Light sheet fluorescence microscopy (original) (raw)

References

  1. Santi, P. A. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochemistry https://doi.org/10.1369/0022155410394857 (2011).
    Article Google Scholar
  2. Tomer, R., Khairy, K. & Keller, P. J. Shedding light on the system: studying embryonic development with light sheet microscopy. Curr. Opin. Genet. Dev. 21, 558–565 (2011).
    Google Scholar
  3. Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature https://doi.org/10.1038/nature22369 (2017).
    Article Google Scholar
  4. Lu, C. H. et al. Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging. Commun. Biol. 2, 1–10 (2019).
    Google Scholar
  5. Sticker, M., Elsässer, R., Neumann, M. & Wolff, H. How to get better fluorescence images with your widefield microscope: a methodology review. Microsc. Today 28, 36–43 (2020).
    Google Scholar
  6. Cox, I. J. Scanning optical fluorescence microscopy. J. Microsc. 133, 149–154 (1984).
    Google Scholar
  7. Reynaud, E. G., Kržič, U., Greger, K. & Stelzer, E. H. K. Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSP J. https://doi.org/10.2976/1.2974980 (2008).
    Article Google Scholar
  8. Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M. & Fraser, S. E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757–760 (2011).
    Google Scholar
  9. Jemielita, M., Taormina, M. J., Delaurier, A., Kimmel, C. B. & Parthasarathy, R. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques. J. Biophotonics https://doi.org/10.1002/jbio.201200144 (2013).
    Article Google Scholar
  10. Power, R. M. & Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods https://doi.org/10.1038/nmeth.4224 (2017).
    Article Google Scholar
  11. Siedentopf, H. & Zsigmondy, R. Über Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser [German]. Ann. Phys. https://doi.org/10.1002/andp.19023150102 (1902).
    Article Google Scholar
  12. Voie, A. H., Burns, D. H. & Spelman, F. A. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170, 229–236 (1993).
    Google Scholar
  13. Fuchs, E., Jaffe, J., Long, R. & Azam, F. Thin laser light sheet microscope for microbial oceanography. Opt. Express https://doi.org/10.1364/oe.10.000145 (2002).
    Article Google Scholar
  14. Resandt, R. W. W. et al. Optical fluorescence microscopy in three dimensions: microtomoscopy. J. Microsc. 138, 29–34 (1985).
    Google Scholar
  15. Hell, S. & Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 9, 2159–2166 (1992).
    ADS Google Scholar
  16. Stelzer, E. H. K. & Lindek, S. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt. Commun. 111, 536–547 (1994).
    ADS Google Scholar
  17. Swoger, J., Huisken, J. & Stelzer, E. H. K. Multiple imaging axis microscopy improves resolution for thick-sample applications. Opt. Lett. 28, 1654 (2003).
    ADS Google Scholar
  18. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004). This work describes the first diffraction-limited LSM in the form of the selective/single plane illumination implementation (SPIM), which uses a cylindrical lens to generate a static light sheet.
    ADS Google Scholar
  19. Stelzer, E. H. K., Enders, S., Huisken, J., Lindek, S. & Swoger, J. H. Microscope with a viewing direction perpendicular to the illumination direction. US Patent 7554725 B2 (2009).
  20. Engelbrecht, C. J. & Stelzer, E. H. Resolution enhancement in a light-sheet-based microscope (SPIM). Opt. Lett. 31, 1477–1479 (2006).
    ADS Google Scholar
  21. Verveer, P. J. et al. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat. Methods 4, 311–313 (2007).
    Google Scholar
  22. Swoger, J., Verveer, P., Greger, K., Huisken, J. & Stelzer, E. H. K. K. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt. Express 15, 8029–8042 (2007).
    ADS Google Scholar
  23. Wohland, T., Shi, X., Sankaran, J. & Stelzer, E. H. K. Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt. Express 18, 10627–10641 (2010).
    ADS Google Scholar
  24. Greger, K., Neetz, M. J., Reynaud, E. G. & Stelzer, E. H. K. Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio. Opt. Express 19, 20743 (2011).
    ADS Google Scholar
  25. Method of the Year 2014. Nat. Methods 12, 1 (2015).
  26. Fahrbach, F. O., Voigt, F. F., Schmid, B., Helmchen, F. & Huisken, J. Rapid 3D light-sheet microscopy with a tunable lens. Opt. Express 21, 21010–21026 (2013).
    ADS Google Scholar
  27. Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008). This work presents the first digital scanned laser light sheet-based fluorescence implementation (DSLM), which used beam scanning to generate a dynamic light sheet.
    ADS Google Scholar
  28. Keller, P. J. & Stelzer, E. H. K. Digital scanned laser light sheet fluorescence microscopy. Cold Spring Harb. Protoc. 2010, pdb.top78 (2010).
    Google Scholar
  29. Khonina, S. N., Kazanskiy, N. L., Karpeev, S. V. & Butt, M. A. Bessel beam: significance and applications — a progressive review. Micromachines 11, 997 (2020).
    Google Scholar
  30. Efremidis, N. K., Chen, Z., Segev, M. & Christodoulides, D. N. Airy beams and accelerating waves: an overview of recent advances. Optica 6, 686 (2019).
    ADS Google Scholar
  31. Stelzer, E. H. K. Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J. Microsc. https://doi.org/10.1046/j.1365-2818.1998.00290.x (1998).
    Article Google Scholar
  32. Olarte, O. E., Andilla, J., Gualda, E. J. & Loza-Alvarez, P. Light-sheet microscopy: a tutorial. Adv. Opt. Photonics https://doi.org/10.1364/aop.10.000111 (2018).
    Article Google Scholar
  33. Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J. & Hufnagel, L. Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods 9, 730–733 (2012).
    Google Scholar
  34. Preibisch, S. et al. Efficient Bayesian-based multiview deconvolution. Nat. Methods 11, 645–648 (2014).
    Google Scholar
  35. Huisken, J. & Stainier, D. Y. R. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt. Lett. 32, 2608–2610 (2007).
    ADS Google Scholar
  36. Tomer, R., Khairy, K., Amat, F. & Keller, P. J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755–763 (2012).
    Google Scholar
  37. Chhetri, R. K. et al. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12, 1171–1178 (2015).
    Google Scholar
  38. Wu, Y. et al. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1108494108 (2011).
    Article Google Scholar
  39. Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. https://doi.org/10.1038/nbt.2713 (2013).
    Article Google Scholar
  40. Wu, Y. et al. Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy. Nat. Commun. https://doi.org/10.1038/s41467-017-01250-8 (2017).
    Article Google Scholar
  41. McGorty, R. et al. Open-top selective plane illumination microscope for conventionally mounted specimens. Opt. Express 23, 16142–16153 (2015).
    ADS Google Scholar
  42. Mcgorty, R., Xie, D. & Huang, B. High-NA open-top selective-plane illumination microscopy for biological imaging. Opt. Express https://doi.org/10.1364/oe.25.017798 (2017).
    Article Google Scholar
  43. Glaser, A. K. et al. Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nat. Commun. 10, 2781 (2019).
    ADS MathSciNet Google Scholar
  44. Gualda, E. J. et al. SPIM-fluid: open source light-sheet based platform for high-throughput imaging. Biomed. Opt. Express 6, 4447 (2015).
    Google Scholar
  45. Wu, J., Li, J. & Chan, R. K. Y. Y. A light sheet based high throughput 3D- imaging flow cytometer for phytoplankton analysis. Opt. Express 21, 14474–14480 (2013).
    ADS Google Scholar
  46. Paiè, P., Bragheri, F., Bassi, A. & Osellame, R. Selective plane illumination microscopy on a chip. Lab. Chip https://doi.org/10.1039/c6lc00084c (2016).
    Article Google Scholar
  47. Sala, F. et al. High-throughput 3D imaging of single cells with light-sheet fluorescence microscopy on chip. Biomed. Opt. Express https://doi.org/10.1364/boe.393892 (2020).
    Article Google Scholar
  48. Yang, B. et al. Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution. Nat. Methods 16, 501–504 (2019). This work presents a novel oblique plane microscopy design that enables the collection of fluorescence emissions in high NA to allow for high spatio-temporal resolution and is compatible with common biological sample holders, including multiwell plates.
    Google Scholar
  49. Dunsby, C. Optically sectioned imaging by oblique plane microscopy. Opt. Express 16, 20306 (2008). This work describes the first oblique light sheet-based microscope, which combines selective plane illumination with oblique imaging by using only one objective.
    ADS Google Scholar
  50. Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics https://doi.org/10.1038/nphoton.2014.323 (2015).
    Article Google Scholar
  51. Voleti, V. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods https://doi.org/10.1038/s41592-019-0579-4 (2019).
    Article Google Scholar
  52. Kumar, M., Kishore, S., Nasenbeny, J., Mclean, D. L. & Kozorovitskiy, Y. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging. Opt. Express https://doi.org/10.1364/OE.26.013027 (2018).
    Article Google Scholar
  53. Sapoznik, E. et al. A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics. eLife https://doi.org/10.7554/eLife.57681 (2020).
    Article Google Scholar
  54. Maioli, V. et al. Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates. Sci. Rep. https://doi.org/10.1038/srep37777 (2016).
    Article Google Scholar
  55. Vaadia, R. D. et al. Characterization of proprioceptive system dynamics in behaving Drosophila larvae using high-speed volumetric microscopy. Curr. Biol. https://doi.org/10.1016/j.cub.2019.01.060 (2019).
    Article Google Scholar
  56. Gebhardt, J. C. M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods https://doi.org/10.1038/nmeth.2411 (2013).
    Article Google Scholar
  57. Plöschner, M. et al. Multimode fibre: light-sheet microscopy at the tip of a needle. Sci. Rep. https://doi.org/10.1038/srep18050 (2015).
    Article Google Scholar
  58. Greiss, F., Deligiannaki, M., Jung, C., Gaul, U. & Braun, D. Single-molecule imaging in living Drosophila embryos with reflected light-Sseet microscopy. Biophys. J. https://doi.org/10.1016/j.bpj.2015.12.035 (2016).
    Article Google Scholar
  59. Zagato, E. et al. Microfabricated devices for single objective single plane illumination microscopy (SoSPIM). Opt. Express https://doi.org/10.1364/oe.25.001732 (2017).
    Article Google Scholar
  60. Galland, R. et al. 3D high-and super-resolution imaging using single-objective SPIM. Nat. Methods https://doi.org/10.1038/nmeth.3402 (2015).
    Article Google Scholar
  61. Meddens, M. B. M. et al. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution. Biomed. Opt. Express https://doi.org/10.1364/boe.7.002219 (2016).
    Article Google Scholar
  62. Pitrone, P. G. et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat. Methods 10, 598–599 (2013).
    Google Scholar
  63. Gualda, E. J. et al. OpenSpinMicroscopy: an open-source integrated microscopy platform. Nat. Methods 10, 599–600 (2013).
    Google Scholar
  64. Stuurman, N., Amdodaj, N. & Vale, R. μManager: open source software for light microscope imaging. Micros. Today https://doi.org/10.1017/s1551929500055541 (2007).
    Article Google Scholar
  65. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using µManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).
    Google Scholar
  66. Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).
    Google Scholar
  67. Saska, D., Pichler, P., Qian, C., Buckley, C. L. & Lagnado, L. μSPIM Toolset: a software platform for selective plane illumination microscopy. J. Neurosci. Methods https://doi.org/10.1016/j.jneumeth.2020.108952 (2021).
    Article Google Scholar
  68. Pinkard, H. et al. Pycro-Manager: open-source software for customized and reproducible microscope control. Nat. Methods https://doi.org/10.1038/s41592-021-01087-6 (2021).
    Article Google Scholar
  69. Alamudi, S. H. & Chang, Y. T. Advances in the design of cell-permeable fluorescent probes for applications in live cell imaging. Chem. Commun. 54, 13641–13653 (2018).
    Google Scholar
  70. Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).
    Google Scholar
  71. Shcherbakova, D. M. et al. Molecular basis of spectral diversity in near-infrared phytochrome-based fluorescent proteins. Chem. Biol. 22, 1540–1551 (2015).
    Google Scholar
  72. Tran, M. T. N. et al. In vivo image analysis using iRFP transgenic mice. Exp. Anim. 63, 311–319 (2014).
    Google Scholar
  73. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. https://doi.org/10.1038/nbt765 (2003).
    Article Google Scholar
  74. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).
    Google Scholar
  75. Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods https://doi.org/10.1038/nmeth.4403 (2017).
    Article Google Scholar
  76. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature https://doi.org/10.1038/nature12354 (2013).
    Article Google Scholar
  77. Abdelfattah, A. S. et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science https://doi.org/10.1126/science.aav6416 (2019).
    Article Google Scholar
  78. Greenwald, E. C., Mehta, S. & Zhang, J. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118, 11707–11794 (2018).
    Google Scholar
  79. Arai, S. et al. RGB-color intensiometric indicators to visualize spatiotemporal dynamics of ATP in single cells. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201804304 (2018).
    Article Google Scholar
  80. Lindenburg, L. H., Hessels, A. M., Ebberink, E. H. T. M., Arts, R. & Merkx, M. Robust red FRET sensors using self-associating fluorescent domains. ACS Chem. Biol. https://doi.org/10.1021/cb400427b (2013).
    Article Google Scholar
  81. Liau, E. S., Yen, Y. P. & Chen, J. A. Visualization of motor axon navigation and quantification of axon arborization in mouse embryos using light sheet fluorescence microscopy. J. Vis. Exp. https://doi.org/10.3791/57546 (2018).
    Article Google Scholar
  82. Silvestri, L. et al. Micron-scale resolution optical tomography of entire mouse brains with confocal light sheet microscopy. J. Vis. Exp. https://doi.org/10.3791/50696 (2013).
    Article Google Scholar
  83. Ding, Y. et al. Light-sheet fluorescence microscopy for the study of the murine heart. J. Vis. Exp. https://doi.org/10.3791/57769 (2018).
    Article Google Scholar
  84. Weber, M., Mickoleit, M. & Huisken, J. Multilayer mounting for long-term light sheet microscopy of zebrafish. J. Vis. Exp. https://doi.org/10.3791/51119 (2014).
    Article Google Scholar
  85. Icha, J. et al. Using light sheet fluorescence microscopy to image zebrafish eye development. J. Vis. Exp. https://doi.org/10.3791/53966 (2016).
    Article Google Scholar
  86. Lee, J. et al. Light-sheet fluorescence microscopy to capture 4-dimensional images of the effects of modulating shear stress on the developing zebrafish heart. J. Vis. Exp. https://doi.org/10.3791/57763 (2018).
    Article Google Scholar
  87. Chardès, C., Mélénec, P., Bertrand, V. & Lenne, P. F. Setting up a simple light sheet microscope for in toto imaging of C. elegans development. J. Vis. Exp. https://doi.org/10.3791/51342 (2014).
    Article Google Scholar
  88. Duncan, L. H. et al. Isotropic light-sheet microscopy and automated cell lineage analyses to catalogue Caenorhabditis elegans embryogenesis with subcellular resolution. J. Vis. Exp. 2019, 59533 (2019).
    Google Scholar
  89. Strobl, F., Klees, S. & Stelzer, E. H. K. Light sheet-based fluorescence microscopy of living or fixed and stained Tribolium castaneum embryos. J. Vis. Exp. https://doi.org/10.3791/55629 (2017).
    Article Google Scholar
  90. Ratke, J., Krämer, F. & Strobl, F. Simultaneous live imaging of multiple insect embryos in sample chamber-based light sheet fluorescence microscopes. J. Vis. Exp. https://doi.org/10.3791/61713 (2020).
    Article Google Scholar
  91. von Wangenheim, D., Hauschild, R. & Friml, J. Light sheet fluorescence microscopy of plant roots growing on the surface of a gel. J. Vis. Exp. https://doi.org/10.3791/55044 (2017).
    Article Google Scholar
  92. Jacob, L., Brito, J. & Thomas, J. L. Three-dimensional imaging of the vertebral lymphatic vasculature and drainage using iDISCO+ and light sheet fluorescence microscopy. J. Vis. Exp. https://doi.org/10.3791/61099 (2020).
    Article Google Scholar
  93. Schoppmeyer, R., Zhao, R., Hoth, M. & Qu, B. Light-sheet microscopy for three-dimensional visualization of human immune cells. J. Vis. Exp. https://doi.org/10.3791/57651 (2018).
    Article Google Scholar
  94. Rosenberg, J. & Huang, J. Visualizing surface T-cell receptor dynamics four-dimensionally using lattice light-sheet microscopy. J. Vis. Exp. https://doi.org/10.3791/59914 (2019).
    Article Google Scholar
  95. Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. Cold Spring Harb. Protoc. 2011, 1235–1243 (2011).
    Google Scholar
  96. Schmied, C. & Tomancak, P. Sample preparation and mounting of Drosophila embryos for multiview light sheet microscopy. in. Methods Mol. Biol. 1478, 189–202 (2016).
    Google Scholar
  97. Kaufmann, A., Mickoleit, M., Weber, M. & Huisken, J. Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development 139, 3242–3247 (2012). This work describes a method that allows for stacking multiple zebrafish embryos into one sample holder for multi-embryo imaging within a single experiment.
    Google Scholar
  98. Uribe, V. et al. In vivo analysis of cardiomyocyte proliferation during trabeculation. Development https://doi.org/10.1242/dev.164194 (2018).
    Article Google Scholar
  99. de Medeiros, G., Balázs, B. & Hufnagel, L. Light-sheet imaging of mammalian development. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2015.11.001 (2016).
    Article Google Scholar
  100. Reichmann, J., Eguren, M., Lin, Y., Schneider, I. & Ellenberg, J. Live imaging of cell division in preimplantation mouse embryos using inverted light-sheet microscopy. Methods Cell Biol. https://doi.org/10.1016/bs.mcb.2018.03.030 (2018).
    Article Google Scholar
  101. Ichikawa, T. et al. Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells. PLoS ONE 8, e64506 (2013).
    ADS Google Scholar
  102. Ichikawa, T. et al. Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools. Nat. Protoc. 9, 575–585 (2014).
    Google Scholar
  103. McDole, K. et al. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell https://doi.org/10.1016/j.cell.2018.09.031 (2018). This work demonstrates the use of light sheet microscopy for imaging the developing mouse embryo over the course of 2 days from gastrulation to early organogenesis, and reconstructs dynamic, lineage-based cell fate maps.
    Article Google Scholar
  104. Pampaloni, F., Ansari, N. & Stelzer, E. H. K. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res. https://doi.org/10.1007/s00441-013-1589-7 (2013).
    Article Google Scholar
  105. Hötte, K. et al. Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens. Sci. Rep. https://doi.org/10.1038/s41598-019-53380-2 (2019).
    Article Google Scholar
  106. Pampaloni, F. et al. Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions. Integr. Biol. https://doi.org/10.1039/c4ib00121d (2014).
    Article Google Scholar
  107. Flood, P., Page, H. & Reynaud, E. G. Using hydrogels in microscopy: a tutorial. Micron https://doi.org/10.1016/j.micron.2016.02.002 (2016).
    Article Google Scholar
  108. Ettinger, A. & Wittmann, T. Fluorescence live cell imaging. Methods Cell Biol. https://doi.org/10.1016/B978-0-12-420138-5.00005-7 (2014).
    Article Google Scholar
  109. Von Wangenheim, D., Daum, G., Lohmann, J. U., Stelzer, E. K. & Maizel, A. Live imaging of Arabidopsis development. Methods Mol. Biol. https://doi.org/10.1007/978-1-62703-580-4_28 (2014).
    Article Google Scholar
  110. Ovecka, M. et al. Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat. Protoc. https://doi.org/10.1038/nprot.2015.081 (2015).
    Article Google Scholar
  111. Strobl, F., Schmitz, A. & Stelzer, E. H. K. Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nat. Protoc. 10, 1486–1507 (2015). This work describes a two-step calibration routine for light sheet-based microscopes (primarily DSLM-based set-ups) with a comprehensively illustrated troubleshooting guide.
    Google Scholar
  112. Gao, L. Extend the field of view of selective plan illumination microscopy by tiling the excitation light sheet. Opt. Express 23, 6102 (2015).
    ADS Google Scholar
  113. Yanlu, C. et al. A versatile tiling light sheet microscope for imaging of cleared tissues. Cell Rep. 33, 108349 (2020).
    Google Scholar
  114. Sancataldo, G. et al. Flexible multi-beam light-sheet fluorescence microscope for live imaging without striping artifacts. Front. Neuroanat. https://doi.org/10.3389/fnana.2019.00007 (2019).
    Article Google Scholar
  115. Fahrbach, F. O. & Rohrbach, A. A line scanned light-sheet microscope with phase shaped self-reconstructing beams. Opt. Express 18, 24229 (2010). This work proposes the first implementation of LSFM with Bessel beams, which in principle can avoid some of the trade-offs of conventional Gaussian beams.
    ADS Google Scholar
  116. Fahrbach, F. O. & Rohrbach, A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun. 3, 632 (2012).
    ADS Google Scholar
  117. Müllenbroich, M. C. et al. Bessel beam illumination reduces random and systematic errors in quantitative functional studies using light-sheet microscopy. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2018.00315 (2018).
    Article Google Scholar
  118. Salili, S. M., Harrington, M. & Durian, D. J. Note: Eliminating stripe artifacts in light-sheet fluorescence imaging. Rev. Sci. Instrum. https://doi.org/10.1063/1.5016546 (2018).
    Article Google Scholar
  119. Liang, X. et al. Stripe artifact elimination based on nonsubsampled contourlet transform for light sheet fluorescence microscopy. J. Biomed. Opt. https://doi.org/10.1117/1.jbo.21.10.106005 (2016).
    Article Google Scholar
  120. Keller, P. J. et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods 7, 637–642 (2010).
    Google Scholar
  121. Neil, M. A. A., Juškaitis, R. & Wilson, T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. https://doi.org/10.1364/ol.22.001905 (1997).
    Article Google Scholar
  122. Silvestri, L., Bria, A., Sacconi, L., Iannello, G. & Pavone, F. S. Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20, 20582 (2012).
    ADS Google Scholar
  123. Baumgart, E. & Kubitscheck, U. Scanned light sheet microscopy with confocal slit detection. Opt. Express 20, 21805–21814 (2012).
    ADS Google Scholar
  124. Medeiros, G. D. et al. Confocal multiview light-sheet microscopy. Nat. Commun. https://doi.org/10.1038/ncomms9881 (2015).
    Article Google Scholar
  125. Gavryusev, V. et al. Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector. J. Biomed. Opt. https://doi.org/10.1117/1.jbo.24.10.106504 (2019).
    Article Google Scholar
  126. Jahr, W., Schmid, B., Schmied, C., Fahrbach, F. O. & Huisken, J. Hyperspectral light sheet microscopy. Nat. Commun. 6, 7990 (2015).
    ADS Google Scholar
  127. Lavagnino, Z. et al. Snapshot hyperspectral light-sheet imaging of signal transduction in live pancreatic islets. Biophys. J. https://doi.org/10.1016/j.bpj.2016.06.014 (2016).
    Article Google Scholar
  128. Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D. & Valev, V. K. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. 14, 1–34 (2019).
    Google Scholar
  129. Rocha-Mendoza, I. et al. Rapid spontaneous Raman light sheet microscopy using cw-lasers and tunable filters. Biomed. Opt. Express https://doi.org/10.1364/boe.6.003449 (2015).
    Article Google Scholar
  130. Müller, W., Kielhorn, M., Schmitt, M., Popp, J. & Heintzmann, R. Light sheet Raman micro-spectroscopy. Optica https://doi.org/10.1364/optica.3.000452 (2016).
    Article Google Scholar
  131. Yu, L. et al. A comprehensive review of fluorescence correlation spectroscopy. Front. Phys. 9, 110 (2021).
    Google Scholar
  132. Capoulade, J., Wachsmuth, M., Hufnagel, L. & Knop, M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat. Biotechnol. https://doi.org/10.1038/nbt.1928 (2011).
    Article Google Scholar
  133. Struntz, P. & Weiss, M. Multiplexed measurement of protein diffusion in Caenorhabditis elegans embryos with SPIM-FCS. J. Phys. D. Appl. Phys. https://doi.org/10.1088/0022-3727/49/4/044002 (2015).
    Article Google Scholar
  134. Singh, A. P. et al. 3D protein dynamics in the cell nucleus. Biophys. J. https://doi.org/10.1016/j.bpj.2016.11.3196 (2017).
    Article Google Scholar
  135. Krieger, J. W., Singh, A. P., Garbe, C. S., Wohland, T. & Langowski, J. Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS). Opt. Express https://doi.org/10.1364/oe.22.002358 (2014).
    Article Google Scholar
  136. Krieger, J. W. et al. Imaging fluorescence (cross-)correlation spectroscopy in live cells and organisms. Nat. Protoc. https://doi.org/10.1038/nprot.2015.100 (2015).
    Article Google Scholar
  137. Buchholz, J. et al. Widefield high frame rate single-photon SPAD imagers for SPIM-FCS. Biophys. J. https://doi.org/10.1016/j.bpj.2018.04.029 (2018).
    Article Google Scholar
  138. Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A. & Skala, M. C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 25, 1 (2020).
    Google Scholar
  139. Mitchell, C. A. et al. Functional in vivo imaging using fluorescence lifetime light-sheet microscopy. Opt. Lett. https://doi.org/10.1364/ol.42.001269 (2017).
    Article Google Scholar
  140. Ulku, A. et al. Wide-field time-gated SPAD imager for phasor-based FLIM applications. Methods Appl. Fluoresc. https://doi.org/10.1088/2050-6120/ab6ed7 (2020).
    Article Google Scholar
  141. Oleksiievets, N. et al. Wide-field fluorescence lifetime imaging of single molecules. J. Phys. Chem. A https://doi.org/10.1021/acs.jpca.0c01513 (2020).
    Article Google Scholar
  142. Reynaud, E. G., Peychl, J., Huisken, J. & Tomancak, P. Guide to light-sheet microscopy for adventurous biologists. Nat. Methods 12, 30–34 (2015).
    Google Scholar
  143. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    Google Scholar
  144. Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. https://doi.org/10.1002/mrd.22489 (2015).
    Article Google Scholar
  145. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics https://doi.org/10.1186/s12859-017-1934-z (2017).
    Article Google Scholar
  146. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    Google Scholar
  147. Amat, F. et al. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc. 10, 1679–1696 (2015). This work provides a comprehensive protocol for the processing and analysis of light sheet-based data in the terabyte range, including advice for data compression, multi-view fusion automated cell tracking and visualization.
    Google Scholar
  148. Huisman, M. et al. A perspective on microscopy metadata: data provenance and quality control. Preprint at https://arxiv.org/abs/1910.11370 (2019).
  149. Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science https://doi.org/10.1126/science.aau8302 (2019).
    Article Google Scholar
  150. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
    Google Scholar
  151. Hörl, D. et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods https://doi.org/10.1038/s41592-019-0501-0 (2019).
    Article Google Scholar
  152. Guo, M. et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0560-x (2020).
    Article Google Scholar
  153. Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancak, P. Software for bead-based registration of selective plane illumination microscopy data. Nat. Methods 7, 418–419 (2010).
    Google Scholar
  154. Wallace, W., Schaefer, L. H. & Swedlow, J. R. A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31, 1076–1097 (2001).
    Google Scholar
  155. Becker, K. et al. Deconvolution of light sheet microscopy recordings. Sci. Rep. https://doi.org/10.1038/s41598-019-53875-y (2019).
    Article Google Scholar
  156. Verveer, P. J. et al. Restoration of light sheet multi-view data with the huygens fusion and deconvolution wizard. Micros. Today https://doi.org/10.1017/s1551929518000846 (2018).
    Article Google Scholar
  157. Long, F., Zhou, J. & Peng, H. Visualization and analysis of 3D microscopic images. PLoS Comput. Biol. 8, e1002519 (2012).
    ADS Google Scholar
  158. Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. BigDataViewer: visualization and processing for large image data sets. Nat. Methods 12, 481–483 (2015).
    Google Scholar
  159. Pietzsch, T., Preibisch, S., Tomančák, P. & Saalfeld, S. Img lib 2-generic image processing in Java. Bioinformatics https://doi.org/10.1093/bioinformatics/bts543 (2012).
    Article Google Scholar
  160. Preusser, F. et al. FRC-QE: a robust and comparable 3D microscopy image quality metric for cleared organoids. Bioinformatics https://doi.org/10.1093/bioinformatics/btab160 (2021).
    Article Google Scholar
  161. Peng, H., Ruan, Z., Long, F., Simpson, J. H. & Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. https://doi.org/10.1038/nbt.1612 (2010).
    Article Google Scholar
  162. Bria, A. & Iannello, G. TeraStitcher — a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinformatics https://doi.org/10.1186/1471-2105-13-316 (2012).
    Article Google Scholar
  163. Royer, L. A. et al. ClearVolume: open-source live 3D visualization for light-sheet microscopy. Nat. Methods 12, 480–481 (2015).
    Google Scholar
  164. Schmid, B. et al. 3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods https://doi.org/10.1038/s41592-019-0359-1 (2019).
    Article Google Scholar
  165. Bria, A., Iannello, G., Onofri, L. & Peng, H. TeraFly: real-time three-dimensional visualization and annotation of terabytes of multidimensional volumetric images. Nat. Methods https://doi.org/10.1038/nmeth.3767 (2016).
    Article Google Scholar
  166. Günther U. et al. Scenery: flexible virtual reality visualization on the Java VM. 2019 IEEE Visualization Conference (VIS) 2019, 1–5, https://doi.org/10.1109/VISUAL.2019.8933605 (2019).
  167. Pettersen, E. F. et al. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. https://doi.org/10.1002/jcc.20084 (2004).
    Article Google Scholar
  168. Fritz-Laylin, L. K. et al. Actin-based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes. eLife https://doi.org/10.7554/eLife.26990 (2017).
    Article Google Scholar
  169. Cheeseman, B. L., Günther, U., Gonciarz, K., Susik, M. & Sbalzarini, I. F. Adaptive particle representation of fluorescence microscopy images. Nat. Commun. https://doi.org/10.1038/s41467-018-07390-9 (2018).
    Article Google Scholar
  170. Vladimirov, N. npy2bdv: writing numpy arrays to Fiji/BigDataViewer HDF5 files. ZENODO https://doi.org/10.5281/ZENODO.3971783 (2020).
    Article Google Scholar
  171. Beati, I., Andreica, E. & Majer, P. ImarisWriter: open source software for storage of large images in blockwise multi-resolution format. Preprint at https://arxiv.org/abs/2008.10311 (2020).
  172. Balázs, B., Deschamps, J., Albert, M., Ries, J. & Hufnagel, L. A real-time compression library for microscopy images. Preprint at bioRxiv https://doi.org/10.1101/164624 (2017).
    Article Google Scholar
  173. Wolff, C. et al. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. eLife https://doi.org/10.7554/eLife.34410 (2018). This work demonstrates the tracking of individual lineages in developing Parhyale limbs using multi-view light-sheet microscopy and an open-source Fiji-based tracking plug-in called MaMuT.
    Article Google Scholar
  174. Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11, 951–958 (2014).
    Google Scholar
  175. Maling-Mayor, C. et al. Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations. Preprint at bioRxiv https://doi.org/10.1101/2021.07.28.454016 (2021).
    Article Google Scholar
  176. Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods https://doi.org/10.1038/s41592-019-0650-1 (2020).
    Article Google Scholar
  177. Haase, R. et al. Interactive design of GPU-accelerated image data flow graphs and cross-platform deployment using multi-lingual code generation. Preprint at bioRxiv https://doi.org/10.1101/2020.11.19.386565 (2020).
    Article Google Scholar
  178. Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods https://doi.org/10.1038/s41592-019-0458-z (2019).
    Article Google Scholar
  179. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods https://doi.org/10.1038/s41592-019-0582-9 (2019).
    Article Google Scholar
  180. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. Lecture Notes Comput. Sci. https://doi.org/10.1007/978-3-030-00934-2_30 (2018).
    Article Google Scholar
  181. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods https://doi.org/10.1038/s41592-020-01018-x (2021).
    Article Google Scholar
  182. Sugawara, K., Cevrim, C. & Averof, M. Tracking cell lineages in 3D by incremental deep learning. Preprint at bioRxiv https://doi.org/10.1101/2021.02.26.432552 (2021).
    Article Google Scholar
  183. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods https://doi.org/10.1038/s41592-018-0216-7 (2018).
    Article Google Scholar
  184. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. https://doi.org/10.1038/nbt.3711 (2016).
    Article Google Scholar
  185. Waschke, J. et al. linus: Conveniently explore, share, and present large-scale biological trajectory data from a web browser. Preprint at bioRxiv https://doi.org/10.1101/2020.04.17.043323 (2021).
    Article Google Scholar
  186. Pampaloni, F., Knuppertz, L., Hamann, A., Osiewacz, H. D. & Stelzer, E. H. K. Three-dimensional live imaging of filamentous fungi with light sheet-based fluorescence microscopy (LSFM). Methods Mol. Biol. 1563, 19–31 (2017).
    Google Scholar
  187. Amich, J. et al. Three-dimensional light sheet fluorescence microscopy of lungs to dissect local host immune-aspergillus fumigatus interactions. mBio https://doi.org/10.1128/mBio.02752-19 (2020).
    Article Google Scholar
  188. Qin, B. et al. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science https://doi.org/10.1126/science.abb8501 (2020).
    Article Google Scholar
  189. Zhang, M. et al. Non-invasive single-cell morphometry in living bacterial biofilms. Nat. Commun. 11, 6151 (2020).
    Google Scholar
  190. Bhagwat, A. R., Le Sage, V. & Lakdawala, S. S. Live imaging of influenza viral ribonucleoproteins using light-sheet microscopy. Methods Mol. Biol. 1836, 303–327 (2018).
    Google Scholar
  191. Mascheroni, L. et al. Combining sample expansion and light sheet microscopy for the volumetric imaging of virus-infected cells with super-resolution. Biomed. Opt. Express https://doi.org/10.1364/boe.399404 (2020).
    Article Google Scholar
  192. Liao, P. et al. Three-dimensional digital PCR through light-sheet imaging of optically cleared emulsion. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2002448117 (2020).
    Article Google Scholar
  193. Attardi, A. et al. Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development https://doi.org/10.1242/dev.166728 (2018).
    Article Google Scholar
  194. Wan, Y. et al. Single-cell reconstruction of emerging population activity in an entire developing circuit. Cell https://doi.org/10.1016/j.cell.2019.08.039 (2019).
  195. Daetwyler, S., Gunther, U., Modes, C. D., Harrington, K. & Huisken, J. Multi-sample SPIM image acquisition, processing and analysis of vascular growth in zebrafish. Development https://doi.org/10.1242/dev.173757 (2019).
    Article Google Scholar
  196. Wan, Y. et al. Single-cell reconstruction of emerging population activity in an entire developing circuit. Cell 179, 355–372.e23 (2019).
    Google Scholar
  197. Rozbicki, E. et al. Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nat. Cell Biol. 17, 397–408 (2015).
    Google Scholar
  198. Goḿez-Gaviro, M. V. et al. Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution. Development https://doi.org/10.1242/dev.145805 (2017).
    Article Google Scholar
  199. Strnad, P. et al. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods 13, 139–142 (2016).
    Google Scholar
  200. Wu, C. et al. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. Biomed. Opt. Express https://doi.org/10.1364/boe.8.004629 (2017).
    Article Google Scholar
  201. Fu, Q., Martin, B. L., Matus, D. Q. & Gao, L. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nat. Commun. 7, 1–10 (2016).
    Google Scholar
  202. Chen, B.-C. B. C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998–1–1257998–13 (2014). This work introduces lattice light sheets, where multiple Bessel beams interfere coherently to tailor the properties of a light sheet, resulting in high-resolution 3D imaging and reduced phototoxicity compared with line-scanned Bessel beams.
    Google Scholar
  203. Stegmaier, J. et al. Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell 36, 225–240 (2016).
    Google Scholar
  204. Streichan, S. J., Lefebvre, M. F., Noll, N., Wieschaus, E. F. & Shraiman, B. I. Global morphogenetic flow is accurately predicted by the spatial distribution of myosin motors. eLife https://doi.org/10.7554/eLife.27454 (2018).
    Article Google Scholar
  205. Strobl, F. & Stelzer, E. H. K. Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development 141, 2331–2338 (2014).
    Google Scholar
  206. Münster, S. et al. Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. Nature https://doi.org/10.1038/s41586-019-1044-3 (2019).
    Article Google Scholar
  207. Hilbrant, M., Horn, T., Koelzer, S. & Panfilio, K. A. The beetle amnion and serosa functionally interact as apposed epithelia. eLife 5, e13834 (2016).
    Google Scholar
  208. Li, F. et al. Insect genomes: progress and challenges. Insect Mol. Biol. 28, 739–758 (2019).
    Google Scholar
  209. Keller, P. J. J. & Ahrens, M. B. B. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85, 462–483 (2015).
    Google Scholar
  210. Hillman, E. M. C., Voleti, V., Li, W. & Yu, H. Light-sheet microscopy in neuroscience. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev-neuro-070918-050357 (2019).
    Article Google Scholar
  211. Simpson, J. H. & Looger, L. L. Functional imaging and optogenetics in Drosophila. Genetics https://doi.org/10.1534/genetics.117.300228 (2018).
    Article Google Scholar
  212. Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).
    Google Scholar
  213. Lemon, W. C. et al. Whole-central nervous system functional imaging in larval Drosophila. Nat. Commun. 6, 7924 (2015).
    ADS Google Scholar
  214. Arrenberg, A. B., Stainier, D. Y. R., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).
    ADS Google Scholar
  215. Mickoleit, M. et al. High-resolution reconstruction of the beating zebrafish heart. Nat. Methods 11, 919–922 (2014).
    Google Scholar
  216. Taylor, J. M. et al. Adaptive prospective optical gating enables day-long 3D time-lapse imaging of the beating embryonic zebrafish heart. Nat. Commun. https://doi.org/10.1038/s41467-019-13112-6 (2019).
    Article Google Scholar
  217. Ding, Y. et al. Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight https://doi.org/10.1172/jci.insight.121396 (2018).
    Article Google Scholar
  218. Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).
    Google Scholar
  219. Simian, M. & Bissell, M. J. Organoids: a historical perspective of thinking in three dimensions. J. Cell Biol. https://doi.org/10.1083/jcb.201610056 (2017).
    Article Google Scholar
  220. Lebreton, F. et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat. Commun. https://doi.org/10.1038/s41467-019-12472-3 (2019).
    Article Google Scholar
  221. Lorenzo, C. et al. Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell Div. https://doi.org/10.1186/1747-1028-6-22 (2011).
    Article Google Scholar
  222. Medeios, G. De et al. Multiscale light-sheet organoid imaging framework. Preprint at bioRxiv https://doi.org/10.1101/2021.05.12.443427 (2021).
    Article Google Scholar
  223. Glaser, A. K. et al. Multidirectional digital scanned light-sheet microscopy enables uniform fluorescence excitation and contrast-enhanced imaging. Sci. Rep. https://doi.org/10.1038/s41598-018-32367-5 (2018).
    Article Google Scholar
  224. Andilla, J. et al. Imaging tissue-mimic with light sheet microscopy: a comparative guideline. Sci. Rep. https://doi.org/10.1038/srep44939 (2017).
    Article Google Scholar
  225. Schmitz, A., Fischer, S. C., Mattheyer, C., Pampaloni, F. & Stelzer, E. H. K. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids. Sci. Rep. https://doi.org/10.1038/srep43693 (2017).
    Article Google Scholar
  226. Schöneberg, J. et al. 4D cell biology: big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell–derived intestinal organoids. Mol. Biol. Cell https://doi.org/10.1091/mbc.E18-06-0375 (2018).
    Article Google Scholar
  227. Dean, K. M. et al. Imaging subcellular dynamics with fast and light-efficient volumetrically parallelized microscopy. Optica https://doi.org/10.1364/optica.4.000263 (2017).
    Article Google Scholar
  228. Chen, Y. et al. Rapid pathology of lumpectomy margins with open-top light-sheet (OTLS) microscopy. Biomed. Opt. Express https://doi.org/10.1364/boe.10.001257 (2019).
    Article Google Scholar
  229. Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-017-0084 (2017).
    Article Google Scholar
  230. Maizel, A., Von Wangenheim, D., Federici, F., Haseloff, J. & Stelzer, E. H. K. High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant. J. 68, 377–385 (2011).
    Google Scholar
  231. Ovečka, M. et al. Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nat. Plants https://doi.org/10.1038/s41477-018-0238-2 (2018).
    Article Google Scholar
  232. Sena, G., Frentz, Z., Birnbaum, K. D. & Leibler, S. Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS ONE https://doi.org/10.1371/journal.pone.0021303 (2011).
    Article Google Scholar
  233. Von Wangenheim, D. et al. Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr. Biol. 26, 439–449 (2016).
    Google Scholar
  234. Yan, J., Wang, B. & Zhou, Y. A root penetration model of Arabidopsis thaliana in phytagel medium with different strength. J. Plant. Res. https://doi.org/10.1007/s10265-017-0926-4 (2017).
    Article Google Scholar
  235. Roué, J. et al. Root cap size and shape influence responses to the physical strength of the growth medium in Arabidopsis thaliana primary roots. J. Exp. Bot. https://doi.org/10.1093/jxb/erz418 (2020).
    Article Google Scholar
  236. Candeo, A., Doccula, F. G., Valentini, G., Bassi, A. & Costa, A. Light sheet fluorescence microscopy quantifies calcium oscillations in root hairs of Arabidopsis thaliana. Plant. Cell Physiol. https://doi.org/10.1093/pcp/pcx045 (2017).
    Article Google Scholar
  237. Valuchova, S. et al. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. eLife https://doi.org/10.7554/eLife.52546 (2020).
    Article Google Scholar
  238. Tichá, M. et al. Advanced microscopy reveals complex developmental and subcellular localization patterns of ANNEXIN 1 in Arabidopsis. Front. Plant. Sci. https://doi.org/10.3389/fpls.2020.01153 (2020).
    Article Google Scholar
  239. Höhn, S., Honerkamp-Smith, A. R., Haas, P. A., Trong, P. K. & Goldstein, R. E. Dynamics of a Volvox embryo turning itself inside out. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.114.178101 (2015).
    Article Google Scholar
  240. Lichtenberg, M., Trampe, E. C. L., Vogelmann, T. C. & Kühl, M. Light sheet microscopy imaging of light absorption and photosynthesis distribution in plant tissue. Plant. Physiol. https://doi.org/10.1104/pp.17.00820 (2017).
    Article Google Scholar
  241. Truhaut, R. Ecotoxicology: objectives, principles and perspectives. Ecotoxicol. Environ. Saf. 1, 151–173 (1977).
    Google Scholar
  242. Inglese, J. et al. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 3, 466–479 (2007).
    Google Scholar
  243. Chandler, G. T. & Volz, D. C. Semiquantitative confocal laser scanning microscopy applied to marine invertebrate ecotoxicology. Mar. Biotechnol. 6, 128–137 (2004).
    Google Scholar
  244. Nancharaiah, Y. V., Rajadurai, M. & Venugopalan, V. P. Single cell level microalgal ecotoxicity assessment by confocal microscopy and digital image analysis. Environ. Sci. Technol. 41, 2617–2621 (2007).
    ADS Google Scholar
  245. Scott, G. R. & Sloman, K. A. The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat. Toxicol. 68, 369–392 (2004).
    Google Scholar
  246. Peterson, E. K. et al. Integrative behavioral ecotoxicology: bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation. Curr. Zool. 63, 185 (2017).
    Google Scholar
  247. Bae, M. J. & Park, Y. S. Biological early warning system based on the responses of aquatic organisms to disturbances: a review. Sci. Total. Environ. 466–467, 635–649 (2014).
    ADS Google Scholar
  248. Dell, A. I. et al. Automated image-based tracking and its application in ecology. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2014.05.004 (2014).
    Article Google Scholar
  249. Cong, L. et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife https://doi.org/10.7554/eLife.28158 (2017).
    Article Google Scholar
  250. Mougi, A. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci. Rep. 6, 1–6 (2016).
    Google Scholar
  251. Taormina, M. J. et al. Investigating bacterial–animal symbioses with light sheet microscopy. Biol. Bull. 223, 7–20 (2012).
    Google Scholar
  252. Jemielita, M. et al. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut. mBio 5, 1751–1765 (2014).
    Google Scholar
  253. Wiles, T. J. et al. Host gut motility promotes competitive exclusion within a model intestinal microbiota. PLoS Biol. 14, e1002517 (2016).
    Google Scholar
  254. Logan, S. L. et al. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc. Natl Acad. Sci. USA 115, E3779–E3787 (2018).
    Google Scholar
  255. Schlomann, B. H., Wiles, T. J., Wall, E. S., Guillemin, K. & Parthasarathy, R. Sublethal antibiotics collapse gut bacterial populations by enhancing aggregation and expulsion. Proc. Natl Acad. Sci. USA 116, 21392–21400 (2019).
    Google Scholar
  256. Niz, M. D. et al. 3D imaging of undissected optically cleared Anopheles stephensi mosquitoes infected with Plasmodium parasites. PLoS ONE 15, e0238134 (2019).
    Google Scholar
  257. Liu, C., Cheng, S. H. & Lin, S. Illuminating the dark depths inside coral. Cell. Microbiol. 22, e13122 (2020).
    Google Scholar
  258. Hamill, P. Unit Test Frameworks: Tools for High-Quality Software Development (O’Reilly Media, 2004).
  259. Marqués, G., Pengo, T. & Sanders, M. A. Imaging methods are vastly underreported in biomedical research. eLife 9, 1–10 (2020).
    Google Scholar
  260. Wilkinson, M. D. et al. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 1–9 (2016).
    Google Scholar
  261. Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–782 (2010).
    Google Scholar
  262. Swedlow, J. R., Goldberg, I., Brauner, E. & Sorger, P. K. Informatics and quantitative analysis in biological imaging. Science 300, 100–102 (2003).
    ADS Google Scholar
  263. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods https://doi.org/10.1038/nmeth.1896 (2012).
    Article Google Scholar
  264. Williams, E. et al. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods https://doi.org/10.1038/nmeth.4326 (2017).
    Article Google Scholar
  265. Sarkans, U. et al. The BioStudies database — one stop shop for all data supporting a life sciences study. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx965 (2018).
    Article Google Scholar
  266. Saalfeld, S., Cardona, A., Hartenstein, V. & Tomančák, P. CATMAID: Collaborative Annotation Toolkit for Massive Amounts of Image Data. Bioinformatics https://doi.org/10.1093/bioinformatics/btp266 (2009).
    Article Google Scholar
  267. Stelzer, E. H. K. Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 12, 23–26 (2015).
    Google Scholar
  268. Dean, K. M., Roudot, P., Welf, E. S., Danuser, G. & Fiolka, R. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophys. J. https://doi.org/10.1016/j.bpj.2015.05.013 (2015). This work presents ASLM, which can achieve 390-nm isotropic resolution and high optical sectioning strength over a large field of view by using a remote focusing technique.
    Article Google Scholar
  269. Kim, B. et al. Open-top axially swept light-sheet microscopy. Biomed. Opt. Express https://doi.org/10.1364/boe.419030 (2021).
    Article Google Scholar
  270. Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods https://doi.org/10.1038/s41592-019-0554-0 (2019).
    Article Google Scholar
  271. Chakraborty, T. et al. Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nat. Methods https://doi.org/10.1038/s41592-019-0615-4 (2019).
    Article Google Scholar
  272. Planchon, T. A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods https://doi.org/10.1038/nmeth.1586 (2011).
    Article Google Scholar
  273. Vettenburg, T. et al. Light-sheet microscopy using an Airy beam. Nat. Methods 11, 541–544 (2014).
    Google Scholar
  274. Chang, B. J. et al. Universal light-sheet generation with field synthesis. Nat. Methods https://doi.org/10.1038/s41592-019-0327-9 (2019).
    Article Google Scholar
  275. Remacha, E., Friedrich, L., Vermot, J. & Fahrbach, F. O. How to define and optimize axial resolution in light-sheet microscopy: a simulation-based approach. Biomed. Opt. Express https://doi.org/10.1364/boe.11.000008 (2020).
    Article Google Scholar
  276. Tang, J. & Han, K. Y. Instantaneous non-diffracting light-sheet generation by controlling spatial coherence. Opt. Commun. https://doi.org/10.1016/j.optcom.2020.126154 (2020).
    Article Google Scholar
  277. Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. https://doi.org/10.1046/j.1365-2818.2000.00710.x (2000). This work introduces SIM, a method that can double the resolving power of a microscope.
    Article Google Scholar
  278. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science https://doi.org/10.1126/science.1127344 (2006).
    Article Google Scholar
  279. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. https://doi.org/10.1364/ol.19.000780 (1994). This work presents STED microscopy, the first description of a super-resolution microscopy technique.
    Article Google Scholar
  280. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.97.15.8206 (2000).
    Article Google Scholar
  281. Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. https://doi.org/10.1529/biophysj.107.120345 (2008).
    Article Google Scholar
  282. Chang, B. J., Meza, V. D. P. & Stelzer, E. H. K. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1609278114 (2017).
    Article Google Scholar
  283. Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods https://doi.org/10.1038/nmeth.1274 (2008).
    Article Google Scholar
  284. Cella Zanacchi, F. et al. Live-cell 3D super-resolution imaging in thick biological samples. Nat. Methods https://doi.org/10.1038/nmeth.1744 (2011).
    Article Google Scholar
  285. Legant, W. R. et al. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 13, 359–365 (2016).
    Google Scholar
  286. Gustavsson, A. K., Petrov, P. N., Lee, M. Y., Shechtman, Y. & Moerner, W. E. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat. Commun. https://doi.org/10.1038/s41467-017-02563-4 (2018).
    Article Google Scholar
  287. Kim, J. et al. Oblique-plane single-molecule localization microscopy for tissues and small intact animals. Nat. Methods https://doi.org/10.1038/s41592-019-0510-z (2019).
    Article Google Scholar
  288. Friedrich, M., Gan, Q., Ermolayev, V. & Harms, G. S. STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution. Biophys. J. 100, L43–L45 (2011).
    Google Scholar
  289. Gohn-Kreuz, C. & Rohrbach, A. Light-sheet generation in inhomogeneous media using self-reconstructing beams and the STED-principle. Opt. Express https://doi.org/10.1364/oe.24.005855 (2016).
    Article Google Scholar
  290. Hernández, J. M., Buisson, A., Wang, I. & Vial, J.-C. Improved optical slicing by stimulated emission depletion light sheet microscopy. Biomed. Opt. Express https://doi.org/10.1364/boe.379646 (2020).
    Article Google Scholar
  291. Hoyer, P. et al. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT. Proc. Natl Acad. Sci. USA 113, 3442–3446 (2016).
    ADS Google Scholar
  292. Richardson, D. S. S. & Lichtman, J. W. W. Clarifying tissue clearing. Cell 162, 246–257 (2015).
    Google Scholar
  293. Ariel, P. A beginner’s guide to tissue clearing. Int. J. Biochem. Cell Biol. https://doi.org/10.1016/j.biocel.2016.12.009 (2017).
    Article Google Scholar
  294. Genina, E. A., Bashkatov, A. N., Sinichkin, Y. P., Yanina, I. Y. & Tuchin, V. V. Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. J. Biomed. Photonics Eng. https://doi.org/10.18287/jbpe-2015-1-1-22 (2015).
    Article Google Scholar
  295. Costa, E. C., Silva, D. N., Moreira, A. F. & Correia, I. J. Optical clearing methods: an overview of the techniques used for the imaging of 3D spheroids. Biotechnol. Bioeng. https://doi.org/10.1002/bit.27105 (2019).
    Article Google Scholar
  296. Gómez-Gaviro, M. V., Sanderson, D., Ripoll, J. & Desco, M. Biomedical applications of tissue clearing and three-dimensional imaging in health and disease. iScience https://doi.org/10.1016/j.isci.2020.101432 (2020).
    Article Google Scholar
  297. Costantini, I., Cicchi, R., Silvestri, L., Vanzi, F. & Pavone, F. S. In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed. Opt. Express https://doi.org/10.1364/boe.10.005251 (2019).
    Article Google Scholar
  298. Dekkers, J. F. et al. High-resolution 3D imaging of fixed and cleared organoids. Nat. Protoc. https://doi.org/10.1038/s41596-019-0160-8 (2019).
    Article Google Scholar
  299. Azaripour, A. et al. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog. Histochem. Cytochem. 51, 9–23 (2016).
    Google Scholar
  300. Dodt, H.-U. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).
    Google Scholar
  301. Tomer, R. & Deisseroth, K. Rapid high-resolution brain mapping with CLARITY optimized light sheet microscopy (COLM). Microsc. Microanal. https://doi.org/10.1017/s1431927615004389 (2015).
    Article Google Scholar
  302. Migliori, B. et al. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples. BMC Biol. https://doi.org/10.1186/s12915-018-0521-8 (2018).
    Article Google Scholar
  303. Glaser, A. K., Bishop, K. W., Barner, L. A., Serafin, R. B. & Liu, J. T. C. A hybrid open-top light-sheet microscope for multi-scale imaging of cleared tissues. Preprint at bioRxiv https://doi.org/10.1101/2020.05.06.081745 (2021).
    Article Google Scholar
  304. Mano, T. et al. Whole-brain analysis of cells and circuits by tissue clearing and light-sheet microscopy. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.1677-18.2018 (2018).
    Article Google Scholar
  305. Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-019-0250-1 (2020).
    Article Google Scholar
  306. Pan, C. et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods https://doi.org/10.1038/nmeth.3964 (2016).
    Article ADS Google Scholar
  307. Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods https://doi.org/10.1038/nmeth.2481 (2013).
    Article Google Scholar
  308. Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science https://doi.org/10.1126/science.1260088 (2015). This work introduces expansion microscopy, a super-resolution technique that is based on physically expanding the sample.
    Article Google Scholar
  309. Chang, J. B. et al. Iterative expansion microscopy. Nat. Methods https://doi.org/10.1038/nmeth.4261 (2017).
    Article Google Scholar
  310. Bridges, W. B. et al. Coherent optical adaptive techniques. Appl. Opt. https://doi.org/10.1364/ao.13.000291 (1974).
    Article Google Scholar
  311. Buffington, A., Crawford, F. S., Muller, R. A., Schwemin, A. J. & Smits, R. G. Correction of atmospheric distortion with an image-sharpening telescope. J. Opt. Soc. Am. https://doi.org/10.1364/josa.67.000298 (1977).
    Article Google Scholar
  312. Le Gargasson, J. F., Glanc, M. & Léna, P. Retinal imaging with adaptive optics. Comptes Rendus l’Academie des. Sci. IV Phys. Astrophys. 2, 1131–1138 (2001).
    ADS Google Scholar
  313. Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light: Sci. Appl. https://doi.org/10.1038/lsa.2014.46 (2014).
    Article Google Scholar
  314. Booth, M. J. Adaptive optics in microscopy. Philos. Trans. R. Soc. A: Math.Phys. Eng. Sci. 365, 2829–2843 (2007).
    ADS Google Scholar
  315. Dalgarno, H. I. C. et al. Wavefront corrected light sheet microscopy in turbid media. Appl. Phys. Lett. https://doi.org/10.1063/1.4710527 (2012).
    Article Google Scholar
  316. Jorand, R. et al. Deep and clear optical imaging of thick inhomogeneous samples. PLoS ONE https://doi.org/10.1371/journal.pone.0035795 (2012).
    Article Google Scholar
  317. Bourgenot, C., Saunter, C. D., Taylor, J. M., Girkin, J. M. & Love, G. D. 3D adaptive optics in a light sheet microscope. Opt. Express https://doi.org/10.1364/oe.20.013252 (2012).
    Article Google Scholar
  318. Wilding, D., Pozzi, P., Soloviev, O., Vdovin, G. & Verhaegen, M. Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope. Opt. Express https://doi.org/10.1364/oe.24.024896 (2016).
    Article Google Scholar
  319. Liu, T. L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science https://doi.org/10.1126/science.aaq1392 (2018).
    Article Google Scholar
  320. Nishizaki, Y. et al. Deep learning wavefront sensing. Opt. Express https://doi.org/10.1364/oe.27.000240 (2019).
    Article Google Scholar
  321. Saha, D. et al. Practical sensorless aberration estimation for 3D microscopy with deep learning. Opt. Express 28, 20738–26040 (2020).
    Google Scholar
  322. Krishnan, A. P. et al. Optical aberration correction via phase diversity and deep learning. Preprint at bioRxiv https://doi.org/10.1101/2020.04.05.026567 (2020).
    Article Google Scholar
  323. Masson, A. et al. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM. Sci. Rep. https://doi.org/10.1038/srep16898 (2015).
    Article Google Scholar
  324. Benninger, R. K. P. & Piston, D. W. Two-photon excitation microscopy for the study of living cells and tissues. Curr. Protoc. Cell Biol. 59, 4.11.1–4.11.24 (2013).
    Google Scholar
  325. Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron https://doi.org/10.1016/j.neuron.2006.05.019 (2006).
    Article Google Scholar
  326. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods https://doi.org/10.1038/nmeth818 (2005).
    Article Google Scholar
  327. Lavagnino, Z., Cella Zanacchi, F., Ronzitti, E. & Diaspro, A. Two-photon excitation selective plane illumination microscopy (2PE-SPIM) of highly scattering samples: characterization and application. Opt. Express 21, 5998 (2013).
    ADS Google Scholar
  328. Keller, P. J. & Dodt, H. U. Light sheet microscopy of living or cleared specimens. Curr. Opin. Neurobiol. https://doi.org/10.1016/j.conb.2011.08.003 (2012).
    Article Google Scholar
  329. Lavagnino, Z. et al. 4D (x–y–z–t) imaging of thick biological samples by means of two-photon inverted selective plane illumination microscopy (2PE-iSPIM). Sci. Rep. https://doi.org/10.1038/srep23923 (2016).
    Article Google Scholar
  330. Mahou, P., Vermot, J., Beaurepaire, E. & Supatto, W. Multicolor two-photon light-sheet microscopy. Nat. Methods https://doi.org/10.1038/nmeth.2963 (2014).
    Article Google Scholar
  331. Cella Zanacchi, F., Lavagnino, Z., Faretta, M., Furia, L. & Diaspro, A. Light-sheet confined super-resolution using two-photon photoactivation. PLoS ONE https://doi.org/10.1371/journal.pone.0067667 (2013).
    Article Google Scholar
  332. Welf, E. S. et al. Quantitative multiscale cell imaging in controlled 3D microenvironments. Dev. Cell https://doi.org/10.1016/j.devcel.2016.01.022 (2016).
    Article Google Scholar
  333. Dean, K. M. & Fiolka, R. Lossless three-dimensional parallelization in digitally scanned light-sheet fluorescence microscopy. Sci. Rep. https://doi.org/10.1038/s41598-017-08113-8 (2017).
  334. Wagner, N. et al. Instantaneous isotropic volumetric imaging of fast biological processes. Nat. Methods 16, 497–500 (2019).
    Google Scholar
  335. Ren, Y. X. et al. Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array. Light. Sci. Appl. https://doi.org/10.1038/s41377-020-0245-8 (2020).
    Article Google Scholar
  336. Sheppard, C. J. R. et al. Pixel reassignment in image scanning microscopy: a re-evaluation. J. Opt. Soc. Am. A https://doi.org/10.1364/josaa.37.000154 (2020).
    Article Google Scholar
  337. Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.104.198101 (2010).
    Article Google Scholar
  338. Hoffman, D. P., Slavitt, I. & Fitzpatrick, C. A. The promise and peril of deep learning in microscopy. Nat. Methods https://doi.org/10.1038/s41592-020-01035-w (2021).
    Article Google Scholar
  339. Scherf, N. & Huisken, J. The smart and gentle microscope. Nat. Biotechnol. 33, 815–818 (2015).
    Google Scholar
  340. Royer, L. A. et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotechnol. https://doi.org/10.1038/nbt.3708 (2016). This work describes an automated framework (Autopilot) that integrates into multi-view light sheet-based devices in order to control the microscope’s various degrees of freedom to optimize spatial resolution within a sample and throughout time.
    Article Google Scholar
  341. Power, R. M. & Huisken, J. Adaptable, illumination patterning light sheet microscopy. Sci. Rep. https://doi.org/10.1038/s41598-018-28036-2 (2018).
    Article Google Scholar
  342. He, J. & Huisken, J. Image quality guided smart rotation improves coverage in microscopy. Nat. Commun. https://doi.org/10.1038/s41467-019-13821-y (2020).
    Article Google Scholar
  343. Heinrich, L. et al. Automatic whole cell organelle segmentation in volumetric electron microscopy. Preprint at bioRxiv https://doi.org/10.1101/2020.11.14.382143 (2020).
    Article Google Scholar
  344. Vergara, H. M. et al. Whole-body integration of gene expression and single-cell morphology. Cell https://doi.org/10.1016/j.cell.2021.07.017 (2021).
    Article Google Scholar
  345. von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. https://doi.org/10.1038/s41467-021-22518-0 (2021).
    Article Google Scholar
  346. Heinrich, L. et al. Whole-cell organelle segmentation in volume electron microscopy. Nature https://doi.org/10.1038/s41586-021-03977-3 (2021).
    Article Google Scholar
  347. Strobl, F., Schmitz, A. & Stelzer, E. H. K. Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research. Nat. Protoc. 12, 1103–1109 (2017).
    Google Scholar
  348. Piccinini, F. et al. Advanced cell classifier: user-friendly machine-learning-based software for discovering phenotypes in high-content imaging data. Cell Syst. https://doi.org/10.1016/j.cels.2017.05.012 (2017).
    Article Google Scholar
  349. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods https://doi.org/10.1038/s41592-019-0403-1 (2019).
    Article Google Scholar
  350. Ladoux, B. & Mège, R. M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/nrm.2017.98 (2017).
    Article Google Scholar
  351. Chatterjee, K., Pratiwi, F. W., Wu, F. C. M., Chen, P. & Chen, B. C. Recent progress in light sheet microscopy for biological applications. Appl. Spectrosc. https://doi.org/10.1177/0003702818778851 (2018).
    Article Google Scholar
  352. Heddleston, J. M. & Chew, T. L. Light sheet microscopes: novel imaging toolbox for visualizing life’s processes. Int. J. Biochem. Cell Biol. https://doi.org/10.1016/j.biocel.2016.10.002 (2016).
    Article Google Scholar
  353. Girkin, J. M. & Carvalho, M. T. The light-sheet microscopy revolution. J. Opt. https://doi.org/10.1088/2040-8986/aab58a (2018).
    Article Google Scholar
  354. Elisa, Z. et al. Technical implementations of light sheet microscopy. Microscopy Res. Tech. https://doi.org/10.1002/jemt.22981 (2018).
    Article Google Scholar
  355. Albert-Smet, I. et al. Applications of light-sheet microscopy in microdevices. Front. Neuroanatomy https://doi.org/10.3389/fnana.2019.00001 (2019).
    Article Google Scholar
  356. Madrid-Wolff, J. & Forero-Shelton, M. Protocol for the design and assembly of a light sheet light field microscope. Methods Protoc. https://doi.org/10.3390/mps2030056 (2019).
    Article Google Scholar
  357. De Vos, W. H. et al. Invited Review Article: Advanced light microscopy for biological space research. Rev. Sci. Instrum. https://doi.org/10.1063/1.4898123 (2014).
    Article Google Scholar
  358. Daetwyler, S. & Huisken, J. Fast fluorescence microscopy with light sheets. Biol. Bull. 231, 14–25 (2016).
    Google Scholar
  359. Gualda, E. J., Pereira, H., Martins, G. G., Gardner, R. & Moreno, N. Three-dimensional imaging flow cytometry through light-sheet fluorescence microscopy. Cytometry A https://doi.org/10.1002/cyto.a.23046 (2017).
    Article Google Scholar
  360. Royer, L. A., Lemon, W. C., Chhetri, R. K. & Keller, P. J. A practical guide to adaptive light-sheet microscopy. Nat. Protoc. https://doi.org/10.1038/s41596-018-0043-4 (2018).
    Article Google Scholar
  361. Lemon, W. C. & McDole, K. Live-cell imaging in the era of too many microscopes. Curr. Opin. Cell Biol. https://doi.org/10.1016/j.ceb.2020.04.008 (2020).
    Article Google Scholar
  362. Hu, Y. S., Zimmerley, M., Li, Y., Watters, R. & Cang, H. Single-molecule super-resolution light-sheet microscopy. ChemPhysChem https://doi.org/10.1002/cphc.201300732 (2014).
    Article Google Scholar
  363. Tang, J., Ren, J. & Han, K. Y. Fluorescence imaging with tailored light. Nanophotonics https://doi.org/10.1515/nanoph-2019-0227 (2019).
    Article Google Scholar
  364. Amat, F. & Keller, P. J. Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy. Dev. Growth Differ. 55, 563–578 (2013).
    Google Scholar
  365. Huisken, J. & Stainier, D. Y. R. Selective plane illumination microscopy techniques in developmental biology. Development https://doi.org/10.1242/dev.022426 (2009).
    Article Google Scholar
  366. Weber, M. & Huisken, J. Light sheet microscopy for real-time developmental biology. Curr. Opin. Genet. Dev. 21, 566–572 (2011).
    Google Scholar
  367. Huisken, J. Slicing embryos gently with laser light sheets. BioEssays 34, 406–411 (2012).
    Google Scholar
  368. Wan, Y., McDole, K. & Keller, P. J. Light-sheet microscopy and its potential for understanding developmental processes. Annu. Rev. Cell Dev. Biol. https://doi.org/10.1146/annurev-cellbio-100818-125311 (2019).
    Article Google Scholar
  369. Corsetti, S., Gunn-Moore, F. & Dholakia, K. Light sheet fluorescence microscopy for neuroscience. J. Neurosci. Methods https://doi.org/10.1016/j.jneumeth.2018.07.011 (2019).
    Article Google Scholar
  370. Ueda, H. R. et al. Whole-brain profiling of cells and circuits in mammals by tissue clearing and light-sheet microscopy. Neuron https://doi.org/10.1016/j.neuron.2020.03.004 (2020).
    Article Google Scholar
  371. Tomer, R., Khairy, K. & Keller, P. J. Light sheet microscopy in cell biology. Methods Mol. Biol. 931, 123–137 (2012).
    Google Scholar
  372. Ding, Y. et al. Light-sheet imaging to elucidate cardiovascular injury and repair. Curr. Cardiol. Rep. https://doi.org/10.1007/s11886-018-0979-6 (2018).
    Article Google Scholar
  373. Poola, P. K., Afzal, M. I., Yoo, Y., Kim, K. H. & Chung, E. Light sheet microscopy for histopathology applications. Biomed. Eng. Lett. https://doi.org/10.1007/s13534-019-00122-y (2019).
    Article Google Scholar
  374. Berthet, B. B. & Maizel, A. Light sheet microscopy and live imaging of plants. J. Microsc. 263, 158–164 (2016).
    Google Scholar
  375. Komis, G., Novák, D., Ovečka, M., Šamajová, O. & Šamaj, J. Advances in imaging plant cell dynamics. Plant. Physiol. https://doi.org/10.1104/pp.17.00962 (2018).
    Article Google Scholar
  376. Parthasarathy, R. Monitoring microbial communities using light sheet fluorescence microscopy. Curr. Opin. Microbiol. https://doi.org/10.1016/j.mib.2017.11.008 (2018).
    Article Google Scholar
  377. Joseph, J. L. & Christensen, C. M. Disruptive technologies: catching the wave. J. Prod. Innov. Manag. https://doi.org/10.1016/0737-6782(96)81091-5 (1996).
    Article Google Scholar
  378. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. https://doi.org/10.1038/nrg.2016.49 (2016).
    Article Google Scholar
  379. Greger, K., Swoger, J. & Stelzer, E. H. K. Basic building units and properties of a fluorescence single plane illumination microscope. Rev. Sci. Instrum. 78, 023705 (2007).
    ADS Google Scholar
  380. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).
    Google Scholar
  381. Schetelig, M. F. et al. Site-specific recombination for the modification of transgenic strains of the Mediterranean fruit fly Ceratitis capitata. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.0907264106 (2009).
    Article Google Scholar
  382. Nakamura, T. et al. Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Curr. Biol. 20, 1641–1647 (2010).
    Google Scholar
  383. Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
    ADS Google Scholar

Download references