Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell116, 205–219 (2004). ArticleCASPubMed Google Scholar
Cory, S., Huang, D. C. & Adams, J. M. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene22, 8590–8607 (2003). ArticleCASPubMed Google Scholar
Green, D. R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science305, 626–629 (2004). ArticleADSCASPubMed Google Scholar
Peter, M. E. & Krammer, P. H. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ.10, 26–35 (2003). ArticleCASPubMed Google Scholar
Wilkinson, J. C., Cepero, E., Boise, L. H. & Duckett, C. S. Upstream regulatory role for XIAP in receptor-mediated apoptosis. Mol. Cell. Biol.24, 7003–7014 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell11, 577–590 (2003). ArticleCASPubMed Google Scholar
White, E. Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene20, 7836–7846 (2001). ArticleCASPubMed Google Scholar
Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev.13, 2670–2677 (1999). ArticleCASPubMedPubMed Central Google Scholar
Symonds, H. et al. p53-dependent apoptosis suppresses tumour growth and progression in vivo. Cell78, 703–711 (1994). ArticleCASPubMed Google Scholar
Pierce, A. M. et al. Increased E2F1 activity induces skin tumours in mice heterozygous and nullizygous for p53. Proc. Natl Acad. Sci. USA95, 8858–8863 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Yin, C., Knudson, C. M., Korsmeyer, S. J. & Van Dyke, T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature385, 637–640 (1997). ArticleADSCASPubMed Google Scholar
Schmitt, C. A. et al. Dissecting p53 tumour suppressor functions in vivo. Cancer Cell1, 289–298 (2002). ArticleCASPubMed Google Scholar
Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell109, 321–334 (2002). ArticleCASPubMed Google Scholar
Lowe, S. W. & Sherr, C. J. Tumour suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev.13, 77–83 (2003). ArticleCASPubMed Google Scholar
Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol.2, 731–737 (2001). ArticleADSCAS Google Scholar
Zindy, F. et al. Myc signalling via the ARF tumour suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev.12, 2424–2433 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kamijo, T. et al. Tumour suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell91, 649–659 (1997). ArticleCASPubMed Google Scholar
Schmitt, C. A. et al. A senescence programme controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell109, 335–346 (2002). ArticleCASPubMed Google Scholar
Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev.13, 2678–2690 (1999). ArticleCASPubMedPubMed Central Google Scholar
Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF–Mdm2–p53 tumour suppressor pathway in Myc-induced lymphomagenesis. Genes Dev.13, 2658–2669 (1999). ArticleCASPubMedPubMed Central Google Scholar
Verschuren, E. W., Klefstrom, J., Evan, G. I. & Jones, N. The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell2, 229–241 (2002). ArticleCASPubMed Google Scholar
Tolbert, D., Lu, X., Yin, C., Tantama, M. & Van Dyke, T. p19(ARF) is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumour suppression in vivo. Mol. Cell. Biol.22, 370–377 (2002). ArticleCASPubMedPubMed Central Google Scholar
Khan, S. H., Moritsugu, J. & Wahl, G. M. Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. Proc. Natl Acad. Sci. USA97, 3266–3271 (2000). ArticleADSCASPubMedPubMed Central Google Scholar
Rogoff, H. A. et al. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol. Cell. Biol.24, 2968–2977 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liao, M. J., Yin, C., Barlow, C., Wynshaw-Boris, A. & van Dyke, T. Atm is dispensable for p53 apoptosis and tumour suppression triggered by cell cycle dysfunction. Mol. Cell. Biol.19, 3095–3102 (1999). ArticleCASPubMedPubMed Central Google Scholar
Conn, C. W., Lewellyn, A. L. & Maller, J. L. The DNA damage checkpoint in embryonic cell cycles is dependent on the DNA-to-cytoplasmic ratio. Dev. Cell7, 275–281 (2004). ArticleCASPubMed Google Scholar
Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature416, 560–564 (2002). ArticleADSCASPubMed Google Scholar
Yang, A., Kaghad, M., Caput, D. & McKeon, F. On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet.18, 90–95 (2002). ArticlePubMed Google Scholar
Senoo, M., Manis, J. P., Alt, F. W. & McKeon, F. p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell6, 85–89 (2004). ArticleCASPubMed Google Scholar
Bergamaschi, D. et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell3, 387–402 (2003). ArticleCASPubMed Google Scholar
Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumour-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol.21, 1874–1887 (2001). ArticleCASPubMedPubMed Central Google Scholar
Klefstrom, J., Verschuren, E. W. & Evan, G. c-Myc augments the apoptotic activity of cytosolic death receptor signalling proteins by engaging the mitochondrial apoptotic pathway. J. Biol. Chem.277, 43224–43232 (2002). ArticleCASPubMed Google Scholar
Croxton, R., Ma, Y., Song, L., Haura, E. B. & Cress, W. D. Direct repression of the Mcl-1 promoter by E2F1. Oncogene21, 1359–1369 (2002). ArticleCASPubMed Google Scholar
Eischen, C. M. et al. Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene20, 6983–6993 (2001). ArticleCASPubMed Google Scholar
Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA101, 6164–6169 (2004). ArticleADSCASPubMedPubMed Central Google Scholar
Hershko, T. & Ginsberg, D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J. Biol. Chem.279, 8627–8634 (2004). ArticleCASPubMed Google Scholar
Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol.4, 859–864 (2002). ArticleCASPubMed Google Scholar
Sears, R., Ohtani, K. & Nevins, J. R. Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol. Cell. Biol.17, 5227–5235 (1997). ArticleCASPubMedPubMed Central Google Scholar
Matsumura, I., Tanaka, H. & Kanakura, Y. E2F1 and c-Myc in cell growth and death. Cell Cycle2, 333–338 (2003). ArticleCASPubMed Google Scholar
Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell8, 105–113 (2001). ArticleCASPubMed Google Scholar
Baudino, T. A. et al. Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol. Cell11, 905–914 (2003). ArticleCASPubMed Google Scholar
Conner, E. A. et al. Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. Oncogene19, 5054–5062 (2000). ArticleCASPubMed Google Scholar
Leone, G., DeGregori, J., Sears, R., Jakoi, L. & Nevins, J. R. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature387, 422–426 (1997). ArticleADSCASPubMed Google Scholar
Dimri, G. P., Itahana, K., Acosta, M. & Campisi, J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumour suppressor. Mol. Cell. Biol.20, 273–285 (2000). ArticleCASPubMedPubMed Central Google Scholar
Damalas, A., Kahan, S., Shtutman, M., Ben-Ze'ev, A. & Oren, M. Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J.20, 4912–4922 (2001). ArticleCASPubMedPubMed Central Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCASPubMed Google Scholar
Campisi, J. Cellular senescence as a tumour-suppressor mechanism. Trends Cell Biol.11, S27–S31 (2001). ArticleCASPubMed Google Scholar
Shay, J. W. & Roninson, I. B. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene23, 2919–2933 (2004). ArticleCASPubMed Google Scholar
Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature406, 207–210 (2000). ArticleADSCASPubMed Google Scholar
Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev.14, 2015–2027 (2000). CASPubMedPubMed Central Google Scholar
Itahana, K. et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol.23, 389–401 (2003). ArticleCASPubMedPubMed Central Google Scholar
Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell113, 703–716 (2003). ArticleCASPubMed Google Scholar
Paramio, J. M. et al. The ink4a/arf tumour suppressors cooperate with p21cip1/waf in the processes of mouse epidermal differentiation, senescence, and carcinogenesis. J. Biol. Chem.276, 44203–44211 (2001). ArticleCASPubMed Google Scholar
Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev.15, 50–65 (2001). ArticleCASPubMedPubMed Central Google Scholar
Horner, S. M., DeFilippis, R. A., Manuelidis, L. & DiMaio, D. Repression of the human papillomavirus E6 gene initiates p53-dependent, telomerase-independent senescence and apoptosis in HeLa cervical carcinoma cells. J. Virol.78, 4063–4073 (2004). ArticleCASPubMedPubMed Central Google Scholar
Benanti, J. A. & Galloway, D. A. Normal human fibroblasts are resistant to RAS-induced senescence. Mol. Cell. Biol.24, 2842–2852 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tuveson, D. A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell5, 375–387 (2004). ArticleCASPubMed Google Scholar
Guerra, C. et al. Tumour induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell4, 111–120 (2003). ArticleCASPubMed Google Scholar
Lin, A. W. & Lowe, S. W. Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc. Natl Acad. Sci. USA98, 5025–5030 (2001). ArticleADSCASPubMedPubMed Central Google Scholar
Kelly-Spratt, K. S., Gurley, K. E., Yasui, Y. & Kemp, C. J. p19(Arf) suppresses growth, progression, and metastasis of Hras-driven carcinomas through p53-dependent and -independent pathways. PLoS Biol.2, E242 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell3, 565–577 (1999). ArticleCASPubMed Google Scholar
Askew, D., Ashmun, R., Simmons, B. & Cleveland, J. Constitutive c-myc expression in IL-3-dependent myeloid cell line suppresses cycle arrest and accelerates apoptosis. Oncogene6, 1915–1922 (1991). CASPubMed Google Scholar
Harrington, E. A., Bennett, M. R., Fanidi, A. & Evan, G. I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J.13, 3286–3295 (1994). ArticleCASPubMedPubMed Central Google Scholar
Grossmann, J. Molecular mechanisms of ‘detachment-induced apoptosis–Anoikis’. Apoptosis7, 247–260 (2002). ArticleCASPubMed Google Scholar
Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer2, 489–501 (2002). ArticleCAS Google Scholar
Plas, D. R., Rathmell, J. C. & Thompson, C. B. Homeostatic control of lymphocyte survival: potential origins and implications. Nature Immunol.3, 515–521 (2002). ArticleCAS Google Scholar
Grad, J. M., Zeng, X. R. & Boise, L. H. Regulation of Bcl-xL: a little bit of this and a little bit of STAT. Curr. Opin. Oncol.12, 543–549 (2000). ArticleCASPubMed Google Scholar
LeRoith, D. & Helman, L. The new kid on the block(ade) of the IGF-1 receptor. Cancer Cell5, 201–202 (2004). ArticleCASPubMed Google Scholar
Christofori, G., Naik, P. & Hanahan, D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature369, 414–418 (1994). ArticleADSCASPubMed Google Scholar
Orsulic, S. et al. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell1, 53–62 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kauffmann-Zeh, A. et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature385, 544–548 (1997). ArticleADSCASPubMed Google Scholar
Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature428, 332–337 (2004). ArticleADSCASPubMed Google Scholar
Aslanian, A., Iaquinta, P. J., Verona, R. & Lees, J. A. Repression of the Arf tumour suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev.18, 1413–1422 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jin, S. et al. CIAP1 and the serine protease HTRA2 are involved in a novel p53-dependent apoptosis pathway in mammals. Genes Dev.17, 359–367 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zheng, T. S. et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nature Med.6, 1241–1247 (2000). ArticleCASPubMed Google Scholar
Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T. & Thompson, C. B. Characterization of XIAP-deficient mice. Mol. Cell. Biol.21, 3604–3608 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature424, 223–228 (2003). ArticleADSCASPubMed Google Scholar
Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature419, 729–734 (2002). ArticleADSCASPubMed Google Scholar
Johnstone, R. W., Ruefli, A. A. & Lowe, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell108, 153–164 (2002). ArticleCASPubMed Google Scholar
Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in haematopoietic lineages. Mol. Cell4, 199–207 (1999). ArticleCASPubMed Google Scholar
Gunther, E. J. et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev.17, 488–501 (2003). ArticleCASPubMedPubMed Central Google Scholar
Moody, S. E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell2, 451–461 (2002). ArticleCASPubMed Google Scholar
Pakunlu, R. I., Cook, T. J. & Minko, T. Simultaneous modulation of multidrug resistance and antiapoptotic cellular defence by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharm. Res.20, 351–359 (2003). ArticleCASPubMed Google Scholar
Bykov, V. J. & Wiman, K. G. Novel cancer therapy by reactivation of the p53 apoptosis pathway. Ann. Med.35, 458–465 (2003). ArticleCASPubMed Google Scholar