Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells (original) (raw)
Saha S, Chant D, Welham J, McGrath J . A systematic review of the prevalence of schizophrenia. PLoS Med 2005; 2: e141. PubMedPubMed Central Google Scholar
Nopoulos P, Torres I, Flaum M, Andreasen NC, Ehrhardt JC, Yuh WT . Brain morphology in first-episode schizophrenia. Am J Psychiatry 1995; 152: 1721–1723. ArticleCASPubMed Google Scholar
Weinberger DR, Berman KF, Zec RF . Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986; 43: 114–124. ArticleCASPubMed Google Scholar
McCarley RW, Shenton ME, O’Donnell BF, Faux SF, Kikinis R, Nestor PG et al. Auditory P300 abnormalities and left posterior superior temporal gyrus volume reduction in schizophrenia. Arch Gen Psychiatry 1993; 50: 190–197. ArticleCASPubMed Google Scholar
Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR . Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 1990; 322: 789–794. ArticleCASPubMed Google Scholar
Lawrie SM, Hall J, McIntosh AM, Cunningham-Owens DG, Johnstone EC . Neuroimaging and molecular genetics of schizophrenia: pathophysiological advances and therapeutic potential. Br J Pharmacol 2008; 153 (Suppl 1): S120–S124. CASPubMedPubMed Central Google Scholar
Holmes E, Tsang TM, Huang JT, Leweke FM, Koethe D, Gerth CW et al. Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 2006; 3: e327. ArticlePubMedPubMed CentralCAS Google Scholar
Killackey E, Yung AR . Effectiveness of early intervention in psychosis. Curr Opin Psychiatry 2007; 20: 121–125. ArticlePubMed Google Scholar
Kawanishi Y, Tachikawa H, Suzuki T . Pharmacogenomics and schizophrenia. Eur J Pharmacol 2000; 410: 227–241. ArticleCASPubMed Google Scholar
Schwarz E, Bahn S . Biomarker discovery in psychiatric disorders. Electrophoresis 2008; 29: 2884–2890. CASPubMed Google Scholar
Schwarz E, Bahn S . The utility of biomarker discovery approaches for the detection of disease mechanisms in psychiatric disorders. Br J Pharmacol 2008; 153 (Suppl 1): S133–S136. CASPubMedPubMed Central Google Scholar
Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419. ArticleCASPubMed Google Scholar
Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y et al. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 2005; 58: 85–96. ArticleCASPubMed Google Scholar
Aston C, Jiang L, Sokolov BP . Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 2004; 77: 858–866. ArticleCASPubMed Google Scholar
Bowden NA, Scott RJ, Tooney PA . Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genom 2008; 9: 199. ArticleCAS Google Scholar
Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751. CASPubMedPubMed Central Google Scholar
Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67. ArticleCASPubMed Google Scholar
Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood III WH, Donovan DM et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 2001; 55: 641–650. ArticleCASPubMed Google Scholar
Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 2002; 58: 11–20. ArticlePubMed Google Scholar
Weidenhofer J, Bowden NA, Scott RJ, Tooney PA . Altered gene expression in the amygdala in schizophrenia: up-regulation of genes located in the cytomatrix active zone. Mol Cell Neurosci 2006; 31: 243–250. ArticleCASPubMed Google Scholar
Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ . Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2009; 15: 1176–1189. ArticlePubMedPubMed CentralCAS Google Scholar
Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ et al. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 2008; 17: 1156–1168. ArticleCASPubMed Google Scholar
Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science (New York, NY) 2005; 310: 1817–1821. ArticleCAS Google Scholar
Fiore R, Siegel G, Schratt G . MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta 2008; 1779: 471–478. ArticleCASPubMed Google Scholar
Krichevsky AM, Sonntag KC, Isacson O, Kosik KS . Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem cells (Dayton, OH) 2006; 24: 857–864. ArticleCAS Google Scholar
Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439: 283–289. ArticleCASPubMed Google Scholar
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V . Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004; 5: R13. ArticlePubMedPubMed Central Google Scholar
Mraz M, Malinova K, Mayer J, Pospisilova S . MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun 2009; 390: 1–4. ArticleCASPubMed Google Scholar
Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B . Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 2009; 4: e6229. ArticlePubMedPubMed CentralCAS Google Scholar
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838. ArticleCASPubMed Google Scholar
Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760. ArticleCASPubMedPubMed Central Google Scholar
Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 2007; 8: R214. ArticlePubMedPubMed CentralCAS Google Scholar
Shi M, Guo N . MicroRNA expression and its implications for the diagnosis and therapeutic strategies of breast cancer. Cancer Treat Rev 2009; 35: 328–334. ArticleCASPubMed Google Scholar
Iorio MV, Casalini P, Tagliabue E, Menard S, Croce CM . MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur J Cancer 2008; 44: 2753–2759. ArticleCASPubMed Google Scholar
Cox MB, Cairns MJ, Gandhi KS, Carroll AP, Moscovis S, Stewart GJ et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 2010; 5: e12132. ArticlePubMedPubMed CentralCAS Google Scholar
Schipper HM, Maes OC, Chertkow HM, Wang E . MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Biol 2007; 1: 263–274. Google Scholar
Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer's Dis 2008; 14: 27–41. ArticleCAS Google Scholar
Brown AS, Derkits EJ . Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 2010; 167: 261–280. ArticlePubMedPubMed Central Google Scholar
Fatemi SH, Reutiman TJ, Folsom TD, Huang H, Oishi K, Mori S et al. Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr Res 2008; 99: 56–70. ArticlePubMedPubMed Central Google Scholar
Strous RD, Shoenfeld Y . Schizophrenia, autoimmunity and immune system dysregulation: a comprehensive model updated and revisited. J Autoimmun 2006; 27: 71–80. ArticleCASPubMed Google Scholar
Castle DJ, Jablensky A, McGrath JJ, Carr V, Morgan V, Waterreus A et al. The diagnostic interview for psychoses (DIP): development, reliability and applications. Psychol Med 2006; 36: 69–80. ArticleCASPubMed Google Scholar
Loughland C, Draganic D, McCabe K, Richards J, Nasir A, Allen J et al. The Australian Schizophrenia Research Bank: a database of comprehensive clinical, endophenotypic and genetic data for aetiological studies of schizophrenia. Aust N Z J Psychiatry 2010; 44: 1029–1035.
Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ . Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 2011; 69: 180–187. ArticleCASPubMed Google Scholar
Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121. ArticleCASPubMedPubMed Central Google Scholar
Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868. ArticleCASPubMedPubMed Central Google Scholar
Saldanha AJ . Java Treeview—extensible visualization of microarray data. Bioinformatics (Oxford, England) 2004; 20: 3246–3248. ArticleCAS Google Scholar
Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20. ArticleCASPubMed Google Scholar
Hon LS, Zhang Z . The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol 2007; 8: R166. ArticlePubMedPubMed CentralCAS Google Scholar
Zhang B, Kirov S, Snoddy J . WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005; 33: W741–W748. ArticleCASPubMedPubMed Central Google Scholar
Merico D, Isserlin R, Stueker O, Emili A, Bader GD . Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 2010; 5: e13984. ArticlePubMedPubMed CentralCAS Google Scholar
Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK et al. Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 2009; 28: 697–710. ArticleCASPubMedPubMed Central Google Scholar
Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J . A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 2004; 14: 1741–1748. ArticleCASPubMedPubMed Central Google Scholar
Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 2007; 8: R27. ArticlePubMedPubMed CentralCAS Google Scholar
Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D . Changes in brain microRNAs contribute to cholinergic stress reactions. J Mol Neurosci 2010; 40: 47–55. ArticleCASPubMed Google Scholar
Cavaille J . MicroRNAs: biosynthesis: mechanisms of action and biological functions. Ann Pathol 2007; 27: 1S31–1S32. ArticlePubMed Google Scholar
Cavaille J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP . Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader–Willi/Angelman syndrome region. Hum Mol Genet 2002; 11: 1527–1538. ArticleCASPubMed Google Scholar
Kircher M, Bock C, Paulsen M . Structural conservation versus functional divergence of maternally expressed microRNAs in the Dlk1/Gtl2 imprinting region. BMC Genom 2008; 9: 346. ArticleCAS Google Scholar
Royo H, Cavaille J . Non-coding RNAs in imprinted gene clusters. Biology of the Cell/Under the Auspices of the Eur Cell Biology Organization 2008; 100: 149–166. ArticleCAS Google Scholar
Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M, Bachellerie JP et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 2003; 34: 261–262. ArticleCASPubMed Google Scholar
Riveros C, Mellor D, Gandhi KS, McKay FC, Cox MB, Berretta R et al. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS One 2010; 5: e14176. ArticlePubMedPubMed CentralCAS Google Scholar
Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40: 751–760. ArticleCASPubMed Google Scholar
Schaefer A, Im HI, Veno MT, Fowler CD, Min A, Intrator A et al. Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction. J Exp Med 2010; 207: 1843–1851. ArticleCASPubMedPubMed Central Google Scholar
Diederichs S, Haber DA . Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 2007; 131: 1097–1108. ArticleCASPubMed Google Scholar
Frank F, Sonenberg N, Nagar B . Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 2010; 465: 818–822. ArticleCASPubMed Google Scholar
O’Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 2007; 21: 1999–2004. ArticlePubMedPubMed CentralCAS Google Scholar
Lam BY, Chawla S . MEF2D expression increases during neuronal differentiation of neural progenitor cells and correlates with neurite length. Neurosci Lett 2007; 427: 153–158. ArticleCASPubMed Google Scholar
Linseman DA, Bartley CM, Le SS, Laessig TA, Bouchard RJ, Meintzer MK et al. Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2+) //calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J Biol Chem 2003; 278: 41472–41481. ArticleCASPubMed Google Scholar
Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME . Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science (New York, NY) 1999; 286: 785–790. ArticleCAS Google Scholar
Mao Z, Wiedmann M . Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J Biol Chem 1999; 274: 31102–31107. ArticleCASPubMed Google Scholar
Okamoto S, Krainc D, Sherman K, Lipton SA . Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proc Natl Acad Sci USA 2000; 97: 7561–7566. ArticleCASPubMedPubMed Central Google Scholar
Beveridge NJ, Tooney PA, Carroll AP, Tran N, Cairns MJ . Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cell Signal 2009; 21: 1837–1845. ArticleCASPubMed Google Scholar
Wheeler G, Ntounia-Fousara S, Granda B, Rathjen T, Dalmay T . Identification of new central nervous system specific mouse microRNAs. FEBS Lett 2006; 580: 2195–2200. ArticleCASPubMed Google Scholar
Glazov EA, McWilliam S, Barris WC, Dalrymple BP . Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals. Mol Biol Evol 2008; 25: 939–948. ArticleCASPubMed Google Scholar
Liu L, Luo GZ, Yang W, Zhao X, Zheng Q, Lv Z et al. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J Biol Chem 2010; 285: 19483–19490. ArticleCASPubMedPubMed Central Google Scholar
Kagami M, O’Sullivan MJ, Green AJ, Watabe Y, Arisaka O, Masawa N et al. The IG-DMR and the MEG3-DMR at human chromosome 14q32.2: hierarchical interaction and distinct functional properties as imprinting control centers. PLoS Genet 2010; 6: e1000992. ArticlePubMedPubMed CentralCAS Google Scholar
Bunzel R, Blumcke I, Cichon S, Normann S, Schramm J, Propping P et al. Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Brain Res 1998; 59: 90–92. CAS Google Scholar
Pun FW, Zhao C, Lo WS, Ng SK, Tsang SY, Nimgaonkar V et al. Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor beta(2) subunit. Mol Psychiatry 2010; 16: 557–568. ArticlePubMedCAS Google Scholar
Cichon S, Schumacher J, Muller DJ, Hurter M, Windemuth C, Strauch K et al. A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Hum Mol Genet 2001; 10: 2933–2944. ArticleCASPubMed Google Scholar
Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet 2003; 73: 49–62. ArticleCASPubMedPubMed Central Google Scholar
Middeldorp CM, Hottenga JJ, Slagboom PE, Sullivan PF, de Geus EJ, Posthuma D et al. Linkage on chromosome 14 in a genome-wide linkage study of a broad anxiety phenotype. Mol Psychiatry 2008; 13: 84–89. ArticleCASPubMed Google Scholar
Buiting K . Prader–Willi syndrome and Angelman syndrome. Am J Med Genet C 2010; 154C: 365–376. ArticleCAS Google Scholar
de los Santos T, Schweizer J, Rees CA, Francke U . Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader–Willi deletion region, which is highly expressed in brain. Am J Hum Genet 2000; 67: 1067–1082. ArticleCASPubMedPubMed Central Google Scholar
Johnstone KA, DuBose AJ, Futtner CR, Elmore MD, Brannan CI, Resnick JL . A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects. Hum Mol Genet 2006; 15: 393–404. ArticleCASPubMed Google Scholar
Leung KN, Vallero RO, DuBose AJ, Resnick JL, LaSalle JM . Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size. Hum Mol Genet 2009; 18: 4227–4238. ArticleCASPubMedPubMed Central Google Scholar
Cassidy SB, Dykens E, Williams CA . Prader–Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet 2000; 97: 136–146. ArticleCASPubMed Google Scholar
Veltman MW, Craig EE, Bolton PF . Autism spectrum disorders in Prader–Willi and Angelman syndromes: a systematic review. Psychiatric Genet 2005; 15: 243–254. Article Google Scholar
Whittington J, Holland A, Webb T, Butler J, Clarke D, Boer H . Cognitive abilities and genotype in a population-based sample of people with Prader–Willi syndrome. J Intellect Disabil Res 2004; 48: 172–187. ArticleCASPubMed Google Scholar
Holland AJ, Whittington JE, Butler J, Webb T, Boer H, Clarke D . Behavioural phenotypes associated with specific genetic disorders: evidence from a population-based study of people with Prader–Willi syndrome. Psychol Med 2003; 33: 141–153. ArticleCASPubMed Google Scholar
Jauregi J, Arias C, Vegas O, Alen F, Martinez S, Copet P et al. A neuropsychological assessment of frontal cognitive functions in Prader–Willi syndrome. J Intellect Disabil Res 2007; 51: 350–365. ArticleCASPubMed Google Scholar
Relkovic D, Doe CM, Humby T, Johnstone KA, Resnick JL, Holland AJ et al. Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader–Willi syndrome. Eur J Neurosci 2010; 31: 156–164. ArticlePubMed Google Scholar
Soni S, Whittington J, Holland AJ, Webb T, Maina EN, Boer H et al. The phenomenology and diagnosis of psychiatric illness in people with Prader–Willi syndrome. Psychol Med 2008; 38: 1505–1514. CASPubMed Google Scholar
Zollino M, Seminara L, Orteschi D, Gobbi G, Giovannini S, Della Giustina E et al. The ring 14 syndrome: clinical and molecular definition. Am J Med Genet A 2009; 149A: 1116–1124. ArticleCASPubMed Google Scholar
Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18: 1497–1503. ArticleCASPubMedPubMed Central Google Scholar
Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236. ArticleCASPubMedPubMed Central Google Scholar
Moon HJ, Yim SV, Lee WK, Jeon YW, Kim YH, Ko YJ et al. Identification of DNA copy-number aberrations by array-comparative genomic hybridization in patients with schizophrenia. Biochem Biophys Res Commun 2006; 344: 531–539. ArticleCASPubMed Google Scholar
Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M . Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885. ArticleCASPubMed Google Scholar
Hagan JP, O’Neill BL, Stewart CL, Kozlov SV, Croce CM . At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS One 2009; 4: e4352. ArticlePubMedPubMed CentralCAS Google Scholar