Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell113, 643–655 (2003). ArticleCAS Google Scholar
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003). ArticleCAS Google Scholar
Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell138, 722–737 (2009). ArticleCAS Google Scholar
Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature450, 1230-U1238 (2007). Article Google Scholar
Canham, M. A., Sharov, A. A., Ko, M. S. H. & Brickman, J. M. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol.8, e1000379 (2010). Article Google Scholar
Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development135, 909–918 (2008). ArticleCAS Google Scholar
Hayashi, K., Lopes, S. M. C. D., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell3, 391–401 (2008). ArticleCAS Google Scholar
Trott, J., Hayashi, K., Surani, A., Babu, M. M. & Martinez-Arias, A. Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying pluripotency. Mol. Biosyst.8, 744–752 (2012). ArticleCAS Google Scholar
Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature487, 57–63 (2012). ArticleCAS Google Scholar
Niakan, K. K. et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev.24, 312–326 (2010). ArticleCAS Google Scholar
Singh, A. M., Hamazaki, T., Hankowski, K. E. & Terada, N. A heterogeneous expression pattern for nanog in embryonic stem cells. Stem. Cells25, 2534–2542 (2007). ArticleCAS Google Scholar
Zalzman, M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature464, 858-U866 (2010). Article Google Scholar
Kalmar, T. et al. Regulated fluctuations in Nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol.7, e1000149 (2009). Article Google Scholar
Kobayashi, T. et al. The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev. 1870–1875 (2009). ArticleCAS Google Scholar
Niwa, H., Ogawa, K., Shimosato, D. & Adachi, K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature460, 118–122 (2009). ArticleCAS Google Scholar
Arias, A. M. & Brickman, J. M. Gene expression heterogeneities in embryonic stem cell populations: origin and function. Curr. Opin. Cell Biol.23, 650–656 (2011). Article Google Scholar
Stewart, M. H., Bendall, S. C., Levadoux-Martin, M. & Bhatia, M. Clonal tracking of hESCs reveals differential contribution to functional assays. Nat. Methods7, 917-U975 (2010). Article Google Scholar
Lu, R. et al. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature462, 358–U126 (2009). Article Google Scholar
Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature442, 533–538 (2006). ArticleCAS Google Scholar
Kim, J., Chu, J. L., Shen, X. H., Wang, J. L. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell132, 1049–1061 (2008). ArticleCAS Google Scholar
Muller, F. J. et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature455, 401–U455 (2008). Article Google Scholar
Ramirez, J. M. et al. Brief report: Benchmarking human pluripotent stem cell markers during differentiation into the three germ layers unveils a striking heterogeneity: All markers are not equal. Stem Cells29, 1469–1474 (2011). CASPubMed Google Scholar
Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature453, 519–U515 (2008). Article Google Scholar
Aiba, L. et al. Defining developmental potency and cell lineage trajectories by expression profiling of differentiating mouse embryonic stem cells. DNA Res.16, 73–80 (2009). ArticleCAS Google Scholar
Zhang, X. et al. A role for NANOG in G1 to S transition in human embryonicstem cells through direct binding of CDK6 and CDC25A. J. Cell Biol.184, 67–82 (2009). ArticleCAS Google Scholar
Muller, F. J. et al. A bioinformatic assay for pluripotency in human cells. Nat. Methods8, 315–U354 (2011). Article Google Scholar
Williams, R., Schuldt, B. & Muller, F. J. A guide to stem cell identification: progress and challenges in system-wide predictive testing with complex biomarkers. Bioessays33, 880–890 (2011). ArticleCAS Google Scholar
Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature485, 381–385 (2012). ArticleCAS Google Scholar
Ramakrishna, S. et al. PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev.20, 1512–1520 (2011). Article Google Scholar
Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ’memory module’ that governs a cell fate decision. Nature426, 460–465 (2003). ArticleCAS Google Scholar
Pina, C. et al. Inferring rules of lineage commitment in haematopoiesis. Nat. Cell Biol.14, 287–294 (2012). ArticleCAS Google Scholar
Cristianini, N. & Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods (Cambridge Univ. Press, 2000). Book Google Scholar
Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol.15, 221–231 (2003). ArticleCAS Google Scholar
Smits, W. K., Kuipers, O. P. & Veening, J. W. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol.4, 259–271 (2006). ArticleCAS Google Scholar
Ferrell, J. E. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol.14, 140–148 (2002). ArticleCAS Google Scholar
Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J.20, 2528–2535 (2001). ArticleCAS Google Scholar
MacArthur, B. D., Ma’ayan, A. & Lemischka, I. R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol.10, 672–681 (2009). ArticleCAS Google Scholar
MacArthur, B. D., Please, C. P. & Oreffo, R. O. C. Stochasticity and the molecular mechanisms of induced pluripotency. PLoS ONE3, e3086 (2008). Article Google Scholar
MacArthur, B. D., Ma’ayan, A. & Lemischka, I. R. Toward stem cell systems biology: From molecules to networks and landscapes. Cold Spring Harb. Symp. Quant. Biol.73, 211–215 (2008). ArticleCAS Google Scholar
Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature457, 309–312 (2009). ArticleCAS Google Scholar
Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature403, 335–338 (2000). ArticleCAS Google Scholar
Glauche, I., Herberg, M. & Roeder, I. Nanog variability and pluripotency regulation of embryonic stem cells—Insights from a mathematical model analysis. PLoS ONE5, e11238 (2010). Article Google Scholar
Austin, D. W. et al. Gene network shaping of inherent noise spectra. Nature439, 608–611 (2006). ArticleCAS Google Scholar
Paulsson, J. Summing up the noise in gene networks. Nature427, 415–418 (2004). ArticleCAS Google Scholar
Estrada, E. & Rodriguez-Velazquez, J. A. Subgraph centrality in complex networks. Phys. Rev. E71, 056103 (2005). Article Google Scholar
Estrada, E. & Hatano, N. Returnability in complex directed networks (digraphs). Linear Algebra Appl.430, 1886–1896 (2009). Article Google Scholar
Durinck, S. et al. BioMart and Bioconductor: a powerful link betweenbiological databases and microarray data analysis. Bioinformatics21, 3439–3440 (2005). ArticleCAS Google Scholar
Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet.38, 431–440 (2006). ArticleCAS Google Scholar
Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H. & Young, R. A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev.22, 746–755 (2008). ArticleCAS Google Scholar
Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell133, 1106–1117 (2008). ArticleCAS Google Scholar
Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell134, 521–533 (2008). ArticleCAS Google Scholar
Mathur, D. et al. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET. Genome Biol.9 (2008). Article Google Scholar
Maherali, N. et al. Directly reprogrammed fibroblasts show globalepigenetic remodeling and widespread tissue contribution. Cell Stem Cell1, 55–70 (2007). ArticleCAS Google Scholar
Lee, D. F. et al. Combining competition assays with genetic complementation strategies to dissect mouse embryonic stem cell self-renewal and pluripotency. Nat. Protoc.7, 729–748 (2012). ArticleCAS Google Scholar
Guo, G. J. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell18, 675–685 (2010). ArticleCAS Google Scholar
O’ Brien, P. C. Robust procedures for testing equality of covariance matrices. Biometrics48, 819–827 (1992). Article Google Scholar
Manly, B. F. J. Multivariate Statistic Methods: A Primer (Chapman and Hall/CRC, 2005). Google Scholar
Gower, J. C. Algorithm AS 78: The mediancentre. J. R. Stat. Soc. Ser. C23, 466–470 (1974). Google Scholar
Harary, F. & Manvel, B. On the number of cycles in a graph. Math. Slovaca21, 55–63 (1971). Google Scholar