Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites (original) (raw)
Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol.7, 742–749 (2005). ArticleCASPubMed Google Scholar
Pickart, C.M. & Cohen, R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol.5, 177–187 (2004). ArticleCASPubMed Google Scholar
Maupin-Furlow, J.A. et al. Proteasomes from structure to function: perspectives from Archaea. Curr. Top. Dev. Biol.75, 125–169 (2006). ArticleCASPubMed Google Scholar
Smith, D.M. et al. Docking of proteasomal ATPases' carboxyl termini in the 20S proteasomal alpha ring opens the gate for substrate entry. Mol. Cell27, 731–744 (2007). ArticleCASPubMedPubMed Central Google Scholar
Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol.7, 1062–1067 (2000). ArticleCASPubMed Google Scholar
Glickman, M.H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell94, 615–623 (1998). ArticleCASPubMed Google Scholar
Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science298, 611–615 (2002). ArticleCASPubMed Google Scholar
Yao, T. & Cohen, R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature419, 403–407 (2002). ArticleCASPubMed Google Scholar
Hartmann-Petersen, R., Tanaka, K. & Hendil, K.B. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys.386, 89–94 (2001). ArticleCASPubMed Google Scholar
Nandi, D., Tahiliani, P., Kumar, A. & Chandu, D. The ubiquitin-proteasome system. J. Biosci.31, 137–155 (2006). ArticleCASPubMed Google Scholar
Hoffman, L., Pratt, G. & Rechsteiner, M. Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J. Biol. Chem.267, 22362–22368 (1992). CASPubMed Google Scholar
Armon, T., Ganoth, D. & Hershko, A. Assembly of the 26 S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J. Biol. Chem.265, 20723–20726 (1990). CASPubMed Google Scholar
Eytan, E., Ganoth, D., Armon, T. & Hershko, A. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc. Natl. Acad. Sci. USA86, 7751–7755 (1989). ArticleCASPubMedPubMed Central Google Scholar
Smith, D.M. et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell20, 687–698 (2005). ArticleCASPubMed Google Scholar
Satoh, K., Sasajima, H., Nyoumura, K.I., Yokosawa, H. & Sawada, H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry40, 314–319 (2001). ArticleCASPubMed Google Scholar
Leggett, D.S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell10, 495–507 (2002). ArticleCASPubMed Google Scholar
Stanhill, A. et al. An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol. Cell23, 875–885 (2006). ArticleCASPubMed Google Scholar
Imai, J., Maruya, M., Yashiroda, H., Yahara, I. & Tanaka, K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J.22, 3557–3567 (2003). ArticleCASPubMedPubMed Central Google Scholar
Schmidt, M. et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol.12, 294–303 (2005). ArticleCASPubMed Google Scholar
Park, Y. et al. Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol. Cell. Biol.25, 3842–3853 (2005). ArticleCASPubMedPubMed Central Google Scholar
Leggett, D.S., Glickman, M.H. & Finley, D. Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol. Biol.301, 57–70 (2005). CASPubMed Google Scholar
Bajorek, M., Finley, D. & Glickman, M.H. Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr. Biol.13, 1140–1144 (2003). ArticleCASPubMed Google Scholar
Vernace, V.A., Arnaud, L., Schmidt-Glenewinkel, T. & Figueiredo-Pereira, M.E. Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J.21, 2672–2682 (2007). ArticleCASPubMed Google Scholar
Babbitt, S.E. et al. ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle. Cell121, 553–565 (2005). ArticleCASPubMed Google Scholar
Hendil, K.B., Hartmann-Petersen, R. & Tanaka, K. 26 S proteasomes function as stable entities. J. Mol. Biol.315, 627–636 (2002). ArticleCASPubMed Google Scholar
Rubin, D.M., Glickman, M.H., Larsen, C.N., Dhruvakumar, S. & Finley, D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J.17, 4909–4919 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kohler, A. et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell7, 1143–1152 (2001). ArticleCASPubMed Google Scholar
Forster, A., Masters, E.I., Whitby, F.G., Robinson, H. & Hill, C.P. The 1.9 Å structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell18, 589–599 (2005). ArticlePubMed Google Scholar
Smith, D.M., Benaroudj, N. & Goldberg, A. Proteasomes and their associated ATPases: a destructive combination. J. Struct. Biol.156, 72–83 (2006). ArticleCASPubMed Google Scholar
Saeki, Y., Toh-e, A. & Yokosawa, H. Rapid isolation and characterization of the yeast proteasome regulatory complex. Biochem. Biophys. Res. Commun.273, 509–515 (2000). ArticleCASPubMed Google Scholar
Kleijnen, M.F. et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell6, 409–419 (2000). ArticleCASPubMed Google Scholar
Groll, M., Kim, K.B., Kairies, N., Huber, R. & Crews, C.M. Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of α′,β′-epoxyketone proteasome inhibitors. J. Am. Chem. Soc.122, 1237–1238 (2000). ArticleCAS Google Scholar
Groll, M., Berkers, C.R., Ploegh, H.L. & Ovaa, H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure14, 451–456 (2006). ArticleCASPubMed Google Scholar
Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA96, 10403–10408 (1999). ArticleCASPubMedPubMed Central Google Scholar
Berkers, C.R. et al. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat. Methods2, 357–362 (2005). ArticleCASPubMed Google Scholar
Arendt, C.S. & Hochstrasser, M. Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J.18, 3575–3585 (1999). ArticleCASPubMedPubMed Central Google Scholar
Joshi, S.A., Hersch, G.L., Baker, T.A. & Sauer, R.T. Communication between ClpX and ClpP during substrate processing and degradation. Nat. Struct. Mol. Biol.11, 404–411 (2004). ArticleCASPubMed Google Scholar
Singh, S.K., Guo, F. & Maurizi, M.R. ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease. Biochemistry38, 14906–14915 (1999). ArticleCASPubMed Google Scholar
Chu-Ping, M., Vu, J.H., Proske, R.J., Slaughter, C.A. & DeMartino, G.N. Identification, purification, and characterization of a high molecular weight, ATP-dependent activator (PA700) of the 20 S proteasome. J. Biol. Chem.269, 3539–3547 (1994). CASPubMed Google Scholar
Elsasser, S., Schmidt, M. & Finley, D. Characterization of the proteasome using native gel electrophoresis. Methods Enzymol.398, 353–363 (2005). ArticleCASPubMed Google Scholar
Yang, P. et al. Purification of the Arabidopsis 26 S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J. Biol. Chem.279, 6401–6413 (2004). ArticleCASPubMed Google Scholar
Arendt, C.S. & Hochstrasser, M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Natl. Acad. Sci. USA94, 7156–7161 (1997). ArticleCASPubMedPubMed Central Google Scholar