Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy (original) (raw)
Landis, D. M., Hall, A. K., Weinstein, L. A. & Reese, T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron1, 201–209 (1988). CASPubMed Google Scholar
Hirokawa, N., Sobue, K., Kanda, K., Harada, A. & Yorifuji, H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol.108, 111–126 (1989). CASPubMed Google Scholar
Bloom, O. et al. Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol.161, 737–747 (2003). CASPubMedPubMed Central Google Scholar
Fifkova, E. & Delay, R. J. Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J. Cell Biol.95, 345–350 (1982). CASPubMed Google Scholar
Matus, A., Ackermann, M., Pehling, G., Byers, H. R. & Fujiwara, K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl Acad. Sci. USA79, 7590–7594 (1982). CASPubMedPubMed Central Google Scholar
Matus, A. Actin-based plasticity in dendritic spines. Science290, 754–758 (2000). CASPubMed Google Scholar
Capani, F., Martone, M. E., Deerinck, T. J. & Ellisman, M. H. Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J. Comp. Neurol.435, 156–170 (2001). CASPubMed Google Scholar
Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nature Rev. Neurosci.5, 24–34 (2004). CAS Google Scholar
Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol.64, 355–405 (2002). CASPubMed Google Scholar
Silberberg, G., Grillner, S., LeBeau, F. E., Maex, R. & Markram, H. Synaptic pathways in neural microcircuits. Trends Neurosci.28, 541–551 (2005). CASPubMed Google Scholar
Kim, S. J. & Linden, D. J. Ubiquitous plasticity and memory storage. Neuron56, 582–592 (2007). CASPubMed Google Scholar
Neves, G., Cooke, S. F. & Bliss, T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci.9, 65–75 (2008). CAS Google Scholar
Dillon, C. & Goda, Y. The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci.28, 25–55 (2005). CASPubMed Google Scholar
Carlisle, H. J. & Kennedy, M. B. Spine architecture and synaptic plasticity. Trends Neurosci.28, 182–187 (2005). CASPubMed Google Scholar
dos Remedios, C. G. et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev.83, 433–473 (2003). CASPubMed Google Scholar
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell112, 453–465 (2003). CASPubMed Google Scholar
Revenu, C., Athman, R., Robine, S. & Louvard, D. The co-workers of actin filaments: from cell structures to signals. Nature Rev. Mol. Cell Biol.5, 635–646 (2004). CAS Google Scholar
Ethell, I. M. & Pasquale, E. B. Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol.75, 161–205 (2005). CASPubMed Google Scholar
Tada, T. & Sheng, M. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol.16, 95–101 (2006). CASPubMed Google Scholar
Schubert, V. & Dotti, C. G. Transmitting on actin: synaptic control of dendritic architecture. J. Cell Sci.120, 205–212 (2007). CASPubMed Google Scholar
Sekino, Y., Kojima, N. & Shirao, T. Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int.51, 92–104 (2007). CASPubMed Google Scholar
Sudhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci.27, 509–547 (2004). PubMed Google Scholar
Murthy, V. N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci.26, 701–728 (2003). CASPubMed Google Scholar
Fernandez-Alfonso, T. & Ryan, T. A. The efficiency of the synaptic vesicle cycle at central nervous system synapses. Trends Cell Biol.16, 413–420 (2006). CASPubMed Google Scholar
Rizzoli, S. O. & Betz, W. J. Synaptic vesicle pools. Nature Rev. Neurosci.6, 57–69 (2005). CAS Google Scholar
Schikorski, T. & Stevens, C. F. Morphological correlates of functionally defined synaptic vesicle populations. Nature Neurosci.4, 391–395 (2001). CASPubMed Google Scholar
Rizzoli, S. O. & Betz, W. J. The structural organization of the readily releasable pool of synaptic vesicles. Science303, 2037–2039 (2004). CASPubMed Google Scholar
Darcy, K. J., Staras, K., Collinson, L. M. & Goda, Y. Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nature Neurosci.9, 315–321 (2006). This study used fluorescence microscopic dye labelling, in combination with FRAP and correlative light and electron microscopy, to demonstrate that synaptic vesicle recycling is not confined to individual synapses, but rather that recycling vesicles are shared between neighbouring boutons in a mechanism that requires actin. CASPubMed Google Scholar
Drenckhahn, D. & Kaiser, H. W. Evidence for the concentration of F-actin and myosin in synapses and in the plasmalemmal zone of axons. Eur. J. Cell Biol.31, 235–240 (1983). CASPubMed Google Scholar
Drenckhahn, D., Frotscher, M. & Kaiser, H. W. Concentration of F-actin in synaptic formations of the hippocampus as visualized by staining with fluorescent phalloidin. Brain Res.300, 381–384 (1984). CASPubMed Google Scholar
Gotow, T., Miyaguchi, K. & Hashimoto, P. H. Cytoplasmic architecture of the axon terminal: filamentous strands specifically associated with synaptic vesicles. Neuroscience40, 587–598 (1991). CASPubMed Google Scholar
Greengard, P., Benfenati, F. & Valtorta, F. Synapsin I, an actin-binding protein regulating synaptic vesicle traffic in the nerve terminal. Adv. Second Messenger Phosphoprotein Res.29, 31–45 (1994). CASPubMed Google Scholar
Hilfiker, S. et al. Synapsins as regulators of neurotransmitter release. Philos. Trans. R. Soc. Lond. B Biol. Sci.354, 269–279 (1999). CASPubMedPubMed Central Google Scholar
Evergren, E., Benfenati, F. & Shupliakov, O. The synapsin cycle: a view from the synaptic endocytic zone. J. Neurosci. Res.85, 2648–2656 (2007). CASPubMed Google Scholar
Chi, P., Greengard, P. & Ryan, T. A. Synapsin dispersion and reclustering during synaptic activity. Nature Neurosci.4, 1187–1193 (2001). CASPubMed Google Scholar
Chi, P., Greengard, P. & Ryan, T. A. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron38, 69–78 (2003). CASPubMed Google Scholar
Phillips, G. R. et al. The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron32, 63–77 (2001). CASPubMed Google Scholar
Siksou, L. et al. Three-dimensional architecture of presynaptic terminal cytomatrix. J. Neurosci.27, 6868–6877 (2007). In this study, electron tomography of samples prepared by the high-pressure freezing method revealed a detailed organization of presynaptic terminals with respect to the distribution of synaptic vesicles and their relationship to the active zone and the cytomatrix. CASPubMedPubMed Central Google Scholar
Dubochet, J. High-pressure freezing for cryoelectron microscopy. Trends Cell Biol.5, 366–368 (1995). CASPubMed Google Scholar
Zuber, B., Nikonenko, I., Klauser, P., Muller, D. & Dubochet, J. The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. Proc. Natl Acad. Sci. USA102, 19192–19197 (2005). CASPubMedPubMed Central Google Scholar
Rostaing, P. et al. Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur. J. Neurosci.24, 3463–3474 (2006). PubMed Google Scholar
Harata, N., Ryan, T. A., Smith, S. J., Buchanan, J. & Tsien, R. W. Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1–43 photoconversion. Proc. Natl Acad. Sci. USA98, 12748–12753 (2001). CASPubMedPubMed Central Google Scholar
Henkel, A. W., Lubke, J. & Betz, W. J. FM1–43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc. Natl Acad. Sci. USA93, 1918–1923 (1996). CASPubMedPubMed Central Google Scholar
Shtrahman, M., Yeung, C., Nauen, D. W., Bi, G. Q. & Wu, X. L. Probing vesicle dynamics in single hippocampal synapses. Biophys. J.89, 3615–3627 (2005). CASPubMedPubMed Central Google Scholar
Jordan, R., Lemke, E. A. & Klingauf, J. Visualization of synaptic vesicle movement in intact synaptic boutons using fluorescence fluctuation spectroscopy. Biophys. J.89, 2091–2102 (2005). CASPubMedPubMed Central Google Scholar
Gaffield, M. A. & Betz, W. J. Synaptic vesicle mobility in mouse motor nerve terminals with and without synapsin. J. Neurosci.27, 13691–13700 (2007). CASPubMedPubMed Central Google Scholar
Gaffield, M. A., Rizzoli, S. O. & Betz, W. J. Mobility of synaptic vesicles in different pools in resting and stimulated frog motor nerve terminals. Neuron51, 317–325 (2006). CASPubMed Google Scholar
Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron20, 917–925 (1998). CASPubMed Google Scholar
Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y. & Labarca, P. Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron28, 941–953 (2000). CASPubMed Google Scholar
Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nature Rev. Mol. Cell Biol.7, 631–643 (2006). CAS Google Scholar
Nunes, P., Haines, N., Kuppuswamy, V., Fleet, D. J. & Stewart, B. A. Synaptic vesicle mobility and presynaptic F-actin are disrupted in a _N_-ethylmaleimide-sensitive factor allele of Drosophila. Mol. Biol. Cell17, 4709–4719 (2006). CASPubMedPubMed Central Google Scholar
Watanabe, M. et al. Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol. Biol. Cell16, 4519–4530 (2005). CASPubMedPubMed Central Google Scholar
Sakaba, T. & Neher, E. Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse. J. Neurosci.23, 837–846 (2003). CASPubMedPubMed Central Google Scholar
Cole, J. C., Villa, B. R. & Wilkinson, R. S. Disruption of actin impedes transmitter release in snake motor terminals. J. Physiol.525, 579–586 (2000). CASPubMedPubMed Central Google Scholar
Morales, M., Colicos, M. A. & Goda, Y. Actin-dependent regulation of neurotransmitter release at central synapses. Neuron27, 539–550 (2000). CASPubMed Google Scholar
Schnell, E. & Nicoll, R. A. Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. J. Neurophysiol.85, 1498–1501 (2001). CASPubMed Google Scholar
Sankaranarayanan, S., Atluri, P. P. & Ryan, T. A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nature Neurosci.6, 127–135 (2003). CASPubMed Google Scholar
Tokuoka, H. & Goda, Y. Myosin light chain kinase is not a regulator of synaptic vesicle trafficking during repetitive exocytosis in cultured hippocampal neurons. J. Neurosci.26, 11606–11614 (2006). CASPubMedPubMed Central Google Scholar
Jensen, V., Walaas, S. I., Hilfiker, S., Ruiz, A. & Hvalby, O. A delayed response enhancement during hippocampal presynaptic plasticity in mice. J. Physiol.583, 129–143 (2007). CASPubMedPubMed Central Google Scholar
Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol.57, 315–344 (1973). CASPubMedPubMed Central Google Scholar
Ceccarelli, B., Hurlbut, W. P. & Mauro, A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol.57, 499–524 (1973). CASPubMedPubMed Central Google Scholar
Shupliakov, O. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl Acad. Sci. USA99, 14476–14481 (2002). CASPubMedPubMed Central Google Scholar
Yano, H. et al. BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nature Neurosci.9, 1009–1018 (2006). CASPubMed Google Scholar
McAllister, A. K., Katz, L. C. & Lo, D. C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci.22, 295–318 (1999). CASPubMed Google Scholar
Turrigiano, G. Homeostatic signaling: the positive side of negative feedback. Curr. Opin. Neurobiol.17, 318–324 (2007). CASPubMed Google Scholar
Bamji, S. X., Rico, B., Kimes, N. & Reichardt, L. F. BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin–β-catenin interactions. J. Cell Biol.174, 289–299 (2006). CASPubMedPubMed Central Google Scholar
Bamji, S. X. et al. Role of β-catenin in synaptic vesicle localization and presynaptic assembly. Neuron40, 719–731 (2003). CASPubMedPubMed Central Google Scholar
Yao, J., Qi, J. & Chen, G. Actin-dependent activation of presynaptic silent synapses contributes to long-term synaptic plasticity in developing hippocampal neurons. J. Neurosci.26, 8137–8147 (2006). This paper detailed how repetitive neuronal stimulation converts presynaptic silent synapses into functional release sites through a process that is dependent on actin polymerization in developing neurons. CASPubMedPubMed Central Google Scholar
Shen, W. et al. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron50, 401–414 (2006). This study showed that presynaptic unsilencing of immature synapses upon repetitive stimulation, which is driven by actin polymerization, requires BDNF and Cdc42 signalling. CASPubMed Google Scholar
Zhang, W. & Benson, D. L. Stages of synapse development defined by dependence on F-actin. J. Neurosci.21, 5169–5181 (2001). CASPubMedPubMed Central Google Scholar
Antonova, I. et al. Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation. Science294, 1547–1550 (2001). CASPubMed Google Scholar
Colicos, M. A., Collins, B. E., Sailor, M. J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell107, 605–616 (2001). CASPubMed Google Scholar
Wang, H. G. et al. Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron45, 389–403 (2005). CASPubMed Google Scholar
Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem.76, 823–847 (2007). CASPubMed Google Scholar
Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Rev. Neurosci.4, 251–265 (2003). CAS Google Scholar
Groc, L. & Choquet, D. AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res.326, 423–438 (2006). CASPubMed Google Scholar
Shepherd, J. D. & Huganir, R. L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol.23, 613–643 (2007). CASPubMed Google Scholar
Kuriu, T., Inoue, A., Bito, H., Sobue, K. & Okabe, S. Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J. Neurosci.26, 7693–7706 (2006). CASPubMedPubMed Central Google Scholar
Allison, D. W., Gelfand, V. I., Spector, I. & Craig, A. M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci.18, 2423–2436 (1998). CASPubMedPubMed Central Google Scholar
Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci.15, 4148–4156 (1995). CASPubMedPubMed Central Google Scholar
van Zundert, B. et al. Developmental-dependent action of microtubule depolymerization on the function and structure of synaptic glycine receptor clusters in spinal neurons. J. Neurophysiol.91, 1036–1049 (2004). CASPubMed Google Scholar
Charrier, C., Ehrensperger, M. V., Dahan, M., Levi, S. & Triller, A. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J. Neurosci.26, 8502–8511 (2006). CASPubMedPubMed Central Google Scholar
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci.25, 103–126 (2002). CASPubMed Google Scholar
Morishita, W., Marie, H. & Malenka, R. C. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nature Neurosci.8, 1043–1050 (2005). CASPubMed Google Scholar
Star, E. N., Kwiatkowski, D. J. & Murthy, V. N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neurosci.5, 239–246 (2002). CASPubMed Google Scholar
Halpain, S., Hipolito, A. & Saffer, L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci.18, 9835–9844 (1998). CASPubMedPubMed Central Google Scholar
Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C. & Kasai, H. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron57, 719–729 (2008). CASPubMed Google Scholar
Zhou, Q., Xiao, M. & Nicoll, R. A. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl Acad. Sci. USA98, 1261–1266 (2001). CASPubMedPubMed Central Google Scholar
Osterweil, E., Wells, D. G. & Mooseker, M. S. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol.168, 329–338 (2005). CASPubMedPubMed Central Google Scholar
Hering, H. & Sheng, M. Dendritic spines: structure, dynamics and regulation. Nature Rev. Neurosci.2, 880–888 (2001). CAS Google Scholar
Franks, K. M., Bartol, T. M. Jr & Sejnowski, T. J. A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys. J.83, 2333–2348 (2002). CASPubMedPubMed Central Google Scholar
McAllister, A. K. & Stevens, C. F. Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc. Natl Acad. Sci. USA97, 6173–6178 (2000). CASPubMedPubMed Central Google Scholar
Liu, G., Choi, S. & Tsien, R. W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron22, 395–409 (1999). CASPubMed Google Scholar
Silver, R. A., Cull-Candy, S. G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol.494, 231–250 (1996). CASPubMedPubMed Central Google Scholar
Raghavachari, S. & Lisman, J. E. Properties of quantal transmission at CA1 synapses. J. Neurophysiol.92, 2456–2467 (2004). CASPubMed Google Scholar
Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neurosci.7, 1104–1112 (2004). Using a FRET-based imaging technique, the authors of this study showed that LTP induction shifts the actin equilibrium towards F-actin in dendritic spines, whereas LTD induction shifts the equilibrium towards G-actin. CASPubMed Google Scholar
Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron38, 447–460 (2003). CASPubMed Google Scholar
Lin, B. et al. Theta stimulation polymerizes actin in dendritic spines of hippocampus. J. Neurosci.25, 2062–2069 (2005). CASPubMedPubMed Central Google Scholar
Krucker, T., Siggins, G. R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl Acad. Sci. USA97, 6856–6861 (2000). CASPubMedPubMed Central Google Scholar
Kim, C. H. & Lisman, J. E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci.19, 4314–4324 (1999). CASPubMedPubMed Central Google Scholar
Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature429, 761–766 (2004). Using two-photon photolysis of caged glutamate at single synapses, the authors of this paper showed that structural and functional LTP are correlated at small but not large spines. CASPubMedPubMed Central Google Scholar
Rosenmund, C. & Westbrook, G. L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron10, 805–814 (1993). CASPubMed Google Scholar
Okamoto, K., Narayanan, R., Lee, S. H., Murata, K. & Hayashi, Y. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc. Natl Acad. Sci. USA104, 6418–6423 (2007). CASPubMedPubMed Central Google Scholar
Huang, F., Chotiner, J. K. & Steward, O. Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J. Neurosci.27, 9054–9067 (2007). CASPubMedPubMed Central Google Scholar
Wang, X. B., Yang, Y. & Zhou, Q. Independent expression of synaptic and morphological plasticity associated with long-term depression. J. Neurosci.27, 12419–12429 (2007). This paper demonstrated that there is a clear dissociation between functional LTD and structural LTD (spine shrinkage). CASPubMedPubMed Central Google Scholar
Zhou, Q., Homma, K. J. & Poo, M. M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron44, 749–757 (2004). CASPubMed Google Scholar
Sdrulla, A. D. & Linden, D. J. Double dissociation between long-term depression and dendritic spine morphology in cerebellar Purkinje cells. Nature Neurosci.10, 546–548 (2007). CASPubMed Google Scholar
Kopec, C. D., Li, B., Wei, W., Boehm, J. & Malinow, R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci.26, 2000–2009 (2006). This study showed that synaptic incorporation of the GluR1 cytosolic C terminus is required to permit a stable increase in spine size upon LTP induction. CASPubMedPubMed Central Google Scholar
El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science290, 1364–1368 (2000). CASPubMed Google Scholar
Kopec, C. D., Real, E., Kessels, H. W. & Malinow, R. GluR1 links structural and functional plasticity at excitatory synapses. J. Neurosci.27, 13706–13718 (2007). CASPubMedPubMed Central Google Scholar
Ehrlich, I. & Malinow, R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J. Neurosci.24, 916–927 (2004). CASPubMedPubMed Central Google Scholar
Bardoni, B. & Mandel, J. L. Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X linked mental retardation genes. Curr. Opin. Genet. Dev.12, 284–293 (2002). CASPubMed Google Scholar
Ramakers, G. J. Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci.25, 191–199 (2002). CASPubMed Google Scholar
Blanpied, T. A. & Ehlers, M. D. Microanatomy of dendritic spines: emerging principles of synaptic pathology in psychiatric and neurological disease. Biol. Psychiatry55, 1121–1127 (2004). PubMed Google Scholar
Newey, S. E., Velamoor, V., Govek, E. E. & Van Aelst, L. Rho GTPases, dendritic structure, and mental retardation. J. Neurobiol.64, 58–74 (2005). CASPubMed Google Scholar
Zhao, L. et al. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nature Neurosci.9, 234–242 (2006). CASPubMed Google Scholar
Ackermann, M. & Matus, A. Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nature Neurosci.6, 1194–1200 (2003). CASPubMed Google Scholar
Lamprecht, R., Farb, C. R., Rodrigues, S. M. & LeDoux, J. E. Fear conditioning drives profilin into amygdala dendritic spines. Nature Neurosci.9, 481–483 (2006). CASPubMed Google Scholar
Pilo Boyl, P. et al. Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior. Embo J.26, 2991–3002 (2007). CASPubMedPubMed Central Google Scholar
Scita, G. et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature401, 290–293 (1999). CASPubMed Google Scholar
Disanza, A. et al. Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nature Cell Biol.6, 1180–1188 (2004). CASPubMed Google Scholar
Offenhauser, N. et al. Increased ethanol resistance and consumption in Eps8 knockout mice correlates with altered actin dynamics. Cell127, 213–226 (2006). CASPubMed Google Scholar
Furukawa, K. et al. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci.17, 8178–8186 (1997). CASPubMedPubMed Central Google Scholar
Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature411, 1065–1068 (2001). CASPubMed Google Scholar
Yasuda, R. et al. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nature Neurosci.9, 283–291 (2006). CASPubMed Google Scholar
Cooper, J. A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol.105, 1473–1478 (1987). CASPubMed Google Scholar
Spector, I., Braet, F., Shochet, N. R. & Bubb, M. R. New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc. Res. Tech.47, 18–37 (1999). CASPubMed Google Scholar
Yarmola, E. G., Somasundaram, T., Boring, T. A., Spector, I. & Bubb, M. R. Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A. J. Biol. Chem.275, 28120–28127 (2000). CASPubMed Google Scholar
Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nature Neurosci.2, 618–624 (1999). CASPubMed Google Scholar
Harris, K. M. & Stevens, J. K. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci.9, 2982–2997 (1989). CASPubMedPubMed Central Google Scholar
Racca, C., Stephenson, F. A., Streit, P., Roberts, J. D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci.20, 2512–2522 (2000). CASPubMedPubMed Central Google Scholar
Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron21, 545–559 (1998). CASPubMed Google Scholar
Isaac, J. T. Postsynaptic silent synapses: evidence and mechanisms. Neuropharmacology45, 450–460 (2003). CASPubMed Google Scholar
Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure-stability-function relationships of dendritic spines. Trends Neurosci.26, 360–368 (2003). CASPubMed Google Scholar
Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci.4, 1086–1092 (2001). CASPubMed Google Scholar
Nagerl, U. V., Eberhorn, N., Cambridge, S. B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron44, 759–767 (2004). PubMed Google Scholar
Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature399, 66–70 (1999). CASPubMed Google Scholar
Parnass, Z., Tashiro, A. & Yuste, R. Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons. Hippocampus10, 561–568 (2000). CASPubMed Google Scholar
Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature420, 788–794 (2002). CASPubMed Google Scholar
Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature420, 812–816 (2002). CASPubMed Google Scholar
Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science283, 1923–1927 (1999). CASPubMed Google Scholar
Thalhammer, A. et al. CaMKII translocation requires local NMDA receptor-mediated Ca2+ signaling. Embo J.25, 5873–5883 (2006). CASPubMedPubMed Central Google Scholar
Saneyoshi, T. et al. Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/βPIX signaling complex. Neuron57, 94–107 (2008). CASPubMedPubMed Central Google Scholar
Park, E. et al. The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the βPIX guanine nucleotide exchange factor for Rac1 and Cdc42. J. Biol. Chem.278, 19220–19229 (2003). CASPubMed Google Scholar
Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron35, 121–133 (2002). CASPubMed Google Scholar
Xie, Z. et al. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron56, 640–656 (2007). CASPubMedPubMed Central Google Scholar
Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science285, 895–898 (1999). CASPubMed Google Scholar
Schubert, V., Da Silva, J. S. & Dotti, C. G. Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J. Cell Biol.172, 453–467 (2006). CASPubMedPubMed Central Google Scholar
Wyszynski, M. et al. Competitive binding of α-actinin and calmodulin to the NMDA receptor. Nature385, 439–442 (1997). CASPubMed Google Scholar