Going viral: next-generation sequencing applied to phage populations in the human gut (original) (raw)
Hershey, A. D. & Chase, M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol.36, 39–56 (1952). ArticleCASPubMedPubMed Central Google Scholar
Crick, F. H., Barnett, L., Brenner, S. & Watts-Tobin, R. J. General nature of the genetic code for proteins. Nature192, 1227–1232 (1961). ArticleCASPubMed Google Scholar
Cairns, J., Stent, G. S. & Watson, J. D. Phage and the Origins of Molecular Biology (Cold Spring Harbor Laboratory Press, 1992). Google Scholar
Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol.13, 278–284 (2005). ArticleCASPubMed Google Scholar
Fernandes, P. Antibacterial discovery and development—the failure of success? Nature Biotech.24, 1497–1503 (2006). ArticleCAS Google Scholar
d'Herelle, F. Sur un microbe invisible antagoniste des bacilles dysenteriques. C. R. Acad. Sci. Ser. D165, 373–375 (1917). Google Scholar
Levin, B. R. & Bull, J. J. Population and evolutionary dynamics of phage therapy. Nature Rev. Microbiol.2, 166–173 (2004). Article Google Scholar
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet.11, 181–190 (2010). ArticleCASPubMed Google Scholar
Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science327, 167–170 (2010). An overview of CRISPR-mediated defence mechanisms against phage attack. ArticleCASPubMed Google Scholar
Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell138, 30–50 (2009). A discussion of the nuanced role of the immune system in chronic viral infections. ArticleCASPubMed Google Scholar
Delwart, E. Animal virus discovery: improving animal health, understanding zoonoses, and opportunities for vaccine development. Curr. Opin. Virol.2, 1–9 (2012). Article Google Scholar
Haynes, M. & Rohwer, F. in Metagenomics of the Human Body (ed. Nelson, K. E.) 63–77 (Springer, 2011). Book Google Scholar
Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA82, 6955–6959 (1985). ArticleCASPubMedPubMed Central Google Scholar
Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol.180, 4765–4774 (1998). CASPubMedPubMed Central Google Scholar
Culley, A. I., Lang, A. S. & Suttle, C. A. High diversity of unknown picorna-like viruses in the sea. Nature424, 1054–1057 (2003). ArticleCASPubMed Google Scholar
Breitbart, M., Miyake, J. H. & Rohwer, F. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett.236, 249–256 (2004). ArticleCASPubMed Google Scholar
Hambly, E. et al. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc. Natl Acad. Sci. USA98, 11411–11416 (2001). ArticleCASPubMedPubMed Central Google Scholar
Casjens, S. R. Comparative genomics and evolution of the tailed-bacteriophages. Curr. Opin. Microbiol.8, 451–458 (2005). ArticleCASPubMed Google Scholar
Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature466, 334–338 (2010). The finding that the human faecal virome in healthy individuals is not highly shared between family members, and exhibits surprising stability over the course of 1 year. ArticleCASPubMedPubMed Central Google Scholar
Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res.21, 1616–1625 (2011). A longitudinal study of the impact of controlled diet changes on the human gut virome. ArticleCASPubMedPubMed Central Google Scholar
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464, 59–65 (2010). CASPubMedPubMed Central Google Scholar
Thurber, R. V., Haynes, M., Breitbart, M., Wegley, L. & Rohwer, F. Laboratory procedures to generate viral metagenomes. Nature Protoc.4, 470–483 (2009). A protocol for isolating VLPs for subsequent metagenomic characterization. ArticleCAS Google Scholar
Willner, D. et al. Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4547–4553 (2011). ArticlePubMed Google Scholar
Rohwer, F., Seguritan, V., Choi, D. H., Segall, A. M. & Azam, F. Production of shotgun libraries using random amplification. BioTechniques31, 108–112 (2001). ArticleCASPubMed Google Scholar
Yozwiak, N. L. et al. Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Negl. Trop. Dis.6, e1485 (2012). ArticlePubMedPubMed Central Google Scholar
Li, L. et al. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J. Virol.84, 6955–6965 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ge, X. et al. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in china. J. Virol.86, 4620–4630 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hutchison, C. A., Smith, H. O., Pfannkoch, C. & Venter, J. C. Cell-free cloning using φ29 DNA polymerase. Proc. Natl Acad. Sci. USA102, 17332 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kim, K. H. et al. Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Appl. Environ. Microbiol.74, 5975–5985 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lasken, R. S. & Stockwell, T. B. Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol.7, 19 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kim, K. H. & Bae, J. W. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl. Environ. Microbiol.77, 7663–7668 (2011). ArticleCASPubMedPubMed Central Google Scholar
Andrews-Pfannkoch, C., Fadrosh, D. W., Thorpe, J. & Williamson, S. J. Hydroxyapatite-mediated separation of double-stranded DNA, single-stranded DNA, and RNA genomes from natural viral assemblages. Appl. Environ. Microbiol.76, 5039–5045 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fadrosh, D. W., Andrews-Pfannkoch, C. & Williamson, S. J. Separation of single-stranded DNA, double-stranded DNA and RNA from an environmental viral community using hydroxyapatite chromatography. J. Vis. Exp.2011, e3146 (2011). Google Scholar
Marine, R. et al. Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA. Appl. Environ. Microbiol.77, 8071–8079 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, S. et al. Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS ONE4, e4219 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bibby, K., Viau, E. & Peccia, J. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett. Appl. Microbiol.52, 386–392 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vega Thurber, R. L. et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl Acad. Sci. USA105, 18413–18418 (2008). ArticlePubMedPubMed Central Google Scholar
Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature452, 629–632 (2008). ArticleCASPubMed Google Scholar
Yang, J. et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J. Clin. Microbiol.49, 3463–3469 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xu, B. et al. Metagenomic analysis of fever, thrombocytopenia and leukopenia syndrome (FTLS) in Henan Province, China: discovery of a new bunyavirus. PLoS Pathog.7, e1002369 (2011). ArticleCASPubMedPubMed Central Google Scholar
Coetzee, B. et al. Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology400, 157–163 (2010). ArticleCASPubMed Google Scholar
Minot, S., Grunberg, S., Wu, G. D., Lewis, J. D. & Bushman, F. D. Hypervariable loci in the human gut virome. Proc. Natl Acad. Sci. USA109, 3962–3966 (2012). The finding that hypervariable loci in the virome are predicted to encode Ig superfamily and C-type lectin folds. ArticleCASPubMedPubMed Central Google Scholar
Rohwer, F. & Thurber, R. V. Viruses manipulate the marine environment. Nature459, 207–212 (2009). An overview of the interactions between marine viruses and their hosts. ArticleCASPubMed Google Scholar
Leplae, R., Lima-Mendez, G. & Toussaint, A. ACLAME: A CLAssification of Mobile genetic Elements, update 2010. Nucleic Acids Res.38, D57–D61 (2010). ArticleCASPubMed Google Scholar
Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res.33, 5691–5702 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ghosh, T. S., Mohammed, M. H., Komanduri, D. & Mande, S. S. ProViDE: a software tool for accurate estimation of viral diversity in metagenomic samples. Bioinformation6, 91–94 (2011). ArticlePubMedPubMed Central Google Scholar
Lorenzi, H. A. et al. TheViral MetaGenome Annotation Pipeline(VMGAP): an automated tool for the functional annotation of viral metagenomic shotgun sequencing data. Stand. Genomic Sci.4, 418–429 (2011). ArticleCASPubMedPubMed Central Google Scholar
Meyer, F. et al. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics9, 386 (2008). ArticleCASPubMedPubMed Central Google Scholar
Roux, S. et al. Metavir: a web server dedicated to virome analysis. Bioinformatics27, 3074–3075 (2011). ArticleCASPubMed Google Scholar
Sun, S. et al. Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res.39, D546–D551 (2011). ArticleCASPubMed Google Scholar
Angly, F. et al. PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinformatics6, 41 (2005). ArticleCASPubMedPubMed Central Google Scholar
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature457, 480–484 (2009). ArticleCASPubMed Google Scholar
Turnbaugh, P. J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl Acad. Sci. USA107, 7503–7508 (2010). ArticlePubMedPubMed Central Google Scholar
Hansen, E. E. et al. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc. Natl Acad. Sci. USA108 (Suppl. 1), 4599–4606 (2011). ArticlePubMedPubMed Central Google Scholar
Kim, M. S., Park, E. J., Roh, S. W. & Bae, J. W. Diversity and abundance of single-stranded DNA viruses in human feces. Appl. Environ. Microbiol.77, 8062–8070 (2011). ArticleCASPubMedPubMed Central Google Scholar
Krupovic, M. & Forterre, P. Microviridae goes temperate: microvirus-related proviruses reside in the genomes of Bacteroidetes. PLoS ONE6, e19893 (2011). ArticleCASPubMedPubMed Central Google Scholar
Stern, A., Mick, E., Tirosh, I., Sagy, O. & Sorek, R. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res. 25 Jun 2012 (doi:10.1101/gr.138297.112)
Breitbart, M. et al. Viral diversity and dynamics in an infant gut. Res. Microbiol.159, 367–373 (2008). An article that describes the rapid assembly and unstable features of the gut virome following birth. ArticleCASPubMed Google Scholar
Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol.5, e177 (2007). ArticleCASPubMedPubMed Central Google Scholar
Barondess, J. J. & Beckwith, J. A bacterial virulence determinant encoded by lysogenic coliphage λ. Nature346, 871–874 (1990). ArticleCASPubMed Google Scholar
Plunkett, G. 3rd, Rose, D. J., Durfee, T. J. & Blattner, F. R. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol.181, 1767–1778 (1999). CASPubMedPubMed Central Google Scholar
Markine-Goriaynoff, N. et al. Glycosyltransferases encoded by viruses. J. Gen. Virol.85, 2741–2754 (2004). ArticleCASPubMed Google Scholar
Liu, M. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science295, 2091–2094 (2002). ArticleCASPubMed Google Scholar
Fraser, J. S., Yu, Z., Maxwell, K. L. & Davidson, A. R. Ig-like domains on bacteriophages: a tale of promiscuity and deceit. J. Mol. Biol.359, 496–507 (2006). ArticleCASPubMed Google Scholar
Zhang, T. et al. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol.4, e3 (2006). ArticleCASPubMed Google Scholar
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science332, 970–974 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cann, A. J., Fandrich, S. E. & Heaphy, S. Analysis of the virus population present in equine faeces indicates the presence of hundreds of uncharacterized virus genomes. Virus Genes30, 151–156 (2005). ArticleCASPubMed Google Scholar
Donaldson, E. F. et al. Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J. Virol.84, 13004–13018 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ng, T. F. et al. Metagenomic identification of a novel anellovirus in Pacific harbor seal (Phoca vitulina richardsii) lung samples and its detection in samples from multiple years. J. Gen. Virol.92, 1318–1323 (2011). ArticleCASPubMed Google Scholar
van den Brand, J. M. et al. Metagenomic analysis of the viral flora of pine marten and European badger feces. J. Virol.86, 2360–2365 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dhillon, T. S., Dhillon, E. K., Chau, H. C., Li, W. K. & Tsang, A. H. Studies on bacteriophage distribution: virulent and temperate bacteriophage content of mammalian feces. Appl. Environ. Microbiol.32, 68–74 (1976). CASPubMedPubMed Central Google Scholar
Berg Miller, M. E. et al. Phage–bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ. Microbiol.14, 207–227 (2012). ArticleCASPubMed Google Scholar
Maura, D. et al. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ. Microbiol. 28 Nov 2011 (doi:10.1111/j.1462-2920.2011.02644.x).
Fischetti, V. A., Nelson, D. & Schuch, R. Reinventing phage therapy: are the parts greater than the sum? Nature Biotech.24, 1508–1511 (2006). ArticleCAS Google Scholar
Lu, T. K. & Koeris, M. S. The next generation of bacteriophage therapy. Curr. Opin. Microbiol.14, 524–531 (2011). ArticlePubMed Google Scholar
van Helvoort, T. The controversy between John H. Northrop and Max Delbrück on the formation of bacteriophage: bacterial synthesis or autonomous multiplication? Ann. Sci.49, 545–575 (1992). ArticleCASPubMed Google Scholar
Calendar, R. L. The Bacteriophages (Oxford Univ. Press, 2005). Google Scholar
Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis.10, 597–602 (2010). ArticleCASPubMedPubMed Central Google Scholar
Piddock, L. J. The crisis of no new antibiotics—what is the way forward? Lancet Infect. Dis.12, 249–253 (2012). ArticlePubMed Google Scholar
Clokie, M. R. J. & Kropinski, A. M. Bacteriophages: Methods and Protocols (Humana Press, 2009). Google Scholar
Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature464, 908–912 (2010). ArticleCASPubMed Google Scholar
Geier, M. R., Trigg, M. E. & Merril, C. R. Fate of bacteriophage lambda in non-immune germ-free mice. Nature246, 221–223 (1973). ArticleCASPubMed Google Scholar
Schubbert, R., Renz, D., Schmitz, B. & Doerfler, W. Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc. Natl Acad. Sci. USA94, 961–966 (1997). ArticleCASPubMedPubMed Central Google Scholar
Schubbert, R., Hohlweg, U., Renz, D. & Doerfler, W. On the fate of orally ingested foreign DNA in mice: chromosomal association and placental transmission to the fetus. Mol. Gen. Genet.259, 569–576 (1998). ArticleCASPubMed Google Scholar
Geier, M. R. & Merril, C. R. Lambda phage transcription in human fibroblasts. Virology47, 638–643 (1972). ArticleCASPubMed Google Scholar
Barry, M. A., Dower, W. J. & Johnston, S. A. Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nature Med.2, 299–305 (1996). ArticleCASPubMed Google Scholar
Dunn, I. S. Mammalian cell binding and transfection mediated by surface-modified bacteriophage lambda. Biochimie78, 856–861 (1996). ArticleCASPubMed Google Scholar
Silverman, M. S., Davis, I. & Pillai, D. R. Success of self-administered home fecal transplantation for chronic Clostridium difficile infection. Clin. Gastroenterol. Hepatol.8, 471–473 (2010). ArticlePubMed Google Scholar
Chibani-Chennoufi, S. et al. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob. Agents Chemother.48, 2558–2569 (2004). ArticleCASPubMedPubMed Central Google Scholar
Weiss, M. et al. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology393, 16–23 (2009). ArticleCASPubMed Google Scholar
Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med.1, 6ra14 (2009). ArticleCASPubMedPubMed Central Google Scholar
Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA108, 6252–6257 (2011). ArticlePubMedPubMed Central Google Scholar
Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe6, 279–289 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bergh, O., Borsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature340, 467–468 (1989). ArticleCASPubMed Google Scholar
Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature399, 541–548 (1999). ArticleCASPubMed Google Scholar
Azam, F. et al. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser.10, 257–263 (1983). Article Google Scholar
Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA109, 4544–4549 (2012). ArticlePubMedPubMed Central Google Scholar
Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Marine ecosystems: bacterial photosynthesis genes in a virus. Nature424, 741 (2003). ArticleCASPubMed Google Scholar
Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol.4, e234 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature438, 86–89 (2005). ArticleCASPubMed Google Scholar
Anderson, R. E., Brazelton, W. J. & Baross, J. A. Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front. Microbiol.2, 219 (2011). ArticlePubMedPubMed Central Google Scholar
Roossinck, M. J. The good viruses: viral mutualistic symbioses. Nature Rev. Microbiol.9, 99–108 (2011). An excellent outline of beneficial virus–host interactions in a variety of species. ArticleCAS Google Scholar
Brown, S. P., Le Chat, L., De Paepe, M. & Taddei, F. Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr. Biol.16, 2048–2052 (2006). ArticleCASPubMed Google Scholar
Brown, S. P., Inglis, R. F. & Tadddei, F. Evolutionary ecology of microbial wars: within-host competition and (incidental) virulence. Evol. Appl.2, 32–39 (2009). ArticlePubMedPubMed Central Google Scholar
Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E. & Ochman, H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl Acad. Sci. USA102, 16919–16926 (2005). CASPubMedPubMed Central Google Scholar
Oliver, K. M., Degnan, P. H., Hunter, M. S. & Moran, N. A. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science325, 992–994 (2009). ArticleCASPubMedPubMed Central Google Scholar
Xu, P. et al. Virus infection improves drought tolerance. New Phytol.180, 911–921 (2008). ArticlePubMed Google Scholar
Marquez, L. M., Redman, R. S., Rodriguez, R. J. & Roossinck, M. J. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science315, 513–515 (2007). ArticleCASPubMed Google Scholar
Ophel, K. M., Bird, A. F. & Kerr, A. Association of bacteriophage particles with toxin production by Clavibacter toxicus, the causal agent of annual ryegrass toxicity. Phytopathology83, 676–681 (1993). ArticleCAS Google Scholar
Holtz, L. R., Finkbeiner, S. R., Kirkwood, C. D. & Wang, D. Identification of a novel picornavirus related to cosaviruses in a child with acute diarrhea. Virol. J.5, 159 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kapoor, A. et al. Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J. Infect. Dis.201, 1633–1643 (2010). ArticleCASPubMed Google Scholar
Victoria, J. G. et al. Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J. Virol.83, 4642–4651 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rosario, K., Duffy, S. & Breitbart, M. A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch. Virol. 4 Jul 2012 (doi:10.1007/s00705-012-1391-y).
Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nature Rev. Microbiol.7, 828–836 (2009). A discussion of the consequences of phage predation on microbial substrain diversity, presented as a constant-diversity dynamics model. ArticleCAS Google Scholar
Lu, T. K. & Collins, J. J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl Acad. Sci. USA106, 4629–4634 (2009). ArticlePubMedPubMed Central Google Scholar