hu, J., Le, Y. & Wang, J. M. Role of formyl peptide receptor-like 1 (FPRL1/FPR2) in mononuclear phagocyte responses in Alzheimer disease. Immunol. Res.31, 165–176 (2005). ArticleCASPubMed Google Scholar
Verdier, Y., Zarandi, M. & Penke, B. Amyloid β-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J. Pept. Sci.10, 229–248 (2004). ArticleCASPubMed Google Scholar
Giulian, D. et al. The HHQK domain of β-amyloid provides a structural basis for the immunopathology of Alzheimer's disease. J. Biol. Chem.273, 29719–29726 (1998). ArticleCASPubMed Google Scholar
Xie, L. et al. Alzheimer's β-amyloid peptides compete for insulin binding to the insulin receptor. J. Neurosci.22, RC221 (2002). ArticlePubMedPubMed Central Google Scholar
Boland, K., Behrens, M., Choi, D., Manias, K. & Perlmutter, D. H. The serpin-enzyme complex receptor recognizes soluble, nontoxic amyloid-β peptide but not aggregated, cytotoxic amyloid-β peptide. J. Biol. Chem.271, 18032–18044 (1996). ArticleCASPubMed Google Scholar
Qiu, W. Q. et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J. Biol. Chem.273, 32730–32738 (1998). ArticleCASPubMed Google Scholar
Yamada, T. et al. Selective localization of gelatinase A, an enzyme degrading β-amyloid protein, in white matter microglia and in Schwann cells. Acta Neuropathol. (Berl)89, 199–203 (1995). ArticleCAS Google Scholar
Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron49, 489–502 (2006). ArticleCASPubMed Google Scholar
Schwartz, M., Butovsky, O., Bruck, W. & Hanisch, U. K. Microglial phenotype: is the commitment reversible? Trends Neurosci.29, 68–74 (2006). A description of the role of different microglial-cell subsets in the CNS. ArticleCASPubMed Google Scholar
Monsonego, A., Maron, R., Zota, V., Selkoe, D. J. & Weiner, H. L. Immune hyporesponsiveness to amyloid β-peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer's disease. Proc. Natl Acad. Sci. USA98, 10273–10278 (2001). ArticleCASPubMedPubMed Central Google Scholar
Furlan, R. et al. Vaccination with amyloid-β peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain126, 285–291 (2003). ArticlePubMed Google Scholar
Monsonego, A. et al. Aβ-induced meningoencephalitis is IFN-γ dependent and is associated with T-cell dependent clearance of Aβ in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA103, 5048–5053 (2006). Description of meningoencephalitis inAPP-transgenic mice and reduction of amyloid-β levels mediated by amyloid-β-specific T cells. ArticleCASPubMedPubMed Central Google Scholar
Weiner, H. L. et al. Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. Ann. Neurol.48, 567–579 (2000). ArticleCASPubMed Google Scholar
Tan, J. et al. Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice. Nature Neurosci.5, 1288–1293 (2002). ArticleCASPubMed Google Scholar
LaFerla, F. M. & Oddo, S. Alzheimer's disease: Aβ, tau and synaptic dysfunction. Trends Mol. Med.11, 170–176 (2005). ArticleCASPubMed Google Scholar
Yamamoto, M. et al. Overexpression of monocyte chemotactic protein-1/CCL2 in β-amyloid precursor protein transgenic mice show accelerated diffuse β-amyloid deposition. Am. J. Pathol.166, 1475–1485 (2005). ArticleCASPubMedPubMed Central Google Scholar
Fonseca, M. I., Zhou, J., Botto, M. & Tenner, A. J. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J. Neurosci.24, 6457–6465 (2004). ArticleCASPubMedPubMed Central Google Scholar