Signalling ballet in space and time (original) (raw)
Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80, 179–185 (1995). A conceptual breakthrough summarizing many experimental observations that different durations of ERK activity can result in different phenotypic responses. ArticleCASPubMed Google Scholar
Murphy, L. O., MacKeigan, J. P. & Blenis, J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol. Cell. Biol.24, 144–153 (2004). ArticleCASPubMedPubMed Central Google Scholar
von Kriegsheim, A. et al. Cell fate decisions are specified by the dynamic ERK interactome. Nature Cell Biol.11, 1458–1464 (2009). Provides insight into a full set of protein–protein interactions involving ERK, and shows how ERK partners control ERK spatiotemporal dynamics and cell decisions. ArticleCASPubMed Google Scholar
Nakakuki, T. et al. Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 20 May 2010 (doi:10.16/j.cell.2010.03.054)
Meloche, S. & Pouyssegur, J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene26, 3227–3239 (2007). ArticleCASPubMed Google Scholar
Nagashima, T. et al. Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. J. Biol. Chem.282, 4045–4056 (2007). ArticleCASPubMed Google Scholar
McCawley, L. J., Li, S., Wattenberg, E. V. & Hudson, L. G. Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J. Biol. Chem.274, 4347–4353 (1999). ArticleCASPubMed Google Scholar
Kholodenko, B. N. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem.267, 1583–1588 (2000). Predicted sustained MAPK oscillations that were later discovered experimentally (see references 12 and 14). ArticleCASPubMed Google Scholar
Brightman, F. A. & Fell, D. A. Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett.482, 169–174 (2000). ArticleCASPubMed Google Scholar
Kiyatkin, A. et al. Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J. Biol. Chem.281, 19925–19938 (2006). A working model of combinatorially complex interactions of multidomain proteins that control phosphoinositide 3-kinase and ERK pathway crosstalk. ArticleCASPubMed Google Scholar
Birtwistle, M. R. et al. Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol. Syst. Biol.3, 144 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nakayama, K., Satoh, T., Igari, A., Kageyama, R. & Nishida, E. FGF induces oscillations of Hes1 expression and Ras/ERK activation. Curr. Biol.18, R332–R334 (2008). ArticleCASPubMed Google Scholar
Shankaran, H. et al. Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol. Syst. Biol.5, 332 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell17, 215–224 (2005). ArticleCASPubMed Google Scholar
Shin, S. Y. et al. Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J. Cell Sci.122, 425–435 (2009). ArticleCASPubMed Google Scholar
Douville, E. & Downward, J. EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2. Oncogene15, 373–383 (1997). ArticleCASPubMed Google Scholar
Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol.164, 353–359 (2004). ArticleCASPubMedPubMed Central Google Scholar
Qiao, L., Nachbar, R. B., Kevrekidis, I. G. & Shvartsman, S. Y. Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput. Biol.3, 1819–1826 (2007). ArticleCASPubMed Google Scholar
Kholodenko, B. N. et al. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl Acad. Sci. USA99, 12841–12846 (2002). ArticleCASPubMedPubMed Central Google Scholar
Santos, S. D., Verveer, P. J. & Bastiaens, P. I. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nature Cell Biol.9, 324–330 (2007). Direct experimental determination of context-dependent and time-varying topology of dynamic connections between MAPK cascade components. ArticleCASPubMed Google Scholar
Brondello, J. M., Brunet, A., Pouyssegur, J. & McKenzie, F. R. The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J. Biol. Chem.272, 1368–1376 (1997). ArticleCASPubMed Google Scholar
Patterson, K. I., Brummer, T., O'Brien, P. M. & Daly, R. J. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem. J.418, 475–489 (2009). ArticleCASPubMed Google Scholar
Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet.39, 503–512 (2007). ArticleCASPubMed Google Scholar
Legewie, S., Herzel, H., Westerhoff, H. V. & Bluthgen, N. Recurrent design patterns in the feedback regulation of the mammalian signalling network. Mol. Syst. Biol.4, 190 (2008). ArticlePubMedPubMed Central Google Scholar
Kholodenko, B. N. Cell-signalling dynamics in time and space. Nature Rev. Mol. Cell Biol.7, 165–176 (2006). ArticleCAS Google Scholar
Hilioti, Z. et al. Oscillatory phosphorylation of yeast Fus3 MAP kinase controls periodic gene expression and morphogenesis. Curr. Biol.18, 1700–1706 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sigal, A. et al. Variability and memory of protein levels in human cells. Nature444, 643–646 (2006). ArticleCASPubMed Google Scholar
Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol.15, 221–231 (2003). ArticleCASPubMed Google Scholar
Wang, X., Hao, N., Dohlman, H. G. & Elston, T. C. Bistability, stochasticity, and oscillations in the mitogen-activated protein kinase cascade. Biophys. J.90, 1961–1978 (2006). ArticleCASPubMed Google Scholar
Kaimachnikov, N. P. & Kholodenko, B. N. Toggle switches, pulses and oscillations are intrinsic properties of the Src activation/deactivation cycle. FEBSJ.276, 4102–4118 (2009). CAS Google Scholar
Ferrell, J. E. Jr & Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science280, 895–898 (1998). ArticleCASPubMed Google Scholar
Bagowski, C. P. & Ferrell, J. E. Jr. Bistability in the JNK cascade. Curr. Biol.11, 1176–1182 (2001). ArticleCASPubMed Google Scholar
Freedman, T. S. et al. A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc. Natl Acad. Sci. USA103, 16692–16697 (2006). Direct experimental evidence of Ras–SOS positive feedback. ArticleCASPubMedPubMed Central Google Scholar
Murphy, L. O., Smith, S., Chen, R. H., Fingar, D. C. & Blenis, J. Molecular interpretation of ERK signal duration by immediate early gene products. Nature Cell Biol.4, 556–564 (2002). Demonstrates how a short and prolonged duration of ERK signalling can be sensed at the level of IEGs. ArticleCASPubMed Google Scholar
Mangan, S., Zaslaver, A. & Alon, U. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol.334, 197–204 (2003). ArticleCASPubMed Google Scholar
Vomastek, T. et al. Modular construction of a signaling scaffold: MORG1 interacts with components of the ERK cascade and links ERK signaling to specific agonists. Proc. Natl Acad. Sci. USA101, 6981–6986 (2004). ArticleCASPubMedPubMed Central Google Scholar
Teis, D., Wunderlich, W. & Huber, L. A. Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev. Cell3, 803–814 (2002). ArticleCASPubMed Google Scholar
Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol.27, 693–733 (2009). ArticleCASPubMed Google Scholar
Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF- κB signalling. Nature430, 694–699 (2004). ArticleCASPubMed Google Scholar
Ashall, L. et al. Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science324, 242–246 (2009). Provides a combined experimental and mathematical analysis of the nucleo-cytoplasmic shuttling cycles of NF-κB and how they relate to specifying gene expression. ArticleCASPubMedPubMed Central Google Scholar
Kim, D., Kolch, W. & Cho, K. H. Multiple roles of the NF-κB signaling pathway regulated by coupled negative feedback circuits. FASEB J.23, 2796–2802 (2009). ArticleCASPubMed Google Scholar
Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nature Rev. Mol. Cell Biol.6, 827–837 (2005). ArticleCAS Google Scholar
McKay, M. M. & Morrison, D. K. Integrating signals from RTKs to ERK/MAPK. Oncogene26, 3113–3121 (2007). ArticleCASPubMed Google Scholar
Shaw, A. S. & Filbert, E. L. Scaffold proteins and immune-cell signalling. Nature Rev. Immunol.9, 47–56 (2009). ArticleCAS Google Scholar
DeWire, S. M., Ahn, S., Lefkowitz, R. J. & Shenoy, S. K. β-arrestins and cell signaling. Annu. Rev. Physiol.69, 483–510 (2007). ArticleCASPubMed Google Scholar
Perry, S. J. et al. Targeting of cyclic AMP degradation to β2-adrenergic receptors by β-arrestins. Science298, 834–836 (2002). ArticleCASPubMed Google Scholar
Nelson, C. D. et al. Targeting of diacylglycerol degradation to M1 muscarinic receptors by β-arrestins. Science315, 663–666 (2007). ArticleCASPubMed Google Scholar
Tanoue, T. & Nishida, E. Molecular recognitions in the MAP kinase cascades. Cell Signal.15, 455–462 (2003). ArticleCASPubMed Google Scholar
Levchenko, A., Bruck, J. & Sternberg, P. W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl Acad. Sci. USA97, 5818–5823 (2000). A kinetic model showing that scaffold organization of a kinase cascade markedly changes the input–output relationships. ArticleCASPubMedPubMed Central Google Scholar
Casar, B. et al. Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol. Cell Biol.29, 1338–1353 (2009). Provides insight in how Ras signalling from different membrane compartments uses different scaffold proteins for the ERK pathway to selectively target downstream ERK substrates. ArticleCASPubMed Google Scholar
Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol.4, 343–350 (2002). Shows that Ras signalling can emanate from different subcellular membrane compartments and activate different downstream pathways. ArticleCASPubMed Google Scholar
Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature461, 542–545 (2009). ArticleCASPubMed Google Scholar
Bhattacharyya, R. P. et al. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science311, 822–826 (2006). ArticleCASPubMed Google Scholar
Good, M., Tang, G., Singleton, J., Remenyi, A. & Lim, W. A. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell136, 1085–1097 (2009). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, S. & Pryciak, P. M. Membrane localization of scaffold proteins promotes graded signaling in the yeast MAP kinase cascade. Curr. Biol.18, 1184–1191 (2008). ArticleCASPubMedPubMed Central Google Scholar
Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol.169, 435–445 (2005). ArticleCASPubMedPubMed Central Google Scholar
Park, C. Y. et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell136, 876–890 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct.34, 351–378 (2005). ArticleCASPubMed Google Scholar
Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol.1, 31–39 (2000). ArticleCAS Google Scholar
Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature457, 1159–1162 (2009). ArticleCASPubMed Google Scholar
Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell116, 577–589 (2004). ArticleCASPubMed Google Scholar
Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol.7, 456–462 (2006). ArticleCAS Google Scholar
Hanzal-Bayer, M. F. & Hancock, J. F. Lipid rafts and membrane traffic. FEBS Lett.581, 2098–2104 (2007). ArticleCASPubMed Google Scholar
Nicolau, D. V. Jr, Burrage, K., Parton, R. G. & Hancock, J. F. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell Biol.26, 313–323 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell63, 133–139 (1990). ArticleCASPubMed Google Scholar
Plowman, S. J., Muncke, C., Parton, R. G. & Hancock, J. F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl Acad. Sci. USA102, 15500–15505 (2005). ArticleCASPubMedPubMed Central Google Scholar
Murakoshi, H. et al. Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl Acad. Sci. USA101, 7317–7322 (2004). ArticleCASPubMedPubMed Central Google Scholar
Belanis, L., Plowman, S. J., Rotblat, B., Hancock, J. F. & Kloog, Y. Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters. Mol. Biol. Cell19, 1404–1414 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shalom-Feuerstein, R. et al. K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res.68, 6608–6616 (2008). ArticleCASPubMedPubMed Central Google Scholar
Plowman, S. J., Ariotti, N., Goodall, A., Parton, R. G. & Hancock, J. F. Electrostatic interactions positively regulate K-Ras nanocluster formation and function. Mol. Cell. Biol.28, 4377–4385 (2008). ArticleCASPubMedPubMed Central Google Scholar
Abankwa, D., Gorfe, A. G., Inder, K. & Hancock, J. F. Ras membrane orientation and nanodomain localization generate isoform diversity. Proc. Natl Acad. Sci. USA107, 1130–1135 (2010). ArticlePubMedPubMed Central Google Scholar
Tian, T. et al. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nature Cell Biol.9, 905–914 (2007). ArticleCASPubMed Google Scholar
Harding, A., Tian, T., Westbury, E., Frische, E. & Hancock, J. F. Subcellular localization determines MAP kinase signal output. Curr. Biol.15, 869–873 (2005). Shows that in mammalian cells the MAPK cascade can operate as a switch with different sensitivity to the input signals from the plasma membrane and cytoplasm. ArticleCASPubMed Google Scholar
Inder, K. et al. Activation of the MAPK module from different spatial locations generates distinct system outputs. Mol. Biol. Cell19, 4776–4784 (2008). ArticleCASPubMedPubMed Central Google Scholar
Harding, A. S. & Hancock, J. F. Using plasma membrane nanoclusters to build better signaling circuits. Trends Cell Biol.18, 364–371 (2008). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, K. G., Fujiwara, T. K., Edidin, M. & Kusumi, A. Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol.177, 731–742 (2007). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, K. G. et al. GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol.177, 717–730 (2007). ArticleCASPubMedPubMed Central Google Scholar
Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell135, 1085–1097 (2008). ArticleCASPubMed Google Scholar
Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature444, 724–729 (2006). ArticleCASPubMed Google Scholar
Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B Biol. Sci.237, 37–72 (1952). Shows that diffusion can destabilize spatially uniform steady-state distribution, resulting in heterogeneous spatial concentration patterns. Article Google Scholar
Gierer, A. Generation of biological patterns and form: some physical, mathematical, and logical aspects. Prog. Biophys. Mol. Biol.37, 1–47 (1981). ArticleCASPubMed Google Scholar
Brown, G. C. & Kholodenko, B. N. Spatial gradients of cellular phospho-proteins. FEBS Lett.457, 452–454 (1999). Shows that the spatial separation of opposing enzymes in a protein modification cycle brings about protein activity gradients and non-uniform spatial profiles. ArticleCASPubMed Google Scholar
Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science295, 2452–2456 (2002). ArticleCASPubMed Google Scholar
Maeder, C. I. et al. Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nature Cell Biol.9, 1319–1326 (2007). ArticleCASPubMed Google Scholar
Yudushkin, I. A. et al. Live-cell imaging of enzyme-substrate interaction reveals spatial regulation of PTP1B. Science315, 115–119 (2007). ArticleCASPubMed Google Scholar
Fuller, B. G. et al. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature453, 1132–1136 (2008). ArticleCASPubMedPubMed Central Google Scholar
Moseley, J. B., Mayeux, A., Paoletti, A. & Nurse, P. A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature459, 857–860 (2009). ArticleCASPubMed Google Scholar
Stelling, J. & Kholodenko, B. N. Signaling cascades as cellular devices for spatial computations. J. Math. Biol.58, 35–55 (2008). ArticlePubMedPubMed Central Google Scholar
Kholodenko, B. N. MAP kinase cascade signaling and endocytic trafficking: a marriage of convenience? Trends Cell Biol.12, 173–177 (2002). Shows theoretically that the propagation of phosphorylation signals solely by diffusion can be terminated by cytoplasmic phosphatases. The study suggests that in large cells, motor-driven trafficking of endosomes and scaffolds carrying phosphorylated kinases or assembled signalling complexes is required for signal transduction. ArticleCASPubMed Google Scholar
Munoz-Garcia, J., Neufeld, Z. & Kholodenko, B. N. Positional information generated by spatially distributed signaling cascades. PLoS Comput. Biol.5, e1000330 (2009). ArticleCASPubMedPubMed Central Google Scholar
Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev.81, 153–208 (2001). ArticleCASPubMed Google Scholar
Athale, C. A. et al. Regulation of microtubule dynamics by reaction cascades around chromosomes. Science322, 1243–1247 (2008). ArticleCASPubMed Google Scholar
Markevich, N. I., Tsyganov, M. A., Hoek, J. B. & Kholodenko, B. N. Long-range signaling by phosphoprotein waves arising from bistability in protein kinase cascades. Mol. Syst. Biol.2, 61 (2006). Shows the possibility of waves of protein phosphorylation travelling through the cytoplasm or long neuron axons. ArticlePubMedPubMed Central Google Scholar
Levine, H. & Rappel, W. J. Membrane-bound Turing patterns. Phys. Rev. E Stat. Nonlin Soft Matter Phys.72, 061912 (2005). ArticleCASPubMed Google Scholar
Goryachev, A. B. & Pokhilko, A. V. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett.582, 1437–1443 (2008). ArticleCASPubMed Google Scholar
Mori, Y., Jilkine, A. & Edelstein-Keshet, L. Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J.94, 3684–3697 (2008). ArticleCASPubMedPubMed Central Google Scholar
Meyers, J., Craig, J. & Odde, D. J. Potential for control of signaling pathways via cell size and shape. Curr. Biol.16, 1685–1693 (2006). ArticleCASPubMed Google Scholar
Neves, S. R. et al. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell133, 666–680 (2008). ArticleCASPubMedPubMed Central Google Scholar
Borisov, N. et al. Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol. Syst. Biol.5, 256 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, C. C., Cirit, M. & Haugh, J. M. PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk. Mol. Syst. Biol.5, 246 (2009). ArticleCASPubMedPubMed Central Google Scholar
Berezhkovskii, A. M., Coppey, M. & Shvartsman, S. Y. Signaling gradients in cascades of two-state reaction-diffusion systems. Proc. Natl Acad. Sci. USA106, 1087–1092 (2009). ArticlePubMedPubMed Central Google Scholar
Kholodenko, B. N. Four-dimensional organization of protein kinase signaling cascades: the roles of diffusion, endocytosis and molecular motors. J. Exp. Biol.206, 2073–2082 (2003). ArticleCASPubMed Google Scholar
Rishal, I. & Fainzilber, M. Retrograde signaling in axonal regeneration. Exp. Neurol.223, 5–10 (2009). ArticleCASPubMed Google Scholar
Luttrell, L. M. Composition and function of G protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity. J. Mol. Neurosci.26, 253–264 (2005). ArticleCASPubMed Google Scholar