Organelle identity and the signposts for membrane traffic (original) (raw)
Bonifacino, J.S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell116, 153–166 (2004). CASPubMed Google Scholar
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001). ArticleCAS Google Scholar
Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science294, 1299–1304 (2001). ADSCASPubMed Google Scholar
Pereira-Leal, J.B. & Seabra, M.C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol.313, 889–901 (2001). CASPubMed Google Scholar
Pfeffer, S.R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol.11, 487–491 (2001). CASPubMed Google Scholar
Matanis, T. et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein–dynactin motor complex. Nature Cell Biol.4, 986–992 (2002). CASPubMed Google Scholar
Short, B., Preisinger, C., Schaletzky, J., Kopajtich, R. & Barr, F.A. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr. Biol.12, 1792–1795 (2002). CASPubMed Google Scholar
Fridmann-Sirkis, Y., Siniossoglou, S. & Pelham, H.R. TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol.5, 18 (2004). PubMedPubMed Central Google Scholar
Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature394, 494–498 (1998). ADSCASPubMed Google Scholar
Seabra, M.C. & Coudrier, E. Rab GTPases and myosin motors in organelle motility. Traffic5, 393–399 (2004). CASPubMed Google Scholar
Pfeffer, S. & Aivazian, D. Targeting Rab GTPases to distinct membrane compartments. Nature Rev. Mol. Cell Biol.5, 886–896 (2004). CAS Google Scholar
Seabra, M.C. & Wasmeier, C. Controlling the location and activation of Rab GTPases. Curr. Opin. Cell Biol.16, 451–457 (2004). CASPubMed Google Scholar
Chavrier, P. et al. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature353, 769–772 (1991). ADSCASPubMed Google Scholar
Ali, B.R., Wasmeier, C., Lamoreux, L., Strom, M. & Seabra, M.C. Multiple regions contribute to membrane targeting of Rab GTPases. J. Cell Sci.117, 6401–6412 (2004). CASPubMed Google Scholar
Calero, M. & Collins, R.N. Saccharomyces cerevisiae Pra1p/Yip3p interacts with Yip1p and Rab proteins. Biochem. Biophys. Res. Commun.290, 676–681 (2002). CASPubMed Google Scholar
Figueroa, C., Taylor, J. & Vojtek, A.B. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J. Biol. Chem.276, 28219–28225 (2001). CASPubMed Google Scholar
Sivars, U., Aivazian, D. & Pfeffer, S.R. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature425, 856–859 (2003). ADSCASPubMed Google Scholar
Hutt, D.M., Da-Silva, L.F., Chang, L.H., Prosser, D.C. & Ngsee, J.K. PRA1 inhibits the extraction of membrane-bound rab GTPase by GDI1. J.Biol. Chem.275, 18511–18519 (2000). CASPubMed Google Scholar
Shakoori, A. et al. Identification of a five-pass transmembrane protein family localizing in the Golgi apparatus and the ER. Biochem. Biophys. Res. Commun.312, 850–857 (2003). CASPubMed Google Scholar
Geng, J., Shin, M.E., Gilbert, P.M., Collins, R.N. & Burd, C.G. Saccharomyces cerevisiae Rab-GDI displacement factor ortholog Yip3p forms distinct complexes with the Ypt1 Rab GTPase and the reticulon Rtn1p. Eukaryot. Cell4, 1166–1174 (2005). CASPubMedPubMed Central Google Scholar
Heidtman, M., Chen, C.Z., Collins, R.N. & Barlowe, C. A role for Yip1p in COPII vesicle biogenesis. J. Cell Biol.163, 57–69 (2003). CASPubMedPubMed Central Google Scholar
Barrowman, J., Wang, W., Zhang, Y. & Ferro-Novick, S. The Yip1p.Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J. Biol. Chem.278, 19878–19884 (2003). CASPubMed Google Scholar
Munro, S. Organelle identity and the targeting of peripheral membrane proteins. Curr. Opin. Cell Biol.14, 506–514 (2002). CASPubMed Google Scholar
Munro, S. Organelle identity and the organization of membrane traffic. Nature Cell Biol.6, 469–472 (2004). CASPubMed Google Scholar
Ortiz, D., Medkova, M., Walch-Solimena, C. & Novick, P. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J. Cell Biol.157, 1005–1015 (2002). CASPubMedPubMed Central Google Scholar
Wang, W. & Ferro-Novick, S. A Ypt32p exchange factor is a putative effector of Ypt1p. Mol. Biol. Cell13, 3336–3343 (2002). CASPubMedPubMed Central Google Scholar
Sato, M. et al. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nature Cell Biol.7, 559–569 (2005). CASPubMed Google Scholar
Lippe, R., Miaczynska, M., Rybin, V., Runge, A. & Zerial, M. Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol. Biol. Cell12, 2219–2228 (2001). CASPubMedPubMed Central Google Scholar
Haas, A.K., Fuchs, E., Kopajtich, R. & Barr, F.A. A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nature Cell Biol.7, 887–993 (2005). CASPubMed Google Scholar
De Antoni, A., Schmitzova, J., Trepte, H.H., Gallwitz, D. & Albert, S. Significance of GTP hydrolysis in Ypt1p-regulated endoplasmic reticulum to Golgi transport revealed by the analysis of two novel Ypt1-GAPs. J. Biol. Chem.277, 41023–41031 (2002). CASPubMed Google Scholar
Lafourcade, C., Galan, J.M., Gloor, Y., Haguenauer-Tsapis, R. & Peter, M. The GTPase-activating enzyme Gyp1p is required for recycling of internalized membrane material by inactivation of the Rab/Ypt GTPase Ypt1p. Mol. Cell. Biol.24, 3815–3826 (2004). CASPubMedPubMed Central Google Scholar
Lee, M.C., Miller, E.A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol.20, 87–123 (2004). CASPubMed Google Scholar
Gillingham, A.K., Tong, A.H., Boone, C. & Munro, S. The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the _cis_-Golgi. J. Cell Biol.167, 281–292 (2004). CASPubMedPubMed Central Google Scholar
Donaldson, J.G., Honda, A. & Weigert, R. Multiple activities for Arf1 at the Golgi complex. Biochim. Biophys. Acta1744, 364–373 (2005). CASPubMed Google Scholar
Krauss, M. et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J. Cell Biol.162, 113–124 (2003). CASPubMedPubMed Central Google Scholar
Setty, S.R., Shin, M.E., Yoshino, A., Marks, M.S. & Burd, C.G. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr. Biol.13, 401–404 (2003). CASPubMed Google Scholar
Panic, B., Whyte, J.R. & Munro, S. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol.13, 405–410 (2003). CASPubMed Google Scholar
Pasqualato, S., Renault, L. & Cherfils, J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep.3, 1035–1041 (2002). CASPubMedPubMed Central Google Scholar
Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell95, 237–248 (1998). CASPubMed Google Scholar
Robert, C.H., Cherfils, J., Mouawad, L. & Perahia, D. Integrating three views of Arf1 activation dynamics. J. Mol. Biol.337, 969–983 (2004). CASPubMed Google Scholar
Jackson, C.L. & Casanova, J.E. Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol.10, 60–67 (2000). CASPubMed Google Scholar
Garcia-Mata, R. & Sztul, E. The membrane-tethering protein p115 interacts with GBF1, an ARF guanine-nucleotide-exchange factor. EMBO Rep.4, 320–325 (2003). CASPubMedPubMed Central Google Scholar
Chantalat, S. et al. A novel Golgi membrane protein is a partner of the ARF exchange factors Gea1p and Gea2p. Mol. Biol. Cell14, 2357–2371 (2003). CASPubMedPubMed Central Google Scholar
Chantalat, S. et al. The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. J. Cell Sci.117, 711–722 (2004). CASPubMed Google Scholar
Donaldson, J.G. & Jackson, C.L. Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol.12, 475–482 (2000). CASPubMed Google Scholar
Gommel, D.U. et al. Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. EMBO J.20, 6751–6760 (2001). CASPubMedPubMed Central Google Scholar
Honda, A., Al-Awar, O.S., Hay, J.C. & Donaldson, J.G. Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. J. Cell Biol.168, 1039–1051 (2005). CASPubMedPubMed Central Google Scholar
Behnia, R., Panic, B., Whyte, J.R. & Munro, S. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nature Cell Biol.6, 405–413 (2004). CASPubMed Google Scholar
Setty, S.R., Strochlic, T.I., Tong, A.H., Boone, C. & Burd, C.G. Golgi targeting of ARF-like GTPase Arl3p requires its Nα-acetylation and the integral membrane protein Sys1p. Nature Cell Biol.6, 414–419 (2004). CASPubMed Google Scholar
Liu, W., Duden, R., Phair, R.D. & Lippincott-Schwartz, J. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. J. Cell Biol.168, 1053–1063 (2005). CASPubMedPubMed Central Google Scholar
Bigay, J., Casella, J.F., Drin, G., Mesmin, B. & Antonny, B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J.24, 2244–2253 (2005). CASPubMedPubMed Central Google Scholar
De Matteis, M.A. & Godi, A. PI-loting membrane traffic. Nature Cell Biol.6, 487–492 (2004). CASPubMed Google Scholar
Wenk, M.R. & De Camilli, P. Protein–lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA101, 8262–8269 (2004). ADSCASPubMedPubMed Central Google Scholar
Stenmark, H., Aasland, R. & Driscoll, P.C. The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett.513, 77–84 (2002). CASPubMed Google Scholar
Ellson, C.D., Andrews, S., Stephens, L.R. & Hawkins, P.T. The PX domain: a new phosphoinositide-binding module. J. Cell Sci.115, 1099–1105 (2002). CASPubMed Google Scholar
Efe, J.A., Botelho, R.J. & Emr, S.D. The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Curr. Opin. Cell Biol.17, 402–408 (2005). CASPubMed Google Scholar
Friant, S. et al. Ent3p Is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. Dev. Cell5, 499–511 (2003). CASPubMed Google Scholar
Dove, S.K. et al. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J.23, 1922–1933 (2004). CASPubMedPubMed Central Google Scholar
Levine, T.P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol.12, 695–704 (2002). CASPubMed Google Scholar
Wang, Y.J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell114, 299–310 (2003). CASPubMed Google Scholar
Balla, A., Tuymetova, G., Tsiomenko, A., Varnai, P. & Balla, T. A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol.Biol. Cell16, 1282–1295 (2005). CASPubMedPubMed Central Google Scholar
Shin, H.W. & Nakayama, K. Dual control of membrane targeting by PtdIns(4)P and ARF. Trends Biochem. Sci.29, 513–515 (2004). CASPubMed Google Scholar
Honing, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell18, 519–531 (2005). PubMed Google Scholar
Yin, H.L. & Janmey, P.A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol.65, 761–789 (2003). CASPubMed Google Scholar
van Rheenen, J., Achame, E. M., Janssen, H., Calafat, J. & Jalink, K. PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J.24, 1664–1673 (2005). CASPubMedPubMed Central Google Scholar
Murray, J.T., Panaretou, C., Stenmark, H., Miaczynska, M. & Backer, J.M. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic3, 416–427 (2002). CASPubMed Google Scholar
Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol.152, 519–530 (2001). CASPubMedPubMed Central Google Scholar
Stefan, C.J., Audhya, A. & Emr, S.D. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell13, 542–557 (2002). CASPubMedPubMed Central Google Scholar
Roy, A. & Levine, T.P. Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J. Biol. Chem.279, 44683–44689 (2004). CASPubMed Google Scholar
Faulhammer, F. et al. Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J. Cell Biol.168, 185–191 (2005). CASPubMedPubMed Central Google Scholar
Ivetac, I. et al. The type Iα inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Mol. Biol. Cell16, 2218–2233 (2005). CASPubMedPubMed Central Google Scholar
Munro, S., The Golgi apparatus: defining the identity of Golgi membranes. Curr. Opin. Cell Biol.17, 395–401 (2005). CASPubMed Google Scholar
Murray, D. & Honig, B. Electrostatic control of the membrane targeting of C2 domains. Mol. Cell9, 145–154 (2002). CASPubMed Google Scholar
Natarajan, P., Wang, J., Hua, Z. & Graham, T.R. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc. Natl Acad. Sci. USA101, 10614–10619 (2004). ADSCASPubMedPubMed Central Google Scholar
Pomorski, T. et al. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol. Biol. Cell14, 1240–1254 (2003). CASPubMedPubMed Central Google Scholar
Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature408, 488–492 (2000). ADSCASPubMed Google Scholar
Bijlmakers, M.J. & Marsh, M. The on-off story of protein palmitoylation. Trends Cell Biol.13, 32–42 (2003). CASPubMed Google Scholar
Smotrys, J.E. & Linder, M.E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem.73, 559–587 (2004). CASPubMed Google Scholar
Drenan, R.M. et al. Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. J. Cell Biol.169, 623–633 (2005). CASPubMedPubMed Central Google Scholar
Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science307, 1746–1752 (2005). ADSCASPubMed Google Scholar
Salcedo, S.P. & Holden, D.W. Bacterial interactions with the eukaryotic secretory pathway. Curr. Opin. Microbiol.8, 92–98 (2005). CASPubMed Google Scholar
Pizarro-Cerda, J. & Cossart, P. Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nature Cell Biol.6, 1026–1033 (2004). CASPubMed Google Scholar
Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol.1, E183–E188 (1999). CASPubMed Google Scholar
Buttner, D. & Bonas, U. Port of entry — the type III secretion translocon. Trends Microbiol.10, 186–192 (2002). CASPubMed Google Scholar
Zhou, D. & Galan, J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect.3, 1293–1298 (2001). CASPubMed Google Scholar
Gouin, E., Welch, M.D. & Cossart, P. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol.8, 35–45 (2005). CASPubMed Google Scholar
Via, L.E. et al. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem.272, 13326–13331 (1997). CASPubMed Google Scholar
Vergne, I. et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA102, 4033–4038 (2005). ADSCASPubMedPubMed Central Google Scholar
Hernandez, L.D., Hueffer, K., Wenk, M.R. & Galan, J.E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science304, 1805–1807 (2004). ADSCASPubMed Google Scholar
Nagai, H., Kagan, J.C., Zhu, X., Kahn, R.A. & Roy, C.R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science295, 679–682 (2002). ADSCASPubMed Google Scholar
Grieshaber, S.S., Grieshaber, N.A. & Hackstadt, T. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. J. Cell Sci.116, 3793–3802 (2003). CASPubMed Google Scholar
Guignot, J. et al. Microtubule motors control membrane dynamics of _Salmonella_-containing vacuoles. J. Cell Sci.117, 1033–1045 (2004). CASPubMed Google Scholar
Harrison, R.E. et al. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol. Biol. Cell15, 3146–3154 (2004). CASPubMedPubMed Central Google Scholar
Boucrot, E., Henry, T., Borg, J.P., Gorvel, J.P. & Meresse, S. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science308, 1174–1178 (2005). ADSCASPubMed Google Scholar
Smith, G.A. & Enquist, L.W. Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells. Annu. Rev. Cell Dev. Biol.18, 135–161 (2002). CASPubMed Google Scholar
Belov, G.A., Fogg, M.H. & Ehrenfeld, E. Poliovirus proteins induce membrane association of GTPase ADP-ribosylation factor. J. Virol.79, 7207–7216 (2005). CASPubMedPubMed Central Google Scholar
Loewen, C.J., Roy, A. & Levine, T.P. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J.22, 2025–2035 (2003). CASPubMedPubMed Central Google Scholar
Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature362, 318–324 (1993). ADSCASPubMed Google Scholar
Banfield, D.K. SNARE complexes — is there sufficient complexity for vesicle targeting specificity? Trends Biochem. Sci.26, 67–68 (2001). CASPubMed Google Scholar
Short, B., Haas, A. & Barr, F.A. Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochim. Biophys. Acta1744, 383–395 (2005). CASPubMed Google Scholar