Phenotypic variation in bacteria: the role of feedback regulation (original) (raw)
Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics167, 523–530 (2004). Provides mathematical evidence that under some conditions, a heterogeneous population can achieve higher growth rates than a homogeneous one. PubMedPubMed Central Google Scholar
Hallet, B. Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol.4, 570–581 (2001). CASPubMed Google Scholar
Low, D. A., Weyand, N. J. & Mahan, M. J. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun.69, 7197–7204 (2001). CASPubMedPubMed Central Google Scholar
Thomas, R. Laws for the dynamics of regulatory networks. Int. J. Dev. Biol.42, 479–485 (1998). CASPubMed Google Scholar
Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature403, 339–342 (2000). CASPubMed Google Scholar
Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature420, 224–230 (2002). Enjoyable review that discusses which advances have been made in understanding gene pathways by the use of synthetic gene networks. CASPubMed Google Scholar
Rao, C. V., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature420, 231–237 (2002). CASPubMed Google Scholar
Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol.14, 140–148 (2002). Essential review describing the nuts and bolts of FBM. CASPubMed Google Scholar
Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl Acad. Sci. USA101, 8414–8419 (2004). CASPubMedPubMed Central Google Scholar
Smits, W. K. et al. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol.56, 604–614 (2005). CASPubMed Google Scholar
Veening, J. W., Hamoen, L. W. & Kuipers, O. P. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol.56, 1481–1494 (2005). CASPubMed Google Scholar
Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli. Nature427, 737–740 (2004). CASPubMed Google Scholar
Guespin-Michel, J. F. et al. Epigenesis and dynamic similarity in two regulatory networks in Pseudomonas aeruginosa. Acta Biotheor.52, 379–390 (2004). PubMed Google Scholar
Guespin-Michel, J. Epigenesis — a request for information on loss of adaptive phenotypes. Microbiology147, 252–253 (2001). CASPubMed Google Scholar
Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA43, 553–566 (1957). CASPubMedPubMed Central Google Scholar
Cohb, M. & Horibata, K. Analysis of the differentiation and of the heterogeneity within a population of Escherichia coli undergoing induced β-galactosidase synthesis. J. Bacteriol.78, 613–623 (1959). Google Scholar
Monod, J. & Jacob, F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol.26, 389–401 (1961). CASPubMed Google Scholar
Muller-Hill, B. The lac Operon: A Short History of a Genetic Paradigm (Walter de Gruyter, Berlin, 1996). Google Scholar
Biggar, S. R. & Crabtree, G. R. Cell signaling can direct either binary or graded transcriptional responses. EMBO J.20, 3167–3176 (2001). CASPubMedPubMed Central Google Scholar
Khlebnikov, A., Skaug, T. & Keasling, J. D. Modulation of gene expression from the arabinose-inducible araBAD promoter. J. Ind. Microbiol. Biotechnol.29, 34–37 (2002). CASPubMed Google Scholar
Morgan-Kiss, R. M., Wadler, C. & Cronan, J. E. Jr. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Natl Acad. Sci. USA99, 7373–7377 (2002). CASPubMedPubMed Central Google Scholar
Tolker-Nielsen, T., Holmstrom, K., Boe, L. & Molin, S. Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Mol. Microbiol.27, 1099–1105 (1998). CASPubMed Google Scholar
Gottesman, M. Bacteriophage λ: the untold story. J. Mol. Biol.293, 177–180 (1999). CASPubMed Google Scholar
Ptashne, M. Regulation of transcription: from λ to eukaryotes. Trends Biochem. Sci.30, 275–279 (2005). CASPubMed Google Scholar
Thomas, R., Gathoye, A. M. & Lambert, L. A complex control circuit. Regulation of immunity in temperate bacteriophages. Eur. J. Biochem.71, 211–227 (1976). CASPubMed Google Scholar
Shea, M. A. & Ackers, G. K. The OR control system of bacteriophage λ. A physical–chemical model for gene regulation. J. Mol. Biol.181, 211–230 (1985). CASPubMed Google Scholar
Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics149, 1633–1648 (1998). CASPubMedPubMed Central Google Scholar
Herskowitz, I. & Hagen, D. The lysis–lysogeny decision of phage λ: explicit programming and responsiveness. Annu. Rev. Genet.14, 399–445 (1980). CASPubMed Google Scholar
Schurr, M. J., Martin, D. W., Mudd, M. H. & Deretic, V. Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J. Bacteriol.176, 3375–3382 (1994). CASPubMedPubMed Central Google Scholar
Schurr, M. J. et al. The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell. Mol. Biol. Res.39, 371–376 (1993). CASPubMed Google Scholar
Guespin-Michel, J. & Kaufman, M. Positive feedback circuits and adaptive regulations in bacteria. Acta Biotheor.49, 207–218 (2001). CASPubMed Google Scholar
Dacheux, D., Attree, I. & Toussaint, B. Expression of ExsA in trans confers type III secretion system-dependent cytotoxicity on noncytotoxic Pseudomonas aeruginosa cystic fibrosis isolates. Infect. Immun.69, 538–542 (2001). CASPubMedPubMed Central Google Scholar
McCaw, M. L., Lykken, G. L., Singh, P. K. & Yahr, T. L. ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol. Microbiol.46, 1123–1133 (2002). CASPubMed Google Scholar
Lorenz, M. G. & Wackernagel, W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev.58, 563–602 (1994). CASPubMedPubMed Central Google Scholar
Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nature Rev. Microbiol.2, 241–249 (2004). CAS Google Scholar
Hadden, C. & Nester, E. W. Purification of competent cells in the Bacillus subtilis transformation system. J. Bacteriol.95, 876–885 (1968). CASPubMedPubMed Central Google Scholar
Cahn, F. H. & Fox, M. S. Fractionation of transformable bacteria from competent cultures of Bacillus subtilis on renografin gradients. J. Bacteriol.95, 867–875 (1968). References 15, 36 and 37 are classic papers describing population heterogeneity. CASPubMedPubMed Central Google Scholar
van Sinderen, D. et al. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol. Microbiol.15, 455–462 (1995). CASPubMed Google Scholar
Hamoen, L. W., Smits, W. K., de Jong, A., Holsappel, S. & Kuipers, O. P. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res.30, 5517–5528 (2002). CASPubMedPubMed Central Google Scholar
Ogura, M. et al. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J. Bacteriol.184, 2344–2351 (2002). CASPubMedPubMed Central Google Scholar
Berka, R. M. et al. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol. Microbiol.43, 1331–1345 (2002). CASPubMed Google Scholar
Dubnau, D. The regulation of genetic competence in Bacillus subtilis. Mol. Microbiol.5, 11–18 (1991). CASPubMed Google Scholar
van Sinderen, D. & Venema, G. ComK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J. Bacteriol.176, 5762–5770 (1994). CASPubMedPubMed Central Google Scholar
Hamoen, L. W., Van Werkhoven, A. F., Bijlsma, J. J., Dubnau, D. & Venema, G. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev.12, 1539–1550 (1998). CASPubMedPubMed Central Google Scholar
Hoa, T. T., Tortosa, P., Albano, M. & Dubnau, D. Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol. Microbiol.43, 15–26 (2002). CASPubMed Google Scholar
Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J.20, 2528–2535 (2001). Provides evidence that a graded response can be converted to a bistable response using FBM. CASPubMedPubMed Central Google Scholar
Maamar, H. & Dubnau, D. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol.56, 615–624 (2005). References 10 and 47 show experimentally that autostimulation of ComK is essential for the natural bistable process of competence development inB. subtilis. CASPubMed Google Scholar
Steinmoen, H., Knutsen, E. & Havarstein, L. S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl Acad. Sci. USA99, 7681–7686 (2002). CASPubMedPubMed Central Google Scholar
Steinmoen, H., Teigen, A. & Havarstein, L. S. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol.185, 7176–7183 (2003). CASPubMedPubMed Central Google Scholar
Kreth, J., Merritt, J., Shi, W. & Qi, F. Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol. Microbiol.57, 392–404 (2005). CASPubMedPubMed Central Google Scholar
Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. Cannibalism by sporulating bacteria. Science301, 510–513 (2003). CASPubMed Google Scholar
Guiral, S., Mitchell, T. J., Martin, B. & Claverys, J. P. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc. Natl Acad. Sci. USA102, 8710–8715 (2005). CASPubMedPubMed Central Google Scholar
Piggot, P. J. & Losick, R. Bacillus subtilis and its Closest Relatives: From Genes to Cells (eds Sonenshein, A. L., Losick, R. & Hoch, J. A.) 483–517 (American Society for Microbiology, Washington DC, 2002). Google Scholar
Errington, J. Regulation of endospore formation in Bacillus subtilis. Nature Rev. Microbiol.1, 117–126 (2003). CAS Google Scholar
Fawcett, P., Eichenberger, P., Losick, R. & Youngman, P. The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl Acad. Sci. USA97, 8063–8068 (2000). CASPubMedPubMed Central Google Scholar
Burbulys, D., Trach, K. A. & Hoch, J. A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell64, 545–552 (1991). CASPubMed Google Scholar
Lewis, R. J. et al. Dimer formation and transcription activation in the sporulation response regulator Spo0A. J. Mol. Biol.316, 235–245 (2002). CASPubMed Google Scholar
Fujita, M., Gonzalez-Pastor, J. E. & Losick, R. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol.187, 1357–1368 (2005). CASPubMedPubMed Central Google Scholar
Chung, J. D., Stephanopoulos, G., Ireton, K. & Grossman, A. D. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J. Bacteriol.176, 1977–1984 (1994). References 11 and 59 show that Spo0A autostimulation generates sporulation bistability, and that the phosphorelay is used as a tuner to modulate the ratio of sporulating cells. CASPubMedPubMed Central Google Scholar
Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol.50, 1683–1701 (2003). CASPubMed Google Scholar
Dawes, I. W. & Thornley, J. H. Sporulation in Bacillus subtilis. Theoretical and experimental studies in continuous culture systems. J. Gen. Microbiol.62, 49–66 (1970). CASPubMed Google Scholar
Maughan, H. & Nicholson, W. L. Stochastic processes influence stationary-phase decisions in Bacillus subtilis. J. Bacteriol.186, 2212–2214 (2004). CASPubMedPubMed Central Google Scholar
Veening, J. W., Smits, W. K., Hamoen, L. W. & Kuipers, O. P. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. J. Appl. Microbiol. (in the press).
Russo-Marie, F., Roederer, M., Sager, B., Herzenberg, L. A. & Kaiser, D. β-galactosidase activity in single differentiating bacterial cells. Proc. Natl Acad. Sci. USA90, 8194–8198 (1993). CASPubMedPubMed Central Google Scholar
Thony-Meyer, L. & Kaiser, D. devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J. Bacteriol.175, 7450–7462 (1993). CASPubMedPubMed Central Google Scholar
Thomas, R. On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. Springer Ser. Synergetics6, 180–193 (1981). Google Scholar
Burchard, R. P., Burchard, A. C. & Parish, J. H. Pigmentation phenotype instability in Myxococcus xanthus. Can. J. Microbiol.23, 1657–1662 (1977). CASPubMed Google Scholar
Mulec, J. et al. A cka–gfp transcriptional fusion reveals that the colicin K activity gene is induced in only 3 percent of the population. J. Bacteriol.185, 654–659 (2003). CASPubMedPubMed Central Google Scholar
Kuhar, I., van Putten, J. P., Zgur-Bertok, D., Gaastra, W. & Jordi, B. J. Codon-usage based regulation of colicin K synthesis by the stress alarmone ppGpp. Mol. Microbiol.41, 207–216 (2001). CASPubMed Google Scholar
Hautefort, I., Proenca, M. J. & Hinton, J. C. Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl. Environ. Microbiol.69, 7480–7491 (2003). CASPubMedPubMed Central Google Scholar
Sentchilo, V., Zehnder, A. J. & van der Meer, J. R. Characterization of two alternative promoters for integrase expression in the clc genomic island of Pseudomonas sp. strain B13. Mol. Microbiol.49, 93–104 (2003). CASPubMed Google Scholar
Sentchilo, V., Ravatn, R., Werlen, C., Zehnder, A. J. & van der Meer, J. R. Unusual integrase gene expression on the clc genomic island in Pseudomonas sp. strain B13. J. Bacteriol.185, 4530–4538 (2003). CASPubMedPubMed Central Google Scholar
Booth, I. R. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol.78, 19–30 (2002). PubMed Google Scholar
Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science305, 1622–1625 (2004). CASPubMed Google Scholar
Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics169, 1807–1814 (2005). PubMedPubMed Central Google Scholar
Levin, B. R. Microbiology. Noninherited resistance to antibiotics. Science305, 1578–1579 (2004). CASPubMed Google Scholar
Makinoshima, H., Nishimura, A. & Ishihama, A. Fractionation of Escherichia coli cell populations at different stages during growth transition to stationary phase. Mol. Microbiol.43, 269–279 (2002). CASPubMed Google Scholar
Nishino, T., Nayak, B. B. & Kogure, K. Density-dependent sorting of physiologically different cells of Vibrio parahaemolyticus. Appl. Environ. Microbiol.69, 3569–3572 (2003). CASPubMedPubMed Central Google Scholar
Vidal-Mas, J. et al. Rapid flow cytometry — Nile red assessment of PHA cellular content and heterogeneity in cultures of Pseudomonas aeruginosa 47T2 (NCIB 40044) grown in waste frying oil. Antonie Van Leeuwenhoek80, 57–63 (2001). CASPubMed Google Scholar
Branda, S. S., Vik, S., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol.13, 20–26 (2005). CASPubMed Google Scholar
Paulsson, J. Summing up the noise in gene networks. Nature427, 415–418 (2004). CASPubMed Google Scholar
Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet.6, 451–464 (2005). References 7 and 82 are excellent reviews on noise in gene expression. PubMed Google Scholar
Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science297, 1183–1186 (2002). CASPubMed Google Scholar
Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet.31, 69–73 (2002). CASPubMed Google Scholar
Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA99, 12795–12800 (2002). References 83 and 85 show how noise can be measured within a gene network, and show experimentally the effect of the number of molecules on the level of noise. CASPubMedPubMed Central Google Scholar
Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science304, 1811–1814 (2004). CASPubMedPubMed Central Google Scholar
Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science307, 1962–1965 (2005). CASPubMed Google Scholar
Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proc. Natl Acad. Sci. USA98, 8614–8619 (2001). CASPubMedPubMed Central Google Scholar
Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature422, 633–637 (2003). CASPubMed Google Scholar
Smolen, P., Baxter, D. A. & Byrne, J. H. Modeling transcriptional control in gene networks — methods, recent results, and future directions. Bull. Math. Biol.62, 247–292 (2000). CASPubMed Google Scholar
Heinrich, R. & Schuster, S. The modelling of metabolic systems. Structure, control and optimality. Biosystems47, 61–77 (1998). CASPubMed Google Scholar
Thieffry, D., Huerta, A. M., Perez-Rueda, E. & Collado-Vides, J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays20, 433–440 (1998). CASPubMed Google Scholar
Ninfa, A. J. & Mayo, A. E. Hysteresis vs graded responses: the connections make all the difference. Sci. STKE2004, e20 (2004). Google Scholar
Bren, A. & Eisenbach, M. Changing the direction of flagellar rotation in bacteria by modulating the ratio between the rotational states of the switch protein FliM. J. Mol. Biol.312, 699–709 (2001). CASPubMed Google Scholar
Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA100, 7714–7719 (2003). CASPubMedPubMed Central Google Scholar
Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science307, 1965–1969 (2005). CASPubMed Google Scholar
Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA102, 3581–3586 (2005). References 96 and 97 are recent papers describing how noise propagates throughout gene networks. CASPubMedPubMed Central Google Scholar
Schaeffer, P., Millet, J. & Aubert, J. P. Catabolic repression of bacterial sporulation. Proc. Natl Acad. Sci. USA54, 704–711 (1965). CASPubMedPubMed Central Google Scholar
Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol.2, e328 (2004). PubMedPubMed Central Google Scholar
Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. & Eisen, M. B. Noise minimization in eukaryotic gene expression. PLoS Biol.2, e137 (2004). PubMedPubMed Central Google Scholar
Vilar, J. M., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA99, 5988–5992 (2002). CASPubMedPubMed Central Google Scholar
Barkai, N. & Leibler, S. Circadian clocks limited by noise. Nature403, 267–268 (2000). CASPubMed Google Scholar
Hasty, J., Pradines, J., Dolnik, M. & Collins, J. J. Noise-based switches and amplifiers for gene expression. Proc. Natl Acad. Sci. USA97, 2075–2080 (2000). CASPubMedPubMed Central Google Scholar
Korobkova, E., Emonet, T., Vilar, J. M., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature428, 574–578 (2004). CASPubMed Google Scholar
Mittler, J. E. Evolution of the genetic switch in temperate bacteriophage. I. Basic theory. J. Theor. Biol.179, 161–172 (1996). CASPubMed Google Scholar
Stumpf, M. P. & Pybus, O. G. Genetic diversity and models of viral evolution for the hepatitis C virus. FEMS Microbiol. Lett.214, 143–152 (2002). CASPubMed Google Scholar
Wolf, D. M., Vazirani, V. V. & Arkin, A. P. Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol.234, 227–253 (2005). PubMed Google Scholar
Sung, H. M. & Yasbin, R. E. Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J. Bacteriol.184, 5641–5653 (2002). CASPubMedPubMed Central Google Scholar
Abraham, J. M., Freitag, C. S., Clements, J. R. & Eisenstein, B. I. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl Acad. Sci. USA82, 5724–5727 (1985). CASPubMedPubMed Central Google Scholar
Zieg, J., Silverman, M., Hilmen, M. & Simon, M. Recombinational switch for gene expression. Science196, 170–172 (1977). CASPubMed Google Scholar
Meyer, T. F., Gibbs, C. P. & Haas, R. Variation and control of protein expression in Neisseria. Annu. Rev. Microbiol.44, 451–477 (1990). CASPubMed Google Scholar
Stibitz, S., Aaronson, W., Monack, D. & Falkow, S. Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature338, 266–269 (1989). CASPubMed Google Scholar
van der Woude, M., Braaten, B. & Low, D. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol.4, 5–9 (1996). CASPubMed Google Scholar
Owen, P., Meehan, M., Loughry-Doherty, H. & Henderson, I. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol. Med. Microbiol.16, 63–76 (1996). CASPubMed Google Scholar
Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev.68, 538–559 (2004). CASPubMedPubMed Central Google Scholar
Angeli, D., Ferrell, J. E. Jr & Sontag, E. D. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl Acad. Sci. USA101, 1822–1827 (2004). CASPubMedPubMed Central Google Scholar
Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature403, 335–338 (2000). CASPubMed Google Scholar
Haijema, B. J., Hahn, J., Haynes, J. & Dubnau, D. A ComGA-dependent checkpoint limits growth during the escape from competence. Mol. Microbiol.40, 52–64 (2001). CASPubMed Google Scholar
Dean, D. H. & Douthit, H. A. Buoyant density heterogeneity in spores of Bacillus subtilis: biochemical and physiological basis. J. Bacteriol.117, 601–610 (1974). CASPubMedPubMed Central Google Scholar
Krimmer, V. et al. Detection of Staphylococcus aureus and i in clinical samples by 16S rRNA-directed in situ hybridization. J. Clin. Microbiol.37, 2667–2673 (1999). CASPubMedPubMed Central Google Scholar
Lee, N. et al. Combination of fluorescent in situ hybridization and microautoradiography — a new tool for structure–function analyses in microbial ecology. Appl. Environ. Microbiol.65, 1289–1297 (1999). CASPubMedPubMed Central Google Scholar
Lange, M., Tolker-Nielsen, T., Molin, S. & Ahring, B. K. In situ reverse transcription-PCR for monitoring gene expression in individual Methanosarcina mazei S-6 cells. Appl. Environ. Microbiol.66, 1796–1800 (2000). CASPubMedPubMed Central Google Scholar
Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem.67, 509–544 (1998). Classic review on the use of GFP and its potential for modern biology. CASPubMed Google Scholar
Southward, C. M. & Surette, M. G. The dynamic microbe: green fluorescent protein brings bacteria to light. Mol. Microbiol.45, 1191–1196 (2002). CASPubMed Google Scholar
Greer, L. F., III & Szalay, A. A. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence.17, 43–74 (2002). CASPubMed Google Scholar
Davey, H. M. & Kell, D. B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev.60, 641–696 (1996). CASPubMedPubMed Central Google Scholar
Glynn, J. R. Jr, Belongia, B. M., Arnold, R. G., Ogden, K. L. & Baygents, J. C. Capillary electrophoresis measurements of electrophoretic mobility for colloidal particles of biological interest. Appl. Environ. Microbiol.64, 2572–2577 (1998). CASPubMedPubMed Central Google Scholar