Lymphangiogenesis in development and human disease (original) (raw)
Hirakawa, S. & Detmar, M. New insights into the biology and pathology of the cutaneous lymphatic system. J. Dermatol. Sci.35, 1–8 (2004). ArticleCASPubMed Google Scholar
Oliver, G. Lymphatic vasculature development. Nature Rev. Immunol.4, 35–45 (2004). ArticleCAS Google Scholar
Tammela, T., Petrova, T. V. & Alitalo, K. Molecular lymphangiogenesis: new players. Trends Cell Biol.15, 434–441 (2005). ArticleCASPubMed Google Scholar
Kaipainen, A. et al. Expression of the fms-like tyrosine kinase FLT4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl Acad. Sci. USA92, 3566–3570 (1995). ArticleADSCASPubMedPubMed Central Google Scholar
Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl Acad. Sci. USA95, 548–553 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J.15, 290–298 (1996). ArticleCASPubMedPubMed Central Google Scholar
Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science276, 1423–1425 (1997). ArticleCASPubMed Google Scholar
Mäkinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J.20, 4762–4773 (2001). ArticlePubMedPubMed Central Google Scholar
Stacker, S. A. et al. Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J. Biol. Chem.274, 32127–32136 (1999). ArticleCASPubMed Google Scholar
Rissanen, T. T. et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ. Res.92, 1098–1106 (2003). ArticleCASPubMed Google Scholar
Nagy, J. A. et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med.196, 1497–1506 (2002). ArticleCASPubMedPubMed Central Google Scholar
Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunol.5, 74–80 (2004). ArticleCAS Google Scholar
Gannon, G. et al. Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res.62, 603–608 (2002). CASPubMed Google Scholar
Oh, S. J. et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev. Biol.188, 96–109 (1997). ArticleCASPubMed Google Scholar
Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest.113, 1040–1050 (2004). ArticleCASPubMedPubMed Central Google Scholar
Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest.115, 247–257 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. F., Zhang, X. F. & Groopman, J. E. Stimulation of beta 1 integrin induces tyrosine phosphorylation of vascular endothelial growth factor receptor-3 and modulates cell migration. J. Biol. Chem.276, 41950–41957 (2001). ArticleCASPubMed Google Scholar
Vlahakis, N. E., Young, B. A., Atakilit, A. & Sheppard, D. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J. Biol. Chem.280, 4544–4552 (2005). ArticleCASPubMed Google Scholar
Zhang, X. et al. KSHV activation of VEGFR-3 alters endothelial function and enhances infection. J. Biol. Chem.280, 26216–26224 (2005). ArticleCASPubMed Google Scholar
Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl Acad. Sci. USA99, 8868–8873 (2002). ArticleADSCASPubMedPubMed Central Google Scholar
Cao, R. et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes tumour metastasis. Cancer Cell6, 333–345 (2004). ArticleCASPubMed Google Scholar
Kajiya, K., Hirakawa, S., Ma, B., Drinnenberg, I. & Detmar, M. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J.24, 2885–2895 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sabin, F. R. The lymphatic system in human embryos, with a consideration of the morphology of the system as a whole. Am. J. Anat.9, 43–91 (1909). Article Google Scholar
Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell98, 769–778 (1999). ArticleCASPubMed Google Scholar
Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J.21, 1505–1513 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hong, Y. K. et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn.225, 351–357 (2002). ArticleCASPubMed Google Scholar
Petrova, T. V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J.21, 4593–4599. (2002). ArticleCASPubMedPubMed Central Google Scholar
Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nature Genet.37, 1072–1081 (2005). ArticleCASPubMed Google Scholar
Baldwin, M. E. et al. Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol. Cell Biol.25, 2441–2449 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dumont, D. J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science282, 946–949 (1998). ArticleADSCASPubMed Google Scholar
Karkkainen, M. J. et al. Missense mutations interfere with VEGFR-3 signaling in primary lymphoedema. Nature Genet.25, 153–159 (2000). ArticleCASPubMed Google Scholar
Jackson, D. G. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS112, 526–538 (2004). ArticleCASPubMed Google Scholar
Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev.19, 397–410 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Jeltsch, M., Tammela, T., Alitalo, K. & Wilting, J. Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res.314, 69–84 (2003). ArticleCASPubMed Google Scholar
Aalami, O. O., Allen, D. B. & Organ, C. H. Jr. Chylous ascites: a collective review. Surgery128, 761–778 (2000). ArticleCASPubMed Google Scholar
Saharinen, P. et al. Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J. Cell Biol.169, 239–243 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gale, N. W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell3, 411–423 (2002). ArticleCASPubMed Google Scholar
Morisada, T. et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood105, 4649–4656 (2005). ArticleCASPubMed Google Scholar
Tammela, T. et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood105, 4642–4648 (2005). ArticleCASPubMed Google Scholar
Adams, R. H. & Klein, R. Eph receptors and ephrin ligands. essential mediators of vascular development. Trends Cardiovasc. Med.10, 183–188 (2000). ArticleCASPubMed Google Scholar
Petrova, T. V. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nature Med.10, 974–981 (2004). ArticleCASPubMed Google Scholar
Dagenais, S. L. et al. Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome. Gene Expr. Patterns4, 611–619 (2004). ArticleCASPubMed Google Scholar
Ferrell, R. E. Research perspectives in inherited lymphatic disease. Ann. N Y Acad. Sci.979, 39–51 (2002). ArticleADSCASPubMed Google Scholar
Brice, G. et al. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J. Med. Genet.39, 478–483 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schacht, V. et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J.22, 3546–3556 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kriehuber, E. et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J. Exp. Med.194, 797–808 (2001). ArticleCASPubMedPubMed Central Google Scholar
Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J.20, 4762–4773. (2001). ArticleCASPubMedPubMed Central Google Scholar
Hirakawa, S. et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am. J. Pathol.162, 575–586 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yla-Herttuala, S. & Alitalo, K. Gene transfer as a tool to induce therapeutic vascular growth. Nature Med.9, 694–701 (2003). ArticlePubMedCAS Google Scholar
Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nature Med.6, 460–463 (2000). ArticleCASPubMed Google Scholar
Weis, S. & Cheresh, D. A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature65, 9789–9798 (2005). Google Scholar
Pepper, M. S. Lymphangiogenesis and tumor metastasis: myth or reality? Clin. Cancer Res.7, 462–468 (2001). CASPubMed Google Scholar
Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E. & Alitalo, K. Lymphangiogenesis and cancer metastasis. Nature Rev. Cancer2, 573–583 (2002). ArticleCAS Google Scholar
He, Y. et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl Cancer Inst.94, 819–825 (2002). ArticleCASPubMed Google Scholar
Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med.7, 192–198 (2001). ArticleCASPubMed Google Scholar
Mandriota, S. J. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J.20, 672–682 (2001). ArticleCASPubMedPubMed Central Google Scholar
Stacker, S. A. et al. Vascular endothelial growth factor-D promotes the metastatic spread of cancer via the lymphatics. Nature Med.7, 186–191 (2001). ArticleCASPubMed Google Scholar
Karpanen, T. et al. Vacular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res.61, 1786–1790 (2001). CASPubMed Google Scholar
Valtola, R. et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol.154, 1381–1390 (1999). ArticleCASPubMedPubMed Central Google Scholar
Krishnan, J. et al. Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res.63, 713–722 (2003). CASPubMed Google Scholar
Dadras, S. S. et al. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am. J. Pathol.162, 1951–1960 (2003). ArticlePubMedPubMed Central Google Scholar
Maula, S. M. et al. Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res.63, 1920–1926 (2003). CASPubMed Google Scholar
Wong, S. Y. et al. Tumor-secreted VEGF-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res.65, 9789–9798.
Padera, T. P. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science296, 1883–1886 (2002). ArticleADSCASPubMed Google Scholar
He, Y. et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res.65, 4739–4746 (2005). ArticleCASPubMed Google Scholar
Laakkonen, P., Porkka, K., Hoffman, J. A. & Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nature Med.8, 751–755 (2002). ArticleCASPubMed Google Scholar
Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med.201, 1089–1099 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pullinger, B. D. & Florey, H. W. Proliferation of lymphatics in inflammation. J. Pathol. Bact.45, 157–170 (1937). Article Google Scholar
Ristimaki, A., Narko, K., Enholm, B., Joukov, V. & Alitalo, K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J. Biol. Chem.273, 8413–8418 (1998). ArticleCASPubMed Google Scholar
Saban, M. R. et al. Visualization of lymphatic vessels through NF-kappaB activity. Blood104, 3228–3230 (2004). ArticleCASPubMed Google Scholar
Kerjaschki, D. et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J. Am. Soc. Nephrol.15, 603–612 (2004). ArticleCASPubMed Google Scholar
Hamrah, P., Chen, L., Zhang, Q. & Dana, M. R. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am. J. Pathol.163, 57–68 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chen, L. et al. Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nature Med.10, 813–815 (2004). ArticleCASPubMed Google Scholar
Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity21, 279–288 (2004). ArticleCASPubMed Google Scholar
Irjala, H. et al. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J. Exp. Med.194, 1033–1041 (2001). ArticleCASPubMedPubMed Central Google Scholar
Salmi, M., Koskinen, K., Henttinen, T., Elima, K. & Jalkanen, S. CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood104, 3849–3857 (2004). ArticleCASPubMed Google Scholar
Nibbs, R. J. et al. The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am. J. Pathol.158, 867–877 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kriederman, B. M. et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum. Mol. Genet.12, 1179–1185 (2003). ArticleCASPubMed Google Scholar
Fruman, D. A. et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nature Genet.26, 379–382 (2000). ArticleCASPubMed Google Scholar
Pennisi, D. et al. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nature Genet.24, 434–437 (2000). ArticleCASPubMed Google Scholar
Gittenberger-De Groot, A. C. et al. Abnormal lymphatic development in trisomy 16 mouse embryos precedes nuchal edema. Dev. Dyn.230, 378–384 (2004). ArticlePubMed Google Scholar
Dixelius, J. et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J. Biol. Chem.278, 40973–40979 (2003). ArticleCASPubMed Google Scholar
Salameh, A., Galvagni, F., Bardelli, M., Bussolino, F. & Oliviero, S. Direct recruitment of CRK and GRB2 to VEGFR-3 induce proliferation, migration and survival of endothelial cells through the activation of ERK, AKT and JNK pathways. Blood15, 3423–3431 (2005). ArticleCAS Google Scholar
Ny, A. et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nature Med.11, 998–1004 (2005). ArticleCASPubMed Google Scholar
Schneider, M., Othman-Hassan, K., Christ, B. & Wilting, J. Lymphangioblasts in the avian wing bud. Dev. Dyn.216, 311–319 (1999). ArticleCASPubMed Google Scholar
Rajantie, I. et al. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood104, 2084–2086 (2004). ArticleCASPubMed Google Scholar
Wang, H. W. et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nature Genet.36, 687–693 (2004). ArticleCASPubMed Google Scholar
Hong, Y. K. et al. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nature Genet.36, 683–685 (2004). ArticleCASPubMed Google Scholar