Schuettengruber, B. & Cavalli, G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development136, 3531–3542 (2009). ArticleCASPubMed Google Scholar
Klymenko, T. et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev.20, 1110–1122 (2006). ArticleCASPubMedPubMed Central Google Scholar
Simon, J. A. & Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nature Rev. Mol. Cell Biol.10, 697–708 (2009). ArticleCAS Google Scholar
Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell38, 452–464 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet.4, e1000242 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell138, 885–897 (2009). ArticleCASPubMed Google Scholar
Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J.25, 3110–3122 (2006). ArticleCASPubMedPubMed Central Google Scholar
Whitcomb, S. J., Basu, A., Allis, C. D. & Bernstein, E. Polycomb Group proteins: an evolutionary perspective. Trends Genet.23, 494–502 (2007). ArticleCASPubMed Google Scholar
Shaver, S., Casas-Mollano, J. A., Cerny, R. L. & Cerutti, H. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas . Epigenetics5, 301–302 (2010). ArticleCASPubMed Google Scholar
Ohno, K., McCabe, D., Czermin, B., Imhof, A. & Pirrotta, V. ESC, ESCL and their roles in Polycomb Group mechanisms. Mech. Dev.125, 527–541 (2008). ArticleCASPubMed Google Scholar
Hennig, L. & Derkacheva, M. Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet.25, 414–423 (2009). ArticleCASPubMed Google Scholar
Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell32, 491–502 (2008). ArticleMathSciNetCASPubMedPubMed Central Google Scholar
Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell15, 57–67 (2004). ArticleCASPubMed Google Scholar
Kim, H., Kang, K. & Kim, J. AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res.37, 2940–2950 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, S., Robertson, G. P. & Zhu, J. A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers. Gene343, 69–78 (2004). ArticleCASPubMed Google Scholar
Nekrasov, M. et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J.26, 4078–4088 (2007). ArticleCASPubMedPubMed Central Google Scholar
Walker, E. et al. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell6, 153–166 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V. & Reinberg, D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo . Mol. Cell. Biol.28, 2718–2731 (2008). ArticleCASPubMedPubMed Central Google Scholar
Savla, U., Benes, J., Zhang, J. & Jones, R. S. Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development135, 813–817 (2008). ArticleCASPubMed Google Scholar
Jung, J., Mysliwiec, M. R. & Lee, Y. Roles of JUMONJI in mouse embryonic development. Dev. Dyn.232, 21–32 (2005). ArticleCASPubMed Google Scholar
Peng, J. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell139, 1290–1302 (2009). ArticlePubMedPubMed Central Google Scholar
Shen, X. et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell139, 1303–1314 (2009). ArticlePubMedPubMed Central Google Scholar
Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature464, 306–310 (2010). ArticleADSCASPubMed Google Scholar
Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nature Cell Biol.12, 618–624 (2010). ArticleCASPubMed Google Scholar
Zee, B. M. et al. In vivo residue-specific histone methylation dynamics. J. Biol. Chem.285, 3341–3350 (2010). ArticleCASPubMed Google Scholar
Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell12, 1577–1589 (2003). ArticleCASPubMed Google Scholar
Tie, F. et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development136, 3131–3141 (2009). ArticleCASPubMedPubMed Central Google Scholar
Trojer, P. & Reinberg, D. Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell28, 1–13 (2007). ArticleCASPubMed Google Scholar
Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell4, 80–93 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jacob, Y. et al. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nature Struct. Mol. Biol.16, 763–768 (2009). ArticleCAS Google Scholar
Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol.27, 3769–3779 (2007). ArticleCASPubMedPubMed Central Google Scholar
Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol.9, 1428–1435 (2007). ArticleCASPubMed Google Scholar
Zhao, X. D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell1, 286–298 (2007). ArticleCASPubMed Google Scholar
Kanhere, A. et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell38, 675–688 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell30, 755–766 (2008). This paper compares genome enrichment of H3K27me3, H3K4me3 and DNA methylation in ES cells with that in terminally differentiated neurons, demonstrating the plasticity of these marks. ArticleCASPubMed Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006). ArticleADSCASPubMed Google Scholar
Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev.20, 1123–1136 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster . Nature Genet.38, 700–705 (2006). ArticleCASPubMed Google Scholar
Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster . Nature Genet.38, 694–699 (2006). ArticleCASPubMed Google Scholar
Hawkins, R. D. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell6, 479–491 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell1, 299–312 (2007). ArticleCASPubMed Google Scholar
Rosenfeld, J. A. et al. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics10, 143 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Margueron, R. & Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nature Rev. Genet.11, 285–296 (2010). ArticleCASPubMed Google Scholar
Mattout, A. & Meshorer, E. Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr. Opin. Cell Biol.22, 334–341 (2010). ArticleCASPubMed Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). ArticleCASPubMed Google Scholar
Schuettengruber, B. et al. Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol.7, e13 (2009). ArticlePubMedCAS Google Scholar
Creyghton, M. P. et al. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell135, 649–661 (2008). This paper reports co-localization of the histone variant H2Az with PRC2 in undifferentiated ES cells, illustrating changes in chromatin structure while cells differentiate. ArticleCASPubMedPubMed Central Google Scholar
Brunner, A. L. et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res.19, 1044–1056 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science328, 916–919 (2010). ArticleADSCASPubMed Google Scholar
Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J. & Kingston, R. E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell140, 99–110 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wilkinson, F. H., Park, K. & Atchison, M. L. Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc. Natl Acad. Sci. USA103, 19296–19301 (2006). ArticleADSCASPubMedPubMed Central Google Scholar
Xi, H. et al. Analysis of overrepresented motifs in human core promoters reveals dual regulatory roles of YY1. Genome Res.17, 798–806 (2007). ArticleCASPubMedPubMed Central Google Scholar
Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science300, 131–135 (2003). ArticleADSCASPubMed Google Scholar
Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science322, 750–756 (2008). ArticleADSCASPubMedPubMed Central Google Scholar
Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol.2, E171 (2004). ArticlePubMedPubMed Central Google Scholar
Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell32, 232–246 (2008). ArticleCASPubMed Google Scholar
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science329, 689–693 (2010). This paper shows a widespread role for HOTAIR ncRNA in the regulation of PRC2 gene targeting, and suggests that HOTAIR bridges PRC2 and LSD1. ArticleADSCASPubMedPubMed Central Google Scholar
Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA106, 11667–11672 (2009). ArticleADSCASPubMedPubMed Central Google Scholar
Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature461, 762–767 (2009). This paper reports that PRC2 function is regulated by the mark it deposits, thus providing a potential mechanism for the spreading of this mark. ArticleADSCASPubMedPubMed Central Google Scholar
Chen, S. et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nature Cell Biol.12, 1108–1114 (2010). ArticleCASPubMed Google Scholar
Kaneko, S. et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and upregulates its binding to HOTAIR ncRNA. Genes Dev.24, 2615–2620 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a . Mol. Cell38, 662–674 (2010). In this paper, the authors suggested that ncRNA and H3K27me3 can work together to contribute to PRC1 recruitment. ArticleCASPubMedPubMed Central Google Scholar
Francis, N. J., Follmer, N. E., Simon, M. D., Aghia, G. & Butler, J. D. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro . Cell137, 110–122 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol.10, 1291–1300 (2008). ArticleCASPubMed Google Scholar
Chamberlain, S. J., Yee, D. & Magnuson, T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells26, 1496–1505 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yuzyuk, T., Fakhouri, T. H., Kiefer, J. & Mango, S. E. The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos. Dev. Cell16, 699–710 (2009). ArticleCASPubMedPubMed Central Google Scholar
Endoh, M. et al. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development135, 1513–1524 (2008). ArticleCASPubMed Google Scholar
Su, I. H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nature Immunol.4, 124–131 (2003). ArticleCAS Google Scholar
Wang, L., Jin, Q., Lee, J. E., Su, I. H. & Ge, K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc. Natl Acad. Sci. USA107, 7317–7322 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Caretti, G., Di Padova, M., Micales, B., Lyons, G. E. & Sartorelli, V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev.18, 2627–2638 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell136, 1122–1135 (2009). ArticleCASPubMedPubMed Central Google Scholar
Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419, 624–629 (2002). ArticleADSCASPubMed Google Scholar
Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA100, 11606–11611 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
Karanikolas, B. D., Figueiredo, M. L. & Wu, L. Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line. Mol. Cancer Res.7, 1456–1465 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, X. et al. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am. J. Pathol.175, 1246–1254 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bracken, A. P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J.22, 5323–5335 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev.21, 525–530 (2007). ArticleCASPubMedPubMed Central Google Scholar
Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genet.42, 181–185 (2010). This study is the first report that somatic mutations resulting in the inactivation of PRC2 are found in diseases. ArticleCASPubMed Google Scholar
Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet.42, 722–726 (2010). ArticleCASPubMed Google Scholar
Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nature Genet.42, 665–667 (2010). ArticleCASPubMed Google Scholar
Karanikolas, B. D., Figueiredo, M. L. & Wu, L. Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate70, 675–688 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pereira, C. F., Piccolo, F. M., Tsubouchi, T., Sauer, S. & Ryan, N. ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell6, 547–556 (2010). ArticleCASPubMed Google Scholar