Humanized mice for immune system investigation: progress, promise and challenges (original) (raw)
Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nature Rev. Immunol.7, 118–130 (2007). ArticleCAS Google Scholar
Willinger, T., Rongvaux, A., Strowig, T., Manz, M. G. & Flavell, R. A. Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol.32, 321–327 (2011). ArticleCASPubMed Google Scholar
Ito, M. et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood100, 3175–3182 (2002). ArticleCASPubMed Google Scholar
Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2r_γ_ null mice engrafted with mobilized human hematopoietic stem cell. J. Immunol.174, 6477–6489 (2005). ArticleCASPubMed Google Scholar
Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science304, 104–107 (2004). ArticleCASPubMed Google Scholar
Brehm, M. A. et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2r_γ_ null mutation. Clin. Immunol.135, 84–98 (2010). ArticleCASPubMedPubMed Central Google Scholar
McDermott, S. P., Eppert, K., Lechman, E. R., Doedens, M. & Dick, J. E. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood116, 193–200 (2010). ArticleCASPubMed Google Scholar
Drake, A. C., Chen, Q. & Chen, J. Engineering humanized mice for improved hematopoietic reconstitution. Cell. Mol. Immunol.9, 215–224 (2012). ArticleCASPubMedPubMed Central Google Scholar
Legrand, N. et al. Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc. Natl Acad. Sci. USA108, 13224–13229 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chen, Q., Khoury, M. & Chen, J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc. Natl Acad. Sci. USA106, 21783–21788 (2009). This was the first description of the hydrodynamic delivery of plasmid DNA encoding human cytokines to enhance human immune system development. ArticleCASPubMedPubMed Central Google Scholar
O'Connell, R. M. et al. Lentiviral vector delivery of human interleukin-7 (hIL-7) to human immune system (HIS) mice expands T lymphocyte populations. PLoS ONE5, e12009 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yang, W. et al. Pluripotin combined with leukemia inhibitory factor greatly promotes the derivation of embryonic stem cell lines from refractory strains. Stem Cells27, 383–389 (2009). ArticleCASPubMed Google Scholar
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nature Rev. Genet.11, 636–646 (2010). ArticleCASPubMed Google Scholar
Rathinam, C. et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood118, 3119–3128 (2011). ArticleCASPubMed Google Scholar
Rongvaux, A. et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc. Natl Acad. Sci. USA108, 2378–2383 (2011). ArticleCASPubMedPubMed Central Google Scholar
Willinger, T. et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc. Natl Acad. Sci. USA108, 2390–2395 (2011). ArticleCASPubMedPubMed Central Google Scholar
Billerbeck, E. et al. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγnull humanized mice. Blood117, 3076–3086 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nicolini, F. E., Cashman, J. D., Hogge, D. E., Humphries, R. K. & Eaves, C. J. NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia18, 341–347 (2004). ArticleCASPubMed Google Scholar
Takagi, S. et al. Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood119, 2768–2777 (2012). ArticleCASPubMedPubMed Central Google Scholar
Brehm, M. A. et al. Engraftment of human HSC in non-irradiated newborn NOD-scid IL2r_γ_ null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood119, 2778–2788 (2012). ArticleCASPubMedPubMed Central Google Scholar
Manz, M. G. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity26, 537–541 (2007). ArticleCASPubMed Google Scholar
King, M. A. et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-_versus_-host-like disease and the role of host major histocompatibility complex. Clin. Exp. Immunol.157, 104–118 (2009). ArticleCASPubMedPubMed Central Google Scholar
Covassin, L. et al. Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2r_γ_ nullH2-Ab1tm1Gru Tg (human leucocyte antigen D-related 4) mice: a mouse model of human allogeneic graft-versus-host disease. Clin. Exp. Immunol.166, 269–280 (2011). ArticleCASPubMedPubMed Central Google Scholar
Takenaka, K. et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nature Immunol.8, 1313–1323 (2007). ArticleCAS Google Scholar
Strowig, T. et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc. Natl Acad. Sci. USA108, 13218–13223 (2011). This study demonstrates that SIRPα is a causal factor that controls engraftment levels in humanized mice. ArticleCASPubMedPubMed Central Google Scholar
Mold, J. E. et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science330, 1695–1699 (2010). This report demonstrates that human HSCs of fetal origin generate higher numbers of CD4+CD25+FOXP3+ TRegcells in the thymus than adult HSCs, suggesting a 'layering' of immune system development during ontogeny in humans that is due to intrinsic differences in HSC populations. ArticleCASPubMedPubMed Central Google Scholar
Ishikawa, F. et al. The developmental program of human dendritic cells is operated independently of conventional myeloid and lymphoid pathways. Blood110, 3591–3660 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tian, X. et al. Bioluminescent imaging demonstrates transplanted human embryonic stem cell-derived CD34+ cells preferentially develop into endothelial cells. Stem Cells27, 2675–2685 (2009). ArticleCASPubMedPubMed Central Google Scholar
King, M. et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin. Immunol.126, 303–314 (2008). ArticleCASPubMed Google Scholar
Racki, W. J. et al. NOD-scid IL2rg_null_ (NSG) mouse model of human skin transplantation and allograft rejection. Transplantation89, 527–536 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kirkiles-Smith, N. C. et al. Development of a humanized mouse model to study the role of macrophages in allograft injury. Transplantation87, 189–197 (2009). ArticleCASPubMedPubMed Central Google Scholar
Issa, F. et al. Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation90, 1321–1327 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nadig, S. N. et al. In vivo prevention of transplant arteriosclerosis by _ex vivo_-expanded human regulatory T cells. Nature Med.16, 809–813 (2010). This paper was the first demonstration that human TRegcell therapy can prevent the rejection of human allografts in humanized mice (Hu-PBL-SCID model). ArticleCASPubMed Google Scholar
Wang, X. et al. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood117, 1888–1898 (2011). ArticleCASPubMedPubMed Central Google Scholar
Harui, A., Kiertscher, S. M. & Roth, M. D. Reconstitution of huPBL-NSG mice with donor-matched dendritic cells enables antigen-specific T-cell activation. J. Neuroimmune Pharmacol.6, 148–157 (2011). ArticlePubMed Google Scholar
Becker, P. D. et al. Generation of human antigen-specific monoclonal IgM antibodies using vaccinated “human immune system” mice. PLoS ONE5, e13137 (2010). ArticleCASPubMedPubMed Central Google Scholar
Biswas, S. et al. Humoral immune responses in humanized BLT mice immunized with West Nile virus and HIV-1 envelope proteins are largely mediated via human CD5+ B cells. Immunology134, 419–433 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ippolito, G. C. et al. Antibody repertoires in humanized NOD-scid-IL2Rγnull mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse. PLoS ONE7, e35497 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schmidt, M. R. et al. Human BLyS facilitates engraftment of human PBL derived B cells in immunodeficient mice. PLoS ONE3, e3192 (2008). This report was the original description that administration of recombinant human BAFF enhances B cell engraftment, survival and function in humanized mice (Hu-PBL-SCID model). ArticleCASPubMedPubMed Central Google Scholar
Unsinger, J., McDonough, J. S., Shultz, L. D., Ferguson, T. A. & Hotchkiss, R. S. Sepsis-induced human lymphocyte apoptosis and cytokine production in “humanized” mice. J. Leukoc. Biol.86, 219–227 (2009). ArticleCASPubMedPubMed Central Google Scholar
Danner, R. et al. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS ONE6, e19826 (2011). This paper was the first demonstration that transgenic expression of HLA class II molecules enhances CD4+ T cell development and enables the generation of human IgG responses to immunization. ArticleCASPubMedPubMed Central Google Scholar
Suzuki, M. et al. Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/γcnull mouse. Int. Immunol.24, 243–252 (2012). ArticleCASPubMed Google Scholar
Marodon, G. et al. High diversity of the immune repertoire in humanized NOD.SCID.γc−/− mice. Eur. J. Immunol.39, 2136–2145 (2009). ArticleCASPubMed Google Scholar
Onoe, T. et al. Human natural regulatory T cell development, suppressive function, and postthymic maturation in a humanized mouse model. J. Immunol.187, 3895–3903 (2011). ArticleCASPubMed Google Scholar
Melkus, M. W. et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nature Med.12, 1316–1322 (2006). ArticleCASPubMed Google Scholar
van Lent, A. U. et al. IL-7 enhances thymic human T cell development in “human immune system” Rag2−/−IL-2Rγc−/− mice without affecting peripheral T cell homeostasis. J. Immunol.183, 7645–7655 (2009). ArticleCASPubMed Google Scholar
Waldron-Lynch, F. et al. Teplizumab induces human gut-tropic regulatory cells in humanized mice and patients. Sci. Transl. Med.4, 118ra12 (2012). This report demonstrates the utility of humanized mice for studying human-specific drugs by defining the mechanism of action for a human CD3-specific antibody (teplizumab) in the Hu-SRC-SCID model. ArticleCASPubMedPubMed Central Google Scholar
Jacobson, S. et al. Alloreactivity but failure to reject human islet transplants by humanized Balb/c/Rag2−/− gc−/− mice. Scand. J. Immunol.71, 83–90 (2010). ArticleCASPubMed Google Scholar
Brehm, M. A. et al. Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1_null_ IL2rgnullIns2Akita mice. Diabetes 59, 2265–2270 (2010). This paper was the first description of the use of HSC-engrafted, spontaneously diabetic NRG mice to study human islet transplantation.
Fogal, B. et al. Neutralizing IL-6 reduces human arterial allograft rejection by allowing emergence of CD161+ CD4+ regulatory T cells. J. Immunol.187, 6268–6280 (2011). ArticleCASPubMed Google Scholar
Huntington, N. D. et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med.206, 25–34 (2009). ArticleCASPubMedPubMed Central Google Scholar
Strowig, T. et al. Human NK cells of mice with reconstituted human immune system components require preactivation to acquire functional competence. Blood116, 4158–4167 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lockridge, J. L. et al. Analysis of the CD1 antigen presenting system in humanized SCID mice. PLoS ONE6, e21701 (2011). This study was the first demonstration of human NKT cell development in NSG BLT mice. ArticleCASPubMedPubMed Central Google Scholar
Libby, S. J. et al. Humanized nonobese diabetic-scid IL2r_γ_ null mice are susceptible to lethal Salmonella Typhi infection. Proc. Natl Acad. Sci. USA107, 15589–15594 (2010). This paper was the first demonstration of productive infection of humanized mice (Hu-SRC-SCID model) withS. Typhi, which enabled the identification of novelS. entericavirulence determinants. ArticleCASPubMedPubMed Central Google Scholar
Firoz, M. M., Pek, E. A., Chenoweth, M. J. & Ashkar, A. A. Humanized mice are susceptible to Salmonella typhi infection. Cell. Mol. Immunol.8, 83–87 (2011). Article Google Scholar
Sato, K. et al. A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood117, 5663–5673 (2011). ArticleCASPubMed Google Scholar
Strowig, T. et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J. Exp. Med.206, 1423–1434 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shultz, L. D. et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2rγnull humanized mice. Proc. Natl Acad. Sci. USA107, 13022–13027 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jaiswal, S. et al. Enhanced humoral and HLA-A2-restricted dengue virus-specific T cell responses in humanized BLT NSG mice. Immunology136, 334–343 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rothman, A. L. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nature Rev. Immunol.11, 532–543 (2011). ArticleCAS Google Scholar
Berges, B. K. & Rowan, M. R. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology8, 65 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sato, K. & Koyanagi, Y. The mouse is out of the bag: insights and perspectives on HIV-1-infected humanized mouse models. Exp. Biol. Med.236, 977–985 (2011). ArticleCAS Google Scholar
Duyne, R. V. et al. Humanized mouse models of HIV-1 latency. Curr. HIV Res.9, 595–605 (2011). ArticleCASPubMed Google Scholar
Choudhary, S. K. et al. Suppression of human immunodeficiency virus type 1 (HIV-1) viremia with reverse transcriptase and integrase inhibitors, CD4+ T-cell recovery, and viral rebound upon interruption of therapy in a new model for HIV treatment in the humanized Rag2−/−γc−/− mouse. J. Virol.83, 8254–8258 (2009). ArticleCASPubMedPubMed Central Google Scholar
Balazs, A. B. et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature481, 81–84 (2012). ArticleCAS Google Scholar
Joseph, A. et al. Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J. Virol.84, 6645–6653 (2010). This study was the first demonstration that systemically delivered HIV-neutralizing antibodies control HIV infection in humanized mice (Hu-SRC-SCID model). ArticleCASPubMedPubMed Central Google Scholar
Holt, N. et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nature Biotech.28, 839–847 (2010). ArticleCAS Google Scholar
Shimizu, S. et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood115, 1534–1544 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. S. et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol. Ther.18, 370–376 (2010). ArticleCASPubMed Google Scholar
Neff, C. P. et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice. Sci. Transl. Med.3, 66ra6 (2011). ArticleCASPubMedPubMed Central Google Scholar
Choudhary, S. K. et al. Latent HIV-1 infection of resting CD4+ T cells in the humanized Rag2−/−γc−/− mouse. J. Virol.86, 114–120 (2012). ArticleCASPubMedPubMed Central Google Scholar
Carter, C. C. et al. HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent hematopoietic stem and progenitor cells. Cell Host Microbe9, 223–234 (2011). ArticleCASPubMedPubMed Central Google Scholar
Denton, P. W. et al. One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J. Virol.85, 7582–7593 (2011). ArticleCASPubMedPubMed Central Google Scholar
Denton, P. W. et al. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS ONE5, e8829 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wahl, A. et al. Human breast milk and antiretrovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice. PLoS Pathog.8, e1002732 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sun, Z. et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J. Exp. Med.204, 705–714 (2007). ArticleCASPubMedPubMed Central Google Scholar
Brainard, D. M. et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J. Virol.83, 7305–7321 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gorantla, S. et al. CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. J. Immunol.184, 7082–7091 (2010). ArticleCASPubMed Google Scholar
Ince, W. L. et al. Evolution of the HIV-1 env gene in the Rag2−/− γc−/− humanized mouse model. J. Virol.84, 2740–2752 (2010). ArticleCASPubMed Google Scholar
Sato, K. et al. Dynamics of memory and naive CD8+ T lymphocytes in humanized NOD/SCID/IL-2Rγnull mice infected with CCR5-tropic HIV-1. Vaccine28 (Suppl. 2), B32–B37 (2010). ArticleCASPubMed Google Scholar
Liu, Z. et al. Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the Multicenter AIDS Cohort Study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD38 expression. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol.16, 83–92 (1997). ArticleCASPubMed Google Scholar
Long, B. R. & Stoddart, C. A. Alpha interferon and HIV infection cause activation of human T cells in NSG-BLT mice. J. Virol.86, 3327–3336 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. et al. Efficient infection, activation, and impairment of pDCs in the BM and peripheral lymphoid organs during early HIV-1 infection in humanized rag2−/−γC−/− mice in vivo. Blood117, 6184–6192 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gorantla, S. et al. Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am. J. Pathol.177, 2938–2949 (2010). ArticleCASPubMedPubMed Central Google Scholar
Andrade, D. et al. Engraftment of peripheral blood mononuclear cells from systemic lupus erythematosus and antiphospholipid syndrome patient donors into BALB-RAG-2−/−IL-2Rγ−/− mice: a promising model for studying human disease. Arthritis Rheum.63, 2764–2773 (2011). ArticleCASPubMedPubMed Central Google Scholar
Whitfield-Larry, F. et al. HLA-A2-matched peripheral blood mononuclear cells from type 1 diabetic patients, but not nondiabetic donors, transfer insulitis to NOD-scid/γcnull/HLA-A2 transgenic mice concurrent with the expansion of islet-specific CD8+ T cells. Diabetes60, 1726–1733 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chang, N. H., Inman, R. D., Dick, J. E. & Wither, J. E. Bone marrow-derived human hematopoietic stem cells engraft NOD/SCID mice and traffic appropriately to an inflammatory stimulus in the joint. J. Rheumatol.37, 496–502 (2010). ArticlePubMed Google Scholar
Leskov, I. et al. Rapid generation of human B-cell lymphomas via combined expression of Myc and Bcl2 and their use as a preclinical model for biological therapies. Oncogene 9 Apr 2012 (doi:10.1038/onc.2012.117). ArticleCASPubMedPubMed Central Google Scholar
Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science316, 600–604 (2007). ArticleCASPubMed Google Scholar
Simpson-Abelson, M. R. et al. Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rγnull mice. J. Immunol.180, 7009–7018 (2008). ArticleCASPubMed Google Scholar
Bankert, R. B. et al. Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis. PLoS ONE6, e24420 (2011). ArticleCASPubMedPubMed Central Google Scholar
Willingham, S. B. et al. The CD47–signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA109, 6662–6667 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vatakis, D. N. et al. Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proc. Natl Acad. Sci. USA108, E1408–E1416 (2011). ArticleCASPubMedPubMed Central Google Scholar
Shirakura, Y. et al. T-cell receptor gene therapy targeting melanoma-associated antigen-A4 inhibits human tumor growth in non-obese diabetic/SCID/γcnull mice. Cancer Sci.103, 17–25 (2012). ArticleCASPubMed Google Scholar
Wege, A. K. et al. Humanized tumor mice — a new model to study and manipulate the immune response in advanced cancer therapy. Int. J. Cancer129, 2194–2206 (2011). ArticleCASPubMed Google Scholar
Vuyyuru, R., Patton, J. & Manser, T. Human immune system mice: current potential and limitations for translational research on human antibody responses. Immunol. Res.51, 257–266 (2011). ArticleCASPubMed Google Scholar
Chappaz, S. & Finke, D. The IL-7 signaling pathway regulates lymph node development independent of peripheral lymphocytes. J. Immunol.184, 3562–3569 (2010). ArticleCASPubMed Google Scholar
Rennert, P. D., James, D., Mackay, F., Browning, J. L. & Hochman, P. S. Lymph node genesis is induced by signaling through the lymphotoxin β receptor. Immunity9, 71–79 (1998). ArticleCASPubMed Google Scholar
Greiner, D. L. et al. Humanized mice for the study of type 1 and type 2 diabetes. Ann. NY Acad. Sci.1245, 55–58 (2011). ArticlePubMed Google Scholar
Hu, Z., Van, R. N. & Yang, Y. G. Macrophages prevent human red blood cell reconstitution in immunodeficient mice. Blood118, 5938–5946 (2011). ArticleCASPubMedPubMed Central Google Scholar
Washburn, M. L. et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology140, 1334–1344 (2011). This was the first description of a humanized mouse model that supports productive infection with hepatitis C virus and the subsequent generation of a hepatitis C virus-specific immune response. ArticleCASPubMed Google Scholar
Johnston, S. C., Dustin, M. L., Hibbs, M. L. & Springer, T. A. On the species specificity of the interaction of LFA-1 with intercellular adhesion molecules. J. Immunol.145, 1181–1187 (1990). CASPubMed Google Scholar
Rozemuller, H. et al. Enhanced engraftment of human cells in RAG2/γc double-knockout mice after treatment with CL2MDP liposomes. Exp. Hematol.32, 1118–1125 (2004). ArticleCASPubMed Google Scholar
Tanaka, S. et al. Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted NOD/SCID/IL2rγKO mice. J. Immunol.188, 6145–6155 (2012). ArticleCASPubMed Google Scholar
Goldman, J. P. et al. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor γ chain. Br. J. Haematol.103, 335–342 (1998). ArticleCASPubMed Google Scholar
Gimeno, R. et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2−/− γc−/− mice: functional inactivation of p53 in developing T cells. Blood104, 3886–3893 (2004). ArticleCASPubMed Google Scholar
Watanabe, Y. et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). Int. Immunol.21, 843–858 (2009). ArticleCASPubMed Google Scholar
Sato, H. et al. Inhibitory effects of water-soluble low-molecular-weight β-(1,3–1,6) D-glucan isolated from Aureobasidium pullulans 1A1 strain black yeast on mast cell degranulation and passive cutaneous anaphylaxis. Biosci. Biotechnol. Biochem.76, 84–88 (2012). ArticleCASPubMed Google Scholar
Villaudy, J. et al. HTLV-1 propels thymic human T cell development in “human immune system” Rag2−/− γc−/− mice. PLoS Pathog.7, e1002231 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cocco, M. et al. CD34+ cord blood cell-transplanted Rag2−/− γc−/− mice as a model for Epstein-Barr virus infection. Am. J. Pathol.173, 1369–1378 (2008). ArticlePubMedPubMed Central Google Scholar
Shultz, L. D., Brehm, M. A., Bavari, S. & Greiner, D. L. Humanized mice as a preclinical tool for infectious disease and biomedical research. Ann. NY Acad. Sci.1245, 50–54 (2011). ArticlePubMed Google Scholar
Subramanya, S. et al. Targeted delivery of siRNA to human dendritic cells to suppress dengue viral infection and associated proinflammatory cytokine production. J. Virol.84, 2490–2501 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mota, J. & Rico-Hesse, R. Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J. Virol.83, 8638–8645 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kuruvilla, J. G., Troyer, R. M., Devi, S. & Akkina, R. Dengue virus infection and immune response in humanized RAG2−/−γc−/− (RAG-hu) mice. Virology369, 143–152 (2007). ArticleCASPubMed Google Scholar
Bissig, K. D. et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J. Clin. Invest.120, 924–930 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vuyyuru, R., Liu, H., Manser, T. & Alugupalli, K. R. Characteristics of Borrelia hermsii infection in human hematopoietic stem cell-engrafted mice mirror those of human relapsing fever. Proc. Natl Acad. Sci. USA108, 20707–20712 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jimenez-Diaz, M. B. et al. Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL2R γnull mice engrafted with human erythrocytes. Antimicrob. Agents Chemother.53, 4533–4536 (2009). ArticleCASPubMedPubMed Central Google Scholar
Smith, M. S. et al. Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe8, 284–291 (2010). ArticleCASPubMedPubMed Central Google Scholar