Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity (original) (raw)
Nishiyama, A. Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist13, 62–76 (2007). ArticleCASPubMed Google Scholar
Nishiyama, A., Watanabe, M., Yang, Z. & Bu, J. Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells. J. Neurocytol.31, 437–455 (2002). ArticleCASPubMed Google Scholar
Levine, J. M. & Stallcup, W. B. Plasticity of developing cerebellar cells in vitro studied with antibodies against the NG2 antigen. J. Neurosci.7, 2721–2731 (1987). ArticleCASPubMedPubMed Central Google Scholar
Stallcup, W. B. & Beasley, L. Bipotential glial precursor cells of the optic nerve express the NG2 proteoglycan. J. Neurosci.7, 2737–2744 (1987). ArticleCASPubMedPubMed Central Google Scholar
Richardson, W. D., Pringle, N., Mosley, M. J., Westermark, B. & Dubois-Dalcq, M. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell53, 309–319 (1988). ArticleCASPubMed Google Scholar
Noble, M., Murray, K., Stroobant, P., Waterfield, M. D. & Riddle, P. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature333, 560–562 (1988). ArticleCASPubMed Google Scholar
Pringle, N. P., Mudhar, H. S., Collarini, E. J. & Richardson, W. D. PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development115, 535–551 (1992). ArticleCASPubMed Google Scholar
Pringle, N. P. & Richardson, W. D. A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development117, 525–533 (1993). ArticleCASPubMed Google Scholar
Spassky, N. et al. Single or multiple oligodendroglial lineages: a controversy. Glia29, 143–148 (2000). ArticleCASPubMed Google Scholar
Fruttiger, M. et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development126, 457–467 (1999). ArticleCASPubMed Google Scholar
Nishiyama, A., Lin, X. H., Giese, N., Heldin, C. H. & Stallcup, W. B. Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J. Neurosci. Res.43, 299–314 (1996). ArticleCASPubMed Google Scholar
Nishiyama, A., Yu, M., Drazba, J. A. & Tuohy, V. K. Normal and reactive NG2+ glial cells are distinct from resting and activated microglia. J. Neurosci. Res.48, 299–312 (1997). ArticleCASPubMed Google Scholar
Komitova, M., Zhu, X., Serwanski, D. R. & Nishiyama, A. NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J. Comp. Neurol. (in the press).
Dawson, M. R., Polito, A., Levine, J. M. & Reynolds, R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci.24, 476–488 (2003). ArticleCASPubMed Google Scholar
Ozerdem, U., Grako, K. A., Dahlin-Huppe, K., Monosov, E. & Stallcup, W. B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn.222, 218–227 (2001). ArticleCASPubMed Google Scholar
Bignami, A., Eng, L. F., Dahl, D. & Uyeda, C. T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res.43, 429–435 (1972). ArticleCASPubMed Google Scholar
Furuta, A., Rothstein, J. D. & Martin, L. J. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci.17, 8363–8375 (1997). ArticleCASPubMedPubMed Central Google Scholar
Polito, A. & Reynolds, R. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J. Anat.207, 707–716 (2005). ArticlePubMedPubMed Central Google Scholar
Ghandour, M. S., Langley, O. K., Labourdette, G., Vincendon, G. & Gombos, G. Specific and artefactual cellular localizations of S 100 protein: an astrocyte marker in rat cerebellum. Dev. Neurosci.4, 66–78 (1981). ArticleCASPubMed Google Scholar
Ludwin, S. K., Kosek, J. C. & Eng, L. F. The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J. Comp. Neurol.165, 197–208 (1976). ArticleCASPubMed Google Scholar
Dyck, R. H., Van Eldick, L. J. & Cynader, M. S. Immunohistochemical localization of the S-100β protein in postnatal cat visual cortex: spatial and temporal patterns of expression in cortical and subcortical glia. Brain Res. Dev. Brain Res.72, 181–192 (1993). ArticleCASPubMed Google Scholar
Deloulme, J. C. et al. Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol. Cell. Neurosci.27, 453–465 (2004). ArticleCASPubMed Google Scholar
Hachem, S., Aguirre, A., Vives, V., Marks, A., Gallo, V. & Legraverend, C. Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia51, 181–197 (2005). Article Google Scholar
Cenci di Bello, I., Dawson, M. R., Levine, J. M. & Reynolds, R. Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation. J. Neurocytol.28, 365–381 (1999). Article Google Scholar
Dawson, M. R., Levine, J. M. & Reynolds, R. NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J. Neurosci. Res.61, 471–479 (2000). ArticleCASPubMed Google Scholar
Bu, J., Akhtar, N. & Nishiyama, A. Transient expression of the NG2 proteoglycan by a subpopulation of activated macrophages in an excitotoxic hippocampal lesion. Glia34, 296–310 (2001). ArticleCASPubMed Google Scholar
Jones, L. L., Sajed, D. & Tuszynski, M. H. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J. Neurosci.23, 9276–9288 (2003). ArticleCASPubMedPubMed Central Google Scholar
McTigue, D. M., Wei, P. & Stokes, B. T. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J. Neurosci.21, 3392–3400 (2001). ArticleCASPubMedPubMed Central Google Scholar
Levine, J. M., Stincone, F. & Lee, Y. S. Development and differentiation of glial precursor cells in the rat cerebellum. Glia7, 307–321 (1993). ArticleCASPubMed Google Scholar
Peters, A. A fourth type of neuroglial cell in the adult central nervous system. J. Neurocytol.33, 345–357 (2004). This study provides an ultrastructural confirmation that there is an abundant glial population in the mature CNS that is morphologically distinct from astrocytes, oligodendrocytes and microglia. ArticlePubMed Google Scholar
Karram, K. et al. NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse. Genesis 15 Oct 2008 (doi: 10.1002/dvg.20440). This paper describes the distribution of the reporter EYFP in the new transgenic mouse line in which EYFP was inserted into theCspg4locus. ArticleCASPubMed Google Scholar
Zhu, X., Bergles, D. E. & Nishiyama, A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development135, 145–157 (2008). Fate mapping of polydendrocytes using NG2–Cre-transgenic mice showed that the predominant fate of these cells is to differentiate into oligodendrocytes and a subset of protoplasmic astrocytes in the grey matter. ArticleCASPubMed Google Scholar
Reynolds, R. & Hardy, R. Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo. J. Neurosci. Res.47, 455–470 (1997). ArticleCASPubMed Google Scholar
Kitada, M. & Rowitch, D. H. Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia54, 35–46 (2006). ArticlePubMed Google Scholar
Ligon, K. L. et al. Development of NG2 neural progenitor cells requires Olig gene function. Proc. Natl Acad. Sci. USA103, 7853–7858 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell109, 75–86 (2002). ArticleCASPubMed Google Scholar
Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell109, 61–73 (2002). ArticleCASPubMed Google Scholar
Bu, J., Banki, A., Wu, Q. & Nishiyama, A. Increased NG2+ glial cell proliferation and oligodendrocyte generation in the hypomyelinating mutant shiverer. Glia48, 51–63 (2004). ArticlePubMed Google Scholar
Horner, P. J. et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci.20, 2218–2228 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zhu, X., Hill, R. A. & Nishiyama, A. NG2 cells generate oligodendrocytes and gray matter astrocytes in the spinal cord. Neuron Glia Biol. 13 Nov 2008 (doi:10.1017/S1740925X09000015). ArticlePubMed Google Scholar
Zhu, X., Komitova, M., Suzuki, R. & Nishiyama, A. Lack of neurogenesis from NG2 cells in olfactory bulb. Neuroscience Meeting Planner 455.2 (San Diego, 2007).
Dimou, L., Simon, C., Takebayashi, H. & Gotz, M. Progeny of Olig2-expressing progenitors in the grey and white matter of the adult mouse cerebral cortex. J. Neurosci.28, 10434–10442 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rivers, R. E. et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nature Neurosci.11, 1392–1401 (2008). A carefully conducted study using PDGFRα–CreER-transgenic mice which demonstrated that polydendrocytes (PDGFRα-expressing cells) in the adult brain generate oligodendrocytes and a small number of neurons in the piriform cortex but not the olfactory bulb. ArticleCASPubMed Google Scholar
McCarthy, G. F. & Leblond, C. P. Radioautographic evidence for slow astrocyte turnover and modest oligodendrocyte production in the corpus callosum of adult mice infused with 3H-thymidine. J. Comp. Neurol.271, 589–603 (1988). ArticleCASPubMed Google Scholar
Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature303, 390–396 (1983). ArticleCASPubMed Google Scholar
Rao, M. S. & Mayer-Proschel, M. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev. Biol.188, 48–63 (1997). ArticleCASPubMed Google Scholar
Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci.28, 264–278 (2008). A comprehensive transcriptional profiling of neurons, astrocytes and oligodendrocytes isolated from different postnatal stages. ArticleCASPubMedPubMed Central Google Scholar
ffrench-Constant, C. & Raff, M. C. The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination. Nature323, 335–338 (1986). ArticleCASPubMed Google Scholar
Liu, Y. et al. Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia40, 25–43 (2002). ArticlePubMed Google Scholar
Nishiyama, A., Chang, A. & Trapp, B. D. NG2+ glial cells: a novel glial cell population in the adult brain. J. Neuropathol. Exp. Neurol.58, 1113–1124 (1999). ArticleCASPubMed Google Scholar
Reynolds, R. et al. The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. J. Neurocytol.31, 523–536 (2002). ArticlePubMed Google Scholar
Espinosa de los Monteros, A., Zhang, M. & de Vellis, J. O2A progenitor cells transplanted into the neonatal rat brain develop into oligodendrocytes but not astrocytes. Proc. Natl Acad. Sci. USA90, 50–54 (1993). ArticleCASPubMedPubMed Central Google Scholar
Groves, A. K. et al. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature362, 453–455 (1993). ArticleCASPubMed Google Scholar
Franklin, R. J. M., Bayley, S. A., Milner, R., ffrench-Constant, C. & Blakemore, W. F. Differentiation of the O-2A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia-deficient areas of CNS white matter. Glia13, 39–44 (1995). ArticleCASPubMed Google Scholar
Windrem, M. S. et al. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenically dysmyelinated brain. Nature Med.10, 93–97 (2004). ArticleCASPubMed Google Scholar
Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C. G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis28, 147–155 (2000). ArticleCASPubMed Google Scholar
Cajal, S. R. Histology of the Nervous System (Oxford University Press, 1995). Google Scholar
Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci.22, 183–192 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neurosci.9, 173–179 (2006). Demonstrates that at least three different sources of progenitor cells contribute to oligodendrogliogenesis in the forebrain and are functionally equivalent in their oligodendrogliogenic potential. ArticleCASPubMed Google Scholar
Levison, S. W., Young, G. M. & Goldman, J. E. Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J. Neurosci. Res.57, 435–446 (1999). ArticleCASPubMed Google Scholar
Parnavelas, J. G. Glial cell lineages in the rat cerebral cortex. Exp. Neurol.156, 418–429 (1999). ArticleCASPubMed Google Scholar
Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron37, 751–764 (2003). ArticleCASPubMed Google Scholar
Voigt, T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol.289, 74–88 (1989). ArticleCASPubMed Google Scholar
Fukuda, S., Kondo, T., Takebayashi, H. & Taga, T. Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. Cell Death Differ.11, 196–202 (2004). ArticleCASPubMed Google Scholar
Marshall, C. A., Novitch, B. G. & Goldman, J. E. Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J. Neurosci.25, 7289–7298 (2005). ArticleCASPubMedPubMed Central Google Scholar
Setoguchi, T. & Kondo, T. Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation. J. Cell Biol.166, 963–968 (2004). ArticleCASPubMedPubMed Central Google Scholar
Masahira, N. et al. Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Dev. Biol.293, 358–369 (2006). ArticleCASPubMed Google Scholar
Takebayashi, H. et al. Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev.99, 143–148 (2000). ArticleCASPubMed Google Scholar
Cai, J. et al. A crucial role for Olig2 in white matter astrocyte development. Development134, 1887–1899 (2007). Using different Cre driver lines crossed to floxedOlig2mice,Olig2was deleted in different populations. Differential astrogliogenic effects ofOlig2deletion are seen in GFAP+ early stem cells and inCnp+ oligodendrocyte lineage cells. ArticleCASPubMed Google Scholar
Cheng, X. et al. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Stem Cells25, 3204–3214 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kondo, T. & Raff, M. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev.18, 2963–2972 (2004). This paper extended the authors' earlier finding that isolated OPCs can be reprogrammed to turn into multipotent cells and described a role for chromatin remodelling in this conversion. ArticleCASPubMedPubMed Central Google Scholar
Marin-Husstege, M. et al. Multiple roles of Id4 in developmental myelination: predicted outcomes and unexpected findings. Glia54, 285–296 (2006). ArticlePubMed Google Scholar
Samanta, J. & Kessler, J. A. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development131, 4131–4142 (2004). ArticleCASPubMed Google Scholar
Sauvageot, C. M. & Stiles, C. D. Molecular mechanisms controlling cortical gliogenesis. Curr. Opin. Neurobiol.12, 244–249 (2002). ArticleCASPubMed Google Scholar
Hampton, D. W. et al. A potential role for bone morphogenetic protein signalling in glial cell fate determination following adult central nervous system injury in vivo. Eur. J. Neurosci.26, 3024–3035 (2007). This article shows that noggin must be blocked before polydendrocytes can be transformed into astrocytes in a neocortical mechanical wound. ArticlePubMed Google Scholar
Alonso, G. NG2 proteoglycan-expressing cells of the adult rat brain: possible involvement in the formation of glial scar astrocytes following stab wound. Glia49, 318–338 (2005). ArticleCASPubMed Google Scholar
Magnus, T. et al. Adult glial precursor proliferation in mutant SOD1G93A mice. Glia56, 200–208 (2008). ArticlePubMed Google Scholar
Magnus, T. et al. Evidence that nucleocytoplasmic Olig2 translocation mediates brain-injury-induced differentiation of glial precursors to astrocytes. J. Neurosci. Res.85, 2126–2137 (2007). ArticleCASPubMed Google Scholar
Schools, G. P., Zhou, M. & Kimelberg, H. K. Electrophysiologically “complex” glial cells freshly isolated from the hippocampus are immunopositive for the chondroitin sulfate proteoglycan NG2. J. Neurosci. Res.73, 765–777 (2003). ArticleCASPubMed Google Scholar
Zhou, M., Schools, G. P. & Kimelberg, H. K. GFAP mRNA positive glia acutely isolated from rat hippocampus predominantly show complex current patterns. Mol. Brain Res.76, 121–131 (2000). ArticleCASPubMed Google Scholar
Matthias, K. et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci.23, 1750–1758 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ye, P., Bagnell, R. & D'Ercole, A. J. Mouse NG2+ oligodendrocyte precursors express mRNA for proteolipid protein but not its DM-20 variant: a study of laser microdissection-captured NG2+ cells. J. Neurosci.23, 4401–4405 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zuo, Y. et al. Fluorescent proteins expressed in mouse transgenic lines mark subsets of glia, neurons, macrophages, and dendritic cells for vital examination. J. Neurosci.24, 10999–11009 (2004). ArticleCASPubMedPubMed Central Google Scholar
Domercq, M. & Matute, C. Expression of glutamate transporters in the adult bovine corpus callosum. Brain Res. Mol. Brain Res.67, 296–302 (1999). ArticleCASPubMed Google Scholar
Paukert, M. & Bergles, D. E. Synaptic communication between neurons and NG2+ cells. Curr. Opin. Neurobiol.16, 515–521 (2006). ArticleCASPubMed Google Scholar
Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron28, 41–51 (2000). ArticleCASPubMed Google Scholar
Zhuo, L. et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis31, 85–94 (2001). ArticleCASPubMed Google Scholar
Omlin, F. X. & Waldmeyer, J. Differentiation of neuron-like cells in cultured rat optic nerves: a neuron or common neuron-glia progenitor? Dev. Biol.133, 247–253 (1989). ArticleCASPubMed Google Scholar
Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science289, 1754–1757 (2000). ArticleCASPubMed Google Scholar
Liu, A. et al. The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. J. Neurosci.27, 7339–7343 (2007). This paper showed that inhibiting histone deacetylation can convert OPCs into neuronal cellsin vitro, but the identity of cells that are affected by valproatein vivoremains unclear. ArticleCASPubMedPubMed Central Google Scholar
Belachew, S. et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol.161, 169–186 (2003). This paper, along with subsequently published papers from the same group (see references 95 and 96), demonstrated neuronal differentiation from polydendrocytes. ArticleCASPubMedPubMed Central Google Scholar
Roy, N. S. et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J. Neurosci.19, 9986–9995 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nunes, M. C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nature Med.9, 439–447 (2003). ArticleCASPubMed Google Scholar
Aguirre, A. & Gallo, V. Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J. Neurosci.24, 10530–10541 (2004). ArticleCASPubMedPubMed Central Google Scholar
Aguirre, A. A., Chittajallu, R., Belachew, S. & Gallo, V. NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J. Cell Biol.165, 575–589 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dayer, A. G., Cleaver, K. M., Abouantoun, T. & Cameron, H. A. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol.168, 415–427 (2005). ArticleCASPubMedPubMed Central Google Scholar
Alvarez-Buylla, A., Seri, B. & Doetsch, F. Identification of neural stem cells in the adult vertebrate brain. Brain Res. Bull.57, 751–758 (2002). ArticlePubMed Google Scholar
Platel, J.-C., Gordon, V., Heintz, T. & Bordey, A. GFAP-GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia57, 66–78 (2008). Article Google Scholar
Buffo, A. et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc. Natl Acad. Sci. USA105, 3581–3586 (2008). This study showed that, in contrast to the neurogenic potential of astrocytes in the mature brain, isolated polydendrocytes did not generate neurospheres. ArticleCASPubMedPubMed Central Google Scholar
Lassmann, H., Bruck, W., Lucchinetti, C. & Rodriguez, M. Remyelination in multiple sclerosis. Mult. Scler.3, 133–136 (1997). ArticleCASPubMed Google Scholar
Chandran, S. et al. Myelin repair: the role of stem and precursor cells in multiple sclerosis. Philos. Trans. R. Soc. Lond. B Biol. Sci.363, 171–183 (2008). ArticleCASPubMed Google Scholar
Smith, K. J. & McDonald, W. I. Spontaneous and mechanically evoked activity due to central demyelinating lesion. Nature286, 154–155 (1980). ArticleCASPubMed Google Scholar
Chang, A., Nishiyama, A., Peterson, J., Prineas, J. & Trapp, B. D. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci.20, 6404–6412 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chang, A., Tourtellotte, W. W., Rudick, R. & Trapp, B. D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med.346, 165–173 (2002). ArticlePubMed Google Scholar
Prineas, J. W. et al. Multiple sclerosis: oligodendrocyte proliferation and differentiation in fresh lesions. Lab. Invest.61, 489–503 (1989). CASPubMed Google Scholar
Solanky, M. et al. Proliferating oligodendrocytes are present in both active and chronic inactive multiple sclerosis plaques. J. Neurosci. Res.65, 308–317 (2001). ArticleCASPubMed Google Scholar
Wolswijk, G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J. Neurosci.18, 601–609 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bunge, M. B., Bunge, R. P. & Ris, H. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J. Biophys. Biochem. Cytol.10, 67–94 (1961). ArticleCASPubMedPubMed Central Google Scholar
Carroll, W. M., Jennings, A. R. & Mastaglia, F. L. The origin of remyelinating oligodendrocytes in antiserum-mediated demyelinative optic neuropathy. Brain113, 953–973 (1990). ArticlePubMed Google Scholar
Gensert, J. M. & Goldman, J. E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron19, 197–203 (1997). ArticleCASPubMed Google Scholar
Keirstead, H. S., Levine, J. M. & Blakemore, W. F. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia22, 161–170 (1998). ArticleCASPubMed Google Scholar
Levine, J. M. & Reynolds, R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp. Neurol.160, 333–347 (1999). ArticleCASPubMed Google Scholar
Armstrong, R. C., Le, T. Q., Frost, E. E., Borke, R. C. & Vana, A. C. Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter. J. Neurosci.22, 8574–8585 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mason, J. L. et al. Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J. Neurosci. Res.61, 251–262 (2000). ArticleCASPubMed Google Scholar
Watanabe, M., Toyama, Y. & Nishiyama, A. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J. Neurosci. Res.69, 826–836 (2002). ArticleCASPubMed Google Scholar
Levison, S. W. & Goldman, J. E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron10, 201–212 (1993). ArticleCASPubMed Google Scholar
Nait-Oumesmar, B. et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci.11, 4357–4366 (1999). ArticleCASPubMed Google Scholar
Jackson, E. L. et al. PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron51, 187–199 (2006). ArticleCASPubMed Google Scholar
Blakemore, W. F., Gilson, J. M. & Crang, A. J. Transplanted glial cells migrate over a greater distance and remyelinate demyelinated lesions more rapidly than endogenous remyelinating cells. J. Neurosci. Res.61, 288–294 (2000). ArticleCASPubMed Google Scholar
Franklin, R. J., Gilson, J. M. & Blakemore, W. F. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J. Neurosci. Res.50, 337–344 (1997). ArticleCASPubMed Google Scholar
Penderis, J., Shields, S. A. & Franklin, R. J. Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system. Brain126, 1382–1391 (2003). ArticlePubMed Google Scholar
Mason, J. L. et al. Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am. J. Pathol.164, 1673–1682 (2004). ArticlePubMedPubMed Central Google Scholar
Armstrong, R. C., Le, T. Q., Flint, N. C., Vana, A. C. & Zhou, Y. X. Endogenous cell repair of chronic demyelination. J. Neuropathol. Exp. Neurol.65, 245–256 (2006). ArticlePubMed Google Scholar
Franklin, R. J. Why does remyelination fail in multiple sclerosis? Nature Rev. Neurosci.3, 705–714 (2002). ArticleCAS Google Scholar
Chittajallu, R., Aguirre, A. & Gallo, V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol.561, 109–122 (2004). ArticleCASPubMedPubMed Central Google Scholar
Karadottir, R., Hamilton, N. B., Bakiri, Y. & Attwell, D. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nature Neurosci.11, 450–456 (2008). This paper describes heterogeneity among polydendrocytes in their expression of Na+ channels and shows that action potentials are generated in these cells in the white matter of early postnatal cerebellum. ArticleCASPubMed Google Scholar
Battiste, J. et al. Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development134, 285–293 (2007). ArticleCASPubMed Google Scholar
Parras, C. M. et al. The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J. Neurosci.27, 4233–4242 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bouslama-Oueghlani, L., Wehrle, R., Sotelo, C. & Dusart, I. Heterogeneity of NG2-expressing cells in the newborn mouse cerebellum. Dev. Biol.285, 409–421 (2005). ArticleCASPubMed Google Scholar
Chari, D. M., Huang, W. L. & Blakemore, W. F. Dysfunctional oligodendrocyte progenitor cell (OPC) populations may inhibit repopulation of OPC depleted tissue. J. Neurosci. Res.73, 787–793 (2003). ArticleCASPubMed Google Scholar
Irvine, K. A. & Blakemore, W. F. A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high-dose X-irradiation has consequences for repopulating OPC-depleted normal tissue. Eur. J. Neurosci.25, 417–424 (2007). ArticlePubMed Google Scholar
Kressin, K., Kuprijanova, E., Jabs, R., Seifert, G. & Steinhauser, C. Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices. Glia15, 173–187 (1995). ArticleCASPubMed Google Scholar
Steinhauser, C., Jabs, R. & Kettenmann, H. Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus4, 19–35 (1994). ArticleCASPubMed Google Scholar
Berger, T., Walz, W., Schnitzer, J. & Kettenmann, H. GABA- and glutamate-activated currents in glial cells of the mouse corpus callosum slice. J. Neurosci. Res.31, 21–27 (1992). ArticleCASPubMed Google Scholar
Barres, B. A., Koroshetz, W. J., Swartz, K. J., Chun, L. L. Y. & Corey, D. P. Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron4, 507–524 (1990). ArticleCASPubMed Google Scholar
Sontheimer, H., Trotter, J., Schachner, M. & Kettenmann, H. Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture. Neuron2, 1135–1145 (1989). ArticleCASPubMed Google Scholar
Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature405, 187–191 (2000). The first demonstration of a neuron–polydendrocyte synapse and the first determination of the current characteristics of polydendrocytes. ArticleCASPubMed Google Scholar
Jabs, R. et al. Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J. Cell Sci.118, 3791–3803 (2005). ArticleCASPubMed Google Scholar
Lin, S. C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neurosci.7, 24–32 (2004). ArticleCASPubMed Google Scholar
Ge, W. P. et al. Long-term potentiation of neuron–glia synapses mediated by Ca2+-permeable AMPA receptors. Science312, 1533–1537 (2006). This article shows potentiation of EPSCs in hippocampal polydendrocytes following theta-burst stimulation. ArticleCASPubMed Google Scholar
Lin, S. C. et al. Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron46, 773–785 (2005). ArticleCASPubMed Google Scholar
Mangin, J. M., Kunze, A., Chittajallu, R. & Gallo, V. Satellite NG2 progenitor cells share common glutamatergic inputs with associated interneurons in the mouse dentate gyrus. J. Neurosci.28, 7610–7623 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nature Neurosci.10, 311–320 (2007). Describes the neuron–polydendrocyte synapse and suggests that clusters of vesicles in unmyelinated fibres might be a source of glutamate (see also reference 133). ArticleCASPubMed Google Scholar
Ziskin, J. L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D. E. Vesicular release of glutamate from unmyelinated axons in white matter. Nature Neurosci.10, 321–330 (2007). Describes neuron–polydendrocyte synapses in the white matter and raises the question of the source of the glutamate (see also reference 132). ArticleCASPubMed Google Scholar
Karadottir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature438, 1162–1166 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wang, C. et al. Functional N-methyl-D-aspartate receptors in O-2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration. J. Cell Biol.135, 1565–1581 (1996). ArticleCASPubMed Google Scholar
Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature439, 988–992 (2006). ArticleCASPubMed Google Scholar
Salter, M. G. & Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature438, 1167–1171 (2005). ArticleCASPubMed Google Scholar
Zhou, M., Schools, G. P. & Kimelberg, H. K. Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J. Neurophysiol.95, 134–143 (2006). This paper showed that polydendrocytes and GLAST+ astrocytes are functionally distinct cell populations, and that both cell types' current characteristics change during development. ArticleCASPubMed Google Scholar
Itoh, T. et al. AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J. Neurochem.81, 390–402 (2002). ArticleCASPubMed Google Scholar
Canossa, M., Gartner, A., Campana, G., Inagaki, N. & Thoenen, H. Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C signalling pathways. EMBO J.20, 1640–1650 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gudz, T. I., Komuro, H. & Macklin, W. B. Glutamate stimulates oligodendrocyte progenitor migration mediated via an αv integrin/myelin proteolipid protein complex. J. Neurosci.26, 2458–2466 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yuan, X., Eisen, A. M., McBain, C. J. & Gallo, V. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development125, 2901–2914 (1998). ArticleCASPubMed Google Scholar
Chen, Z. J., Ughrin, Y. & Levine, J. M. Inhibition of axon growth by oligodendrocyte precursor cells. Mol. Cell. Neurosci.20, 125–139 (2002). ArticleCASPubMed Google Scholar
Ughrin, Y. M., Chen, Z. J. & Levine, J. M. Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J. Neurosci.23, 175–186 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tan, A. M., Colletti, M., Rorai, A. T., Skene, J. H. & Levine, J. M. Antibodies against the NG2 proteoglycan promote the regeneration of sensory axons within the dorsal columns of the spinal cord. J. Neurosci.26, 4729–4739 (2006). ArticleCASPubMedPubMed Central Google Scholar
de Castro, R. Jr, Tajrishi, R., Claros, J. & Stallcup, W. B. Differential responses of spinal axons to transection: influence of the NG2 proteoglycan. Exp. Neurol.192, 299–309 (2005). ArticleCASPubMed Google Scholar
Yang, Z. et al. NG2 glial cells provide a favorable substrate for growing axons. J. Neurosci.26, 3829–3839 (2006). Contrary to the commonly made prediction that polydendrocytes inhibit axonal growth because they express the inhibitory proteoglycan NG2 (see contrasting findings in references 162 and 163), this paper showed that they provide a favourable substrate for growing axons, even when NG2 levels are elevated, and that growing axons extensively contact polydendrocytesin vivo. ArticleCASPubMedPubMed Central Google Scholar
McTigue, D. M., Tripathi, R. & Wei, P. NG2 colocalizes with axons and is expressed by a mixed cell population in spinal cord lesions. J. Neuropathol. Exp. Neurol.65, 406–420 (2006). ArticleCASPubMed Google Scholar
Nishiyama, A., Dahlin, K. J., Prince, J. T., Johnstone, S. R. & Stallcup, W. B. The primary structure of NG2, a novel membrane-spanning proteoglycan. J. Cell Biol.114, 359–371 (1991). ArticleCASPubMed Google Scholar
Stallcup, W. B., Beasley, L. & Levine, J. Cell-surface molecules that characterize different stages in the development of cerebellar interneurons. Cold Spring Harb. Symp. Quant. Biol.48, 761–774 (1983). ArticleCASPubMed Google Scholar
Stallcup, W. B. The NG2 proteoglycan: past insights and future prospects. J. Neurocytol.31, 423–435 (2002). ArticleCASPubMed Google Scholar
Karram, K., Chatterjee, N. & Trotter, J. NG2-expressing cells in the nervous system: role of the proteoglycan in migration and glial-neuron interaction. J. Anat.207, 735–744 (2005). ArticlePubMedPubMed Central Google Scholar
Chatterjee, N. et al. Interaction of syntenin-1 and the NG2 proteoglycan in migratory oligodendrocyte precursor cells. J. Biol. Chem.283, 8310–8317 (2008). ArticleCASPubMed Google Scholar
Makagiansar, I. T., Williams, S., Mustelin, T. & Stallcup, W. B. Differential phosphorylation of NG2 proteoglycan by ERK and PKCα helps balance cell proliferation and migration. J. Cell Biol.178, 155–165 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fukushi, J., Inatani, M., Yamaguchi, Y. & Stallcup, W. B. Expression of NG2 proteoglycan during endochondral and intramembranous ossification. Dev. Dyn.228, 143–148 (2003). ArticleCASPubMed Google Scholar
Petrini, S. et al. Human melanoma/NG2 chondroitin sulfate proteoglycan is expressed in the sarcolemma of postnatal human skeletal myofibers. Abnormal expression in merosin-negative and Duchenne muscular dystrophies. Mol. Cell. Neurosci.23, 219–231 (2003). ArticleCASPubMed Google Scholar
Kadoya, K., Fukushi, J., Matsumoto, Y., Yamaguchi, Y. & Stallcup, W. B. NG2 proteoglycan expression in mouse skin: altered postnatal skin development in the NG2 null mouse. J. Histochem. Cytochem.56, 295–303 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schneider, S. et al.The AN2 protein is a novel marker for the Schwann cell lineage expressed by immature and nonmyelinating Schwann cells. J. Neurosci.21, 920–933 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pluschke, G. et al. Molecular cloning of a human melanoma-associated chondroitin sulfate proteoglycan. Proc. Natl Acad. Sci. USA93, 9710–9715 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wilson, S. S., Baetge, E. E. & Stallcup, W. B. Antisera specific for cell lines with mixed neuronal and glial properties. Dev. Biol.83, 146–153 (1981). ArticleCASPubMed Google Scholar
Nishiyama, A., Lin, X. H. & Stallcup, W. B. Generation of truncated forms of the NG2 proteoglycan by cell surface proteolysis. Mol. Biol. Cell6, 1819–1832 (1995). ArticleCASPubMedPubMed Central Google Scholar
Heintz, N. BAC to the future: the use of bac transgenic mice for neuroscience research. Nature Rev. Neurosci.2, 861–870 (2001). ArticleCAS Google Scholar
Yang, X. W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnol.15, 859–865 (1997). ArticleCAS Google Scholar
Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I. & Wegner, M. Sox10, a novel transcriptional modulator in glial cells. J. Neurosci.18, 237–250 (1998). ArticleCASPubMedPubMed Central Google Scholar
Olivier, C. et al. Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development128, 1757–1769 (2001). ArticleCASPubMed Google Scholar