Whole-genome sequence variation, population structure and demographic history of the Dutch population (original) (raw)

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
    Article CAS PubMed Google Scholar
  2. Hinds, D.A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).
    Article CAS PubMed Google Scholar
  3. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).
  4. International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).
  5. International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).
  6. Manolio, T.A. Bringing genome-wide association findings into clinical use. Nat. Rev. Genet. 14, 549–558 (2013).
    Article CAS PubMed Google Scholar
  7. Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).
    CAS PubMed PubMed Central Google Scholar
  8. McClellan, J. & King, M.-C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).
    Article CAS PubMed Google Scholar
  9. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2011).
    Article CAS Google Scholar
  10. Goldstein, D.B. et al. Sequencing studies in human genetics: design and interpretation. Nat. Rev. Genet. 14, 460–470 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  11. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J.O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14, 125–138 (2013).
    Article CAS PubMed Google Scholar
  12. Veltman, J.A. & Brunner, H.G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012).
    CAS PubMed Google Scholar
  13. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).
    Article CAS PubMed Google Scholar
  14. Gravel, S. et al. Demographic history and rare allele sharing among human populations. Proc. Natl. Acad. Sci. USA 108, 11983–11988 (2011).
    Article PubMed PubMed Central Google Scholar
  15. Mathieson, I. & McVean, G. Differential confounding of rare and common variants in spatially structured populations. Nat. Genet. 44, 243–246 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  16. Boomsma, D.I. et al. The Genome of the Netherlands: design, and project goals. Eur. J. Hum. Genet. 22, 221–227 (2014).
    Article CAS PubMed Google Scholar
  17. Brandsma, M. et al. How to kickstart a national biobanking infrastructure—experiences and prospects of BBMRI-NL. Nor. Epidemiol. 21, 143–148 (2012).
    Google Scholar
  18. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  19. Menelaou, A. & Marchini, J. Genotype calling and phasing using next-generation sequencing reads and a haplotype scaffold. Bioinformatics 29, 84–91 (2013).
    Article CAS PubMed Google Scholar
  20. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
  21. MacArthur, D.G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  22. Tennessen, J.A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  23. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44, 623–630 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  24. Petrovski, S., Wang, Q., Heinzen, E.L., Allen, A.S. & Goldstein, D.B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9, e1003709 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  25. Stenson, P.D. et al. The Human Gene Mutation Database: 2008 update. Genome Med. 1, 13 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  26. Cooper, D.N., Krawczak, M., Polychronakos, C., Tyler-Smith, C. & Kehrer-Sawatzki, H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum. Genet. 132, 1077–1130 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  27. Cassa, C.A., Tong, M.Y. & Jordan, D.M. Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. Hum. Mutat. 34, 1216–1220 (2013).
    Article PubMed PubMed Central Google Scholar
  28. Dorschner, M.O. et al. Actionable, pathogenic incidental findings in 1,000 participants' exomes. Am. J. Hum. Genet. 93, 631–640 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  29. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  30. Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  31. Michaelson, J.J. et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151, 1431–1442 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  32. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  33. Lao, O. et al. Correlation between genetic and geographic structure in Europe. Curr. Biol. 18, 1241–1248 (2008).
    Article CAS PubMed Google Scholar
  34. Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98–101 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  35. Ralph, P. & Coop, G. The geography of recent genetic ancestry across Europe. PLoS Biol. 11, e1001555 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  36. Bhatia, G., Patterson, N., Sankararaman, S. & Price, A.L. Estimating and interpreting _F_ST: the impact of rare variants. Genome Res. 23, 1514–1521 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  37. Zheng, H.-X., Yan, S., Qin, Z.-D. & Jin, L. MtDNA analysis of global populations support that major population expansions began before Neolithic Time. Sci. Rep. 2, 745 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  38. Abdellaoui, A. et al. Population structure, migration, and diversifying selection in the Netherlands. Eur. J. Hum. Genet. 21, 1277–1285 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  39. Lao, O. et al. Clinal distribution of human genomic diversity across the Netherlands despite archaeological evidence for genetic discontinuities in Dutch population history. Investig. Genet. 4, 9 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  40. Novembre, J. & Stephens, M. Interpreting principal component analyses of spatial population genetic variation. Nat. Genet. 40, 646–649 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  41. Gusev, A. et al. Whole population, genome-wide mapping of hidden relatedness. Genome Res. 19, 318–326 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  42. Palamara, P.F., Lencz, T., Darvasi, A. & Pe'er, I. Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91, 809–822 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  43. Gratten, J., Visscher, P.M., Mowry, B.J. & Wray, N.R. Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat. Genet. 45, 234–238 (2013).
    Article CAS PubMed Google Scholar
  44. MacArthur, D.G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  45. Boettger, L.M., Handsaker, R.E., Zody, M.C. & McCarroll, S.A. Structural haplotypes and recent evolution of the human 17q21.31 region. Nat. Genet. 44, 881–885 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  46. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8, e64683 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  47. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
    Article PubMed PubMed Central Google Scholar
  48. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS PubMed PubMed Central Google Scholar
  49. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  50. Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681 (2009).
    CAS PubMed PubMed Central Google Scholar
  51. Abyzov, A., Urban, A.E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  52. Coe, B.P., Chari, R., MacAulay, C. & Lam, W.L. FACADE: a fast and sensitive algorithm for the segmentation and calling of high resolution array CGH data. Nucleic Acids Res. 38, e157 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  53. Marschall, T., Hajirasouliha, I. & Schönhuth, A. MATE-CLEVER: Mendelian-inheritance-aware discovery and genotyping of midsize and long indels. Bioinformatics 29, 3143–3150 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  54. Handsaker, R.E., Korn, J.M., Nemesh, J. & McCarroll, S.A. Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat. Genet. 43, 269–276 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  55. Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).
    CAS PubMed PubMed Central Google Scholar
  56. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).
    Article CAS PubMed Google Scholar
  57. Andrews, R.M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999).
    Article CAS PubMed Google Scholar
  58. van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).
    Article PubMed Google Scholar
  59. Excoffier, L. & Lischer, H.E.L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    Article PubMed Google Scholar
  60. Ewing, B., Hillier, L., Wendl, M. & Green, P. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).
    Article CAS PubMed Google Scholar
  61. Ewing, B. & Green, P. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).
    Article CAS PubMed Google Scholar
  62. Wijaya, E., Frith, M.C., Suzuki, Y. & Horton, P. Recount: expectation maximization based error correction tool for next generation sequencing data. Genome Inform. 23, 189–201 (2009).
    PubMed Google Scholar
  63. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS PubMed Google Scholar
  64. Habegger, L. et al. VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment. Bioinformatics 28, 2267–2269 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  65. Reumers, J. et al. SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Res. 33, D527–D532 (2005).
    Article CAS PubMed Google Scholar
  66. Adzhubei, I., Jordan, D.M. & Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. Chapter 7, Unit 7.20 (2013).
  67. Cooper, G.M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  68. Pruitt, K.D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42, D756–D763 (2014).
    Article CAS PubMed Google Scholar
  69. Browning, B.L. & Yu, Z. Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am. J. Hum. Genet. 85, 847–861 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  70. Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2012).
    Article CAS Google Scholar
  71. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).
    Article CAS PubMed Google Scholar
  72. Huisman, M.H.B. et al. Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. J. Neurol. Neurosurg. Psychiatry 82, 1165–1170 (2011).
    Article PubMed Google Scholar
  73. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 457–470 (2011).
    Article PubMed PubMed Central Google Scholar
  74. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
    Article CAS PubMed Google Scholar
  75. Browning, B.L. & Browning, S.R. A fast, powerful method for detecting identity by descent. Am. J. Hum. Genet. 88, 173–182 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  76. Palamara, P.F. & Pe'er, I. Inference of historical migration rates via haplotype sharing. Bioinformatics 29, i180–i188 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  77. Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
    Article Google Scholar
  78. Palamara, P.F., Lencz, T., Darvasi, A. & Pe'er, I. Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91, 809–822 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  79. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  80. Cockerham, C.C. & Weir, B.S. Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 40, 157–164 (1984).
    Article CAS PubMed Google Scholar

Download references

Acknowledgements

We wish to dedicate this work to the memory of David R. Cox, an enthusiastic supporter of human genetic research in the Netherlands for many years. The GoNL Project is funded by the BBMRI-NL, a research infrastructure financed by the Netherlands Organization for Scientific Research (NWO project 184.021.007). We acknowledge additional financial support from eBioGrid, CTMM/TraIT, the Ubbo Emmius Fund, the Netherlands Bioinformatics Center (NBIC) and EU-BioSHARE. We thank the individual participants of the biobanks; M. Depristo, E. Banks, R. Poplin and G. del Angel from the Broad Institute for expert advice on setting up our alignment and calling pipeline; K. Garimella for the initial implementation of PhaseByTransmission; G. Strikwerda, W. Albers, R. Teeninga, H. Gankema and H. Wind of the Groningen Center for Information Technology (see URLs) for support of the compute cluster and Target storage; E. Valentyn and R. Williams of Target (see URLs) for hosting project data on IBM GPFS storage; T. Visser and I. Nooren of BiG Grid (see URLs) and SURFsara for providing backup storage, additional computing capacity and expert advice; the team from MOLGENIS (see URLs) for software development support; H. Lauvenberg for handling data access requests; K. Zych for design of the GoNL logo; L. Franke, H.-J. Westra and J. Gutierrez-Achury for useful discussions; and S. Raychaudhuri and B. Neale for their critical reading of the manuscript. Target is supported by Samenwerkingsverband Noord Nederland, the European Fund for Regional Development, the Dutch Ministry of Economic Affairs, Pieken in de Delta and the provinces of Groningen and Drenthe. Target operates under the auspices of Sensor Universe. BiG Grid and the Life Science Grid are financially supported by the Netherlands Organization for Scientific Research (NWO). A.A. is funded by the Center for Medical Systems Biology-2, and D.I.B. is funded by the European Research Council (ERC 230374). A.S. and P.I.W.d.B. are recipients of VIDI awards (NWO projects 016.138.318 and 016.126.354, respectively).

Author information

Author notes

  1. LifeLines Cohort Study and Paul I W de Bakker: A full list of members appears in the Supplementary Note.
  2. David R Cox: Deceased.
  3. Laurent C Francioli, Androniki Menelaou, Sara L Pulit and Freerk van Dijk: These authors contributed equally to this work.
  4. Paul I W de Bakker, Morris A Swertz and Cisca Wijmenga: These authors jointly directed this work.

Authors and Affiliations

  1. Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
    Laurent C Francioli, Androniki Menelaou, Sara L Pulit, Clara C Elbers, Wigard P Kloosterman, Jessica van Setten, Isaäc J Nijman, Ivo Renkens & Paul I W de Bakker
  2. Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
    Freerk van Dijk, Pieter B T Neerincx, Patrick Deelen, Alexandros Kanterakis, Martijn Dijkstra, Heorhiy Byelas, K Joeri van der Velde, Mathieu Platteel, Morris A Swertz & Cisca Wijmenga
  3. Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
    Freerk van Dijk, Pieter B T Neerincx, Patrick Deelen, Alexandros Kanterakis, Martijn Dijkstra, Heorhiy Byelas, K Joeri van der Velde, Morris A Swertz & Cisca Wijmenga
  4. Department of Computer Science, Columbia University, New York, New York, USA
    Pier Francesco Palamara & Itsik Pe'er
  5. The Genome Institute, Washington University, St. Louis, Missouri, USA
    Kai Ye
  6. Department of Medical Statistics and Bioinformatics, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
    Kai Ye, Eric-Wubbo Lameijer, Matthijs H Moed, Marian Beekman, Anton J M de Craen, H Eka D Suchiman & P Eline Slagboom
  7. European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
    Victor Guryev
  8. Department of Biological Psychology, VU University Amsterdam, Amsterdam, the Netherlands
    Abdel Abdellaoui, Jouke Jan Hottenga, Mathijs Kattenberg, Gonneke Willemsen & Dorret I Boomsma
  9. Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
    Elisabeth M van Leeuwen, Lennart C Karssen, Najaf Amin, Fernando Rivadeneira, Aaron Isaacs, Albert Hofman, André G Uitterlinden & Cornelia M van Duijn
  10. Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
    Mannis van Oven & Manfred Kayser
  11. Department of Human Genetics, Leiden Genome Technology Center, Leiden University Medical Center, Leiden, the Netherlands
    Martijn Vermaat, Jeroen F J Laros & Johan T den Dunnen
  12. Netherlands Bioinformatics Center, Nijmegen, the Netherlands
    Martijn Vermaat, Jeroen F J Laros, David van Enckevort & Hailiang Mei
  13. Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Mingkun Li & Mark Stoneking
  14. Department of Clinical Epidemiology, Bioinformatics Laboratory, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
    Barbera D C van Schaik
  15. SURFsara, Science Park, Amsterdam, the Netherlands
    Jan Bot
  16. Centrum Wiskunde & Informatica, Life Sciences Group, Amsterdam, the Netherlands
    Tobias Marschall & Alexander Schönhuth
  17. Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
    Jayne Y Hehir-Kwa
  18. Center for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
    Jayne Y Hehir-Kwa
  19. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
    Robert E Handsaker, Paz Polak, Mashaal Sohail, Dana Vuzman, Karol Estrada, Steven A McCarroll & Shamil R Sunyaev
  20. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
    Robert E Handsaker & Steven A McCarroll
  21. Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
    Paz Polak, Mashaal Sohail, Dana Vuzman & Shamil R Sunyaev
  22. Department of Genome Sciences, University of Washington, Seattle, Washington, USA
    Fereydoun Hormozdiari
  23. Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
    Vyacheslav Koval, Fernando Rivadeneira, Karol Estrada, Carolina Medina-Gomez & André G Uitterlinden
  24. Department of Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
    Karol Estrada
  25. Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
    Ben Oostra
  26. Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
    Jan H Veldink & Leonard H van den Berg
  27. Rinat-Pfizer, Inc., South San Francisco, California, USA
    Steven J Pitts, Shobha Potluri, Purnima Sundar & David R Cox
  28. Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
    Johan T den Dunnen
  29. Department of Human Genetics, Forensic Laboratory for DNA Research, Leiden University Medical Center, Leiden, the Netherlands
    Peter de Knijff
  30. BGI-Shenzhen, Shenzhen, China
    Qibin Li, Yingrui Li, Yuanping Du, Ruoyan Chen, Hongzhi Cao & Jun Wang
  31. BGI-Europe, Copenhagen, Denmark
    Ning Li & Sujie Cao
  32. Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Jun Wang
  33. The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
    Jun Wang
  34. Legal Pathways Institute for Health and Bio Law, Aerdenhout, the Netherlands
    Jasper A Bovenberg
  35. Department of Systems Biology, Columbia University, New York, New York, USA
    Itsik Pe'er
  36. Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
    Gert-Jan B van Ommen
  37. Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
    Paul I W de Bakker

Consortia

The Genome of the Netherlands Consortium

Contributions

P.I.W.d.B., D.I.B., J.A.B., C.M.v.D., G.-J.B.v.O., P.E.S., M.A.S. and C.W. (chair) formed the steering committee of the GoNL Project. Biobanks are managed and organized by A.H., A.G.U., C.M.v.D., B.O., F.R., A.I. (for the Rotterdam and Erasmus Rucphen Family studies), D.I.B., G.W. (for the Netherlands Twin Register), P.E.S., M.B., A.J.M.d.C., H.E.D.S. (for the Leiden Longevity Study) and the members of the LifeLines Cohort Study. P.I.W.d.B. and M.A.S. jointly led the analysis group. Sequencing data were generated at BGI (Shenzhen, China) by Q.L., Y.L., Y.D., R.C., H.C., N.L., S.C. and J.W. Additional Complete Genomics sequencing data were generated by S.J.P., S.P., P.S. and D.R.C. through a partnership with Pfizer. F.v.D., P.B.T.N., P.D., L.C.F., A.K., M.D., H.B., K.J.v.d.V. and M.A.S. formed the operational data stewardship and processing center. P.B.T.N., F.v.D. and M.A.S. designed and implemented the compute cluster. M.D., H.B., A.K. and M.A.S. designed and implemented the MOLGENIS computing platform to scale up analysis pipelines for alignment, variant calling and imputation. F.v.D. and L.C.F. performed alignment with help from I.J.N., J.B. and B.D.C.v.S. L.C.F. and F.v.D. called SNVs. L.C.F., S.L.P., A.M., E.M.v.L., L.C.K., M. Sohail, A.A. and M.V. performed quality control. V.G., K.Y., L.C.F., T.M., A.S., R.E.H., S.A.M., W.P.K., F.H., J.Y.H.-K., E.-W.L., A.A., V.K., H.M., M.H.M. and J.B. formed the structural variation subgroup. L.C.F. developed the PhaseByTransmission module in GATK and performed de novo mutation analyses with P.P. A.M. performed haplotype phasing and imputation benchmarks. J.H.V. and L.H.v.d.B. provided Complete Genomics data for imputation benchmarking. W.P.K. and I.R. performed variant validation. C.W. and M.P. generated Immunochip data on all GoNL samples. S.L.P., C.C.E., A.M., P.F.P., I.P., A.A., N.A., M. Sohail, D.V. and S.R.S. performed population genetic analyses. M.v.O., M.V., M.L., J.F.J.L., M. Stoneking, P.d.K. and M. Kayser performed mitochondrial DNA analysis. P.D., A.M., A.K., E.M.v.L., L.C.K., K.E., C.M.-G., J.v.S., M. Kattenberg, J.J.H. and D.v.E. formed the imputation subgroup. P.B.T.N., K.J.v.d.V. and M.A.S. were responsible for the GoNL website and associated services (see URLs). C.W. conceived the GoNL Project. P.I.W.d.B. wrote the initial manuscript with critical input from L.C.F., A.M., S.L.P., P.F.P. and C.C.E. C.W., D.I.B., G.-J.B.v.O., L.C.K., A.A., M.A.S., P.E.S., S.R.S., J.Y.H.-K., I.P., J.H.V., P.d.K., W.P.K., T.M., A.S., V.G., J.T.d.D. and M. Kayser provided critical feedback on the manuscript. All authors have seen and approved the final manuscript.

Corresponding authors

Correspondence toPaul I W de Bakker or Cisca Wijmenga.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Supplementary information

Source data

Rights and permissions

About this article

Cite this article

The Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population.Nat Genet 46, 818–825 (2014). https://doi.org/10.1038/ng.3021

Download citation