Phosphoinositides in cell regulation and membrane dynamics (original) (raw)
Hokin, L. E. Receptors and phosphoinositide-generated second messengers. Annu. Rev. Biochem.54, 205–235 (1985) ArticleCASPubMed Google Scholar
Berridge, M. J. & Irvine, R. F. Inositol phosphates and cell signalling. Nature341, 197–205 (1989) ADSCASPubMed Google Scholar
Lassing, I. & Lindberg, U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature314, 472–474 (1985) ArticleADSCASPubMed Google Scholar
Ma, L., Cantley, L. C., Janmey, P. A. & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol.140, 1125–1136 (1998) ArticleCASPubMedPubMed Central Google Scholar
Yin, H. L. & Janmey, P. A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol.65, 761–789 (2003) ArticleCASPubMed Google Scholar
Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature332, 644–646 (1988) ArticleADSCASPubMed Google Scholar
Traynor-Kaplan, A. E., Harris, A. L., Thompson, B. L., Taylor, P. & Sklar, L. A. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature334, 353–356 (1988) ArticleADSCASPubMed Google Scholar
Auger, K. R. et al. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell57, 167–175 (1989) ArticleCASPubMed Google Scholar
Eberhard, D. A., Cooper, C. L., Low, M. G. & Holz, R. W. Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Biochem. J.268, 15–25 (1990) ArticleCASPubMedPubMed Central Google Scholar
Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science260, 88–91 (1993) ArticleADSCASPubMed Google Scholar
Martin, T. F. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol.14, 231–264 (1998) ArticleCASPubMed Google Scholar
Dove, S. K. et al. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature390, 187–192 (1997) ArticleADSCASPubMed Google Scholar
Rameh, L. E., Tolias, K. F., Duckworth, B. C. & Cantley, L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature390, 192–196 (1997) ArticleADSCASPubMed Google Scholar
Balla, T. Inositol-lipid binding motifs: signal integrators through protein–lipid and protein–protein interactions. J. Cell Sci.118, 2093–2104 (2005) ArticleCASPubMed Google Scholar
Majerus, P. W., Kisseleva, M. V. & Norris, F. A. The role of phosphatases in inositol signaling reactions. J. Biol. Chem.274, 10669–10672 (1999) ArticleCASPubMed Google Scholar
Odorizzi, G., Babst, M. & Emr, S. D. Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem. Sci.25, 229–235 (2000) ArticleCASPubMed Google Scholar
Roth, M. G. Phosphoinositides in constitutive membrane traffic. Physiol. Rev.84, 699–730 (2004) ArticleCASPubMed Google Scholar
Hammond, G., Thomas, C. L. & Schiavo, G. Nuclear phosphoinositides and their functions. Curr. Top. Microbiol. Immunol.282, 177–206 (2004) CASPubMed Google Scholar
Hurley, J. H. & Meyer, T. Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol.13, 146–152 (2001) ArticleCASPubMed Google Scholar
Wenk, M. R. & De Camilli, P. Protein–lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA101, 8262–8269 (2004) ArticleADSCASPubMedPubMed Central Google Scholar
Behnia, R. & Munro, S. Organelle identity and the signposts for membrane traffic. Nature438, 597–604 (2005) ArticleADSCASPubMed Google Scholar
Gaidarov, I. & Keen, J. H. Phosphoinositide–AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J. Cell Biol.146, 755–764 (1999) ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell114, 299–310 (2003) ArticleCASPubMed Google Scholar
Honing, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell18, 519–531 (2005) ArticlePubMed Google Scholar
Owen, D. J., Collins, B. M. & Evans, P. R. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol.20, 153–191 (2004) ArticleCASPubMed Google Scholar
Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell99, 521–532 (1999) ArticleCASPubMed Google Scholar
Shin, H. W. et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J. Cell Biol.170, 607–618 (2005) ArticleCASPubMedPubMed Central Google Scholar
Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell99, 179–188 (1999) ArticleCASPubMed Google Scholar
Czech, M. P. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol.65, 791–815 (2003) ArticleCASPubMed Google Scholar
Katso, R. et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol.17, 615–675 (2001) ArticleCASPubMed Google Scholar
Wishart, M. J. & Dixon, J. E. PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol.12, 579–585 (2002) ArticleCASPubMed Google Scholar
Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science275, 1943–1947 (1997) ArticleCASPubMed Google Scholar
Hilgemann, D. W., Feng, S. & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE2001, RE19, doi:10.1126/stke.2001.111.re19 (2001) CASPubMed Google Scholar
Suh, B. C. & Hille, B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol.15, 370–378 (2005) ArticleCASPubMed Google Scholar
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell112, 453–465 (2003) ArticleCASPubMed Google Scholar
Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol.150, 1299–1310 (2000) ArticleCASPubMedPubMed Central Google Scholar
Ho, H. Y. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP–WIP complex. Cell118, 203–216 (2004) ArticleCASPubMed Google Scholar
Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 γ by the FERM domain of talin. Nature420, 85–89 (2002) ArticleADSCASPubMed Google Scholar
Ling, K. et al. Type I γ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature420, 89–93 (2002) ArticleADSCASPubMed Google Scholar
Oikawa, T. et al. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nature Cell Biol.6, 420–426 (2004) ArticleCASPubMed Google Scholar
Iijima, M., Huang, Y. E. & Devreotes, P. Temporal and spatial regulation of chemotaxis. Dev. Cell3, 469–478 (2002) ArticleCASPubMed Google Scholar
Golub, T. & Caroni, P. PI(4,5)P2-dependent microdomain assemblies capture microtubules to promote and control leading edge motility. J. Cell Biol.169, 151–165 (2005) ArticleCASPubMedPubMed Central Google Scholar
Klopfenstein, D. R. & Vale, R. D. The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol. Biol. Cell15, 3729–3739 (2004) ArticleCASPubMedPubMed Central Google Scholar
Bai, J., Tucker, W. C. & Chapman, E. R. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nature Struct. Mol. Biol.11, 36–44 (2004) ArticleCAS Google Scholar
Milosevic, I. et al. Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J. Neurosci.25, 2557–2565 (2005) ArticleCASPubMedPubMed Central Google Scholar
Gong, L. W. et al. Phosphatidylinositol phosphate kinase type I γ regulates dynamics of large dense-core vesicle fusion. Proc. Natl Acad. Sci. USA102, 5204–5209 (2005) ArticleADSCASPubMedPubMed Central Google Scholar
Di Paolo, G. et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature431, 415–422 (2004) ArticleADSCASPubMed Google Scholar
Lackner, M. R., Nurrish, S. J. & Kaplan, J. M. Facilitation of synaptic transmission by EGL-30 Gqα and EGL-8 PLCβ: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron24, 335–346 (1999) ArticleCASPubMed Google Scholar
Rhee, J. S. et al. β phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell108, 121–133 (2002) ArticleCASPubMed Google Scholar
Engqvist-Goldstein, A. E. & Drubin, D. G. Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol.19, 287–332 (2003) ArticleCASPubMed Google Scholar
Stefan, C. J., Audhya, A. & Emr, S. D. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell13, 542–557 (2002) ArticleCASPubMedPubMed Central Google Scholar
Botelho, R. J., Scott, C. C. & Grinstein, S. Phosphoinositide involvement in phagocytosis and phagosome maturation. Curr. Top. Microbiol. Immunol.282, 1–30 (2004) CASPubMed Google Scholar
Pizarro-Cerda, J. & Cossart, P. Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nature Cell Biol.6, 1026–1033 (2004) ArticleCASPubMed Google Scholar
Niebuhr, K. et al. Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J.21, 5069–5078 (2002) ArticleCASPubMedPubMed Central Google Scholar
Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol.4, 766–773 (2002) ArticleCASPubMed Google Scholar
Vergne, I. et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA102, 4033–4038 (2005) ArticleADSCASPubMedPubMed Central Google Scholar
Ungewickell, A. et al. The identification and characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. Proc. Natl Acad. Sci. USA102, 18854–18859 (2005) ArticleADSCASPubMedPubMed Central Google Scholar
Gaynor, E. C., Chen, C. Y., Emr, S. D. & Graham, T. R. ARF is required for maintenance of yeast Golgi and endosome structure and function. Mol. Biol. Cell9, 653–670 (1998) ArticleCASPubMedPubMed Central Google Scholar
De Matteis, M. A., Di Campli, A. & Godi, A. The role of the phosphoinositides at the Golgi complex. Biochim. Biophys. Acta1744, 396–405 (2005) ArticleCASPubMed Google Scholar
Guo, S., Stolz, L. E., Lemrow, S. M. & York, J. D. _SAC1_-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem.274, 12990–12995 (1999) ArticleCASPubMed Google Scholar
Roy, A. & Levine, T. P. Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J. Biol. Chem.279, 44683–44689 (2004) ArticleCASPubMed Google Scholar
Attree, O. et al. The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature358, 239–242 (1992) ArticleADSCASPubMed Google Scholar
Birkeland, H. C. & Stenmark, H. Protein targeting to endosomes and phagosomes via FYVE and PX domains. Curr. Top. Microbiol. Immunol.282, 89–115 (2004) CASPubMed Google Scholar
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001) ArticleCAS Google Scholar
Michell, R. H., Heath, V. L., Lemmon, M. A. & Dove, S. K. Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem. Sci., 52–63 (2005)
Laporte, J. et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nature Genet.13, 175–182 (1996) ArticleCASPubMed Google Scholar
Bolino, A. et al. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nature Genet.25, 17–19 (2000) ArticleCASPubMed Google Scholar
Li, S. et al. Mutations in PIP5K3 are associated with Francois-Neetens mouchetee fleck corneal dystrophy. Am. J. Hum. Genet.77, 54–63 (2005) ArticleCASPubMedPubMed Central Google Scholar
McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature438, 605–611 (2005) ArticleADSCASPubMed Google Scholar
Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nature Rev. Cancer5, 921–929 (2005) ArticleCAS Google Scholar
Halstead, J. R., Jalink, K. & Divecha, N. An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends Pharmacol. Sci.26, 654–660 (2005) ArticleCASPubMed Google Scholar