Exome sequencing and the genetic basis of complex traits (original) (raw)
Fuller, C.W. et al. The challenges of sequencing by synthesis. Nat. Biotechnol.27, 1013–1023 (2009). CASPubMed Google Scholar
Rusk, N. & Kiermer, V. Primer: Sequencing—the next generation. Nat. Methods5, 15 (2008). CASPubMed Google Scholar
Metzker, M.L. Sequencing technologies the next generation. Nat. Rev. Genet.11, 31–46 (2010). CASPubMed Google Scholar
Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol.26, 1135–1145 (2008). CASPubMed Google Scholar
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol.4, 265–270 (2009). CASPubMed Google Scholar
Ng, S.B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet.42, 790–793 (2010). CASPubMedPubMed Central Google Scholar
Teer, J.K. & Mullikin, J.C. Exome sequencing: the sweet spot before whole genomes. Hum. Mol. Genet.19, R145–R151 (2010). CASPubMedPubMed Central Google Scholar
Hedges, D.J. et al. Comparison of three targeted enrichment strategies on the SOLiD sequencing platform. PLoS ONE6, e18595 (2011). CASPubMedPubMed Central Google Scholar
Ng, S.B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature461, 272–276 (2009). CASPubMedPubMed Central Google Scholar
Pierce, S.B. et al. Am. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. J. Hum. Genet.87, 282–288 (2010). CAS Google Scholar
Krawitz, P.M. et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat. Genet.42, 827–829 (2010). CASPubMed Google Scholar
Wang, J.L. et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain.133, 3510–3518 (2010). PubMed Google Scholar
Ng, S.B., Nickerson, D.A., Bamshad, M.J. & Shendure, J. Massively parallel sequencing and rare disease. Hum. Mol. Genet.19, R119–R124 (2010). CASPubMedPubMed Central Google Scholar
Musunuru, K. et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med.363, 2220–2227 (2010). CASPubMedPubMed Central Google Scholar
Hoischen, A. et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet.42, 483–485 (2010). CASPubMed Google Scholar
Zhao, Q. et al. Systematic detection of putative tumor suppressor genes through the combined use of exome and transcriptome sequencing. Genome Biol.11, R114 (2010). CASPubMedPubMed Central Google Scholar
Wei, X. et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat. Genet.43, 442–446 (2011). CASPubMedPubMed Central Google Scholar
Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature469, 539–542 (2011). CASPubMedPubMed Central Google Scholar
Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science333, 1154–1157 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chang, H. et al. Exome sequencing reveals comprehensive genomic alterations across eight cancer cell lines. PLoS ONE6, e21097 (2011). CASPubMedPubMed Central Google Scholar
Cohen, J.C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science305, 869–872 (2004). CASPubMed Google Scholar
Ji, W. et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet.40, 592–599 (2008). CASPubMedPubMed Central Google Scholar
Johansen, C.T. et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat. Genet.42, 684–687 (2010). CASPubMedPubMed Central Google Scholar
Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science324, 387–389 (2009). CASPubMedPubMed Central Google Scholar
Romeo, S. et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest.119, 70–79 (2009). CASPubMed Google Scholar
Pritchard, J.K. Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet.69, 124–137 (2001). CASPubMedPubMed Central Google Scholar
Pritchard, J.K. & Cox, N. J. The allelic architecture of human disease genes: common disease–common variant...or not? Hum. Mol. Genet.11, 2417–2423 (2002). CASPubMed Google Scholar
Kryukov, G.V., Pennacchio, L.A. & Sunyaev, S.R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet.80, 727–739 (2007). CASPubMedPubMed Central Google Scholar
Kryukov, G.V., Shpunt, A., Stamatoyannopoulos, J.A. & Sunyaev, S.R. Power of deep, all-exon resequencing for discovery of human trait genes. Proc. Natl. Acad. Sci. USA106, 3871–3876 (2009). CASPubMedPubMed Central Google Scholar
Boyko, A.R. et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet.4, e1000083 (2008). PubMedPubMed Central Google Scholar
Williamson, S.H. et al. Simultaneous inference of selection and population growth from patterns of variation in the human genome. Proc. Natl. Acad. Sci. USA102, 7882–7887 (2005). CASPubMedPubMed Central Google Scholar
Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics173, 891–900 (2006). CASPubMedPubMed Central Google Scholar
Yampolsky, L.Y., Kondrashov, F.A. & Kondrashov, A.S. Distribution of the strength of selection against amino acid replacements in human proteins. Hum. Mol. Genet.14, 3191–3201 (2005). CASPubMed Google Scholar
Fay, J.C., Wyckoff, G.J. & Wu, C.-I. Positive and negative selection on the human genome. Genetics158, 1227–1234 (2001). CASPubMedPubMed Central Google Scholar
Nachman, M.W. & Crowell, S.L. Estimate of the mutation rate per nucleotide in humans. Genetics156, 297–304 (2000). CASPubMedPubMed Central Google Scholar
Kondrashov, A.S. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum. Mutat.21, 12–27 (2003). CASPubMed Google Scholar
Roach, J.C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science328, 636–639 (2010). CASPubMedPubMed Central Google Scholar
Xue, Y. et al. Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr. Biol.19, 1453–1457 (2009). CASPubMedPubMed Central Google Scholar
The HIV Controllers Study. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science330, 1551–1557 (2010).
Ewens, W.J. The sampling theory of selectively neutral alleles. Theor. Popul. Biol.3, 87–112 (1972). CASPubMed Google Scholar
Kimura, M. Molecular evolutionary clock and the neutral theory. J. Mol. Evol.26, 24–33 (1987). CASPubMed Google Scholar
Marth, G.T., Czabarka, E., Murvai, J. & Sherry, S.T. The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations. Genetics166, 351–372 (2004). CASPubMedPubMed Central Google Scholar
Coventry, A. et al. Deep resequencing reveals excess rare recent variants consistent with explosive population growth. Nat. Commun.1, 131 (2010). PubMed Google Scholar
Li, Y. et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat. Genet.42, 969–972 (2010). CASPubMed Google Scholar
Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods7, 248–249 (2010). CASPubMedPubMed Central Google Scholar
Halushka, M.K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet.22, 239–247 (1999). CASPubMed Google Scholar
Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet.22, 231–238 (1999). CASPubMed Google Scholar
Bustamante, C.D. et al. Natural selection on protein-coding genes in the human genome. Nature437, 1153–1157 (2005). CASPubMed Google Scholar
Sunyaev, S., Ramensky, V. & Bork, P. Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet.16, 198–200 (2000). CASPubMed Google Scholar
Sunyaev, S. et al. Prediction of deleterious human alleles. Hum. Mol. Genet.10, 591–597 (2001). CASPubMed Google Scholar
McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303 (2010). ArticleCASPubMedPubMed Central Google Scholar
DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet.43, 491–498 (2011). CASPubMedPubMed Central Google Scholar
Hellmann, I. et al. Selection on human genes as revealed by comparisons to chimpanzee cDNA. Genome Res.13, 831–837 (2003). CASPubMedPubMed Central Google Scholar
MacArthur, D.G. & Tyler-Smith, C. Loss-of-function variants in the genomes of healthy humans. Hum. Mol. Genet.19, R125–R130 (2010). CASPubMedPubMed Central Google Scholar
Purcell, S., Cherny, S.S. & Sham, P.C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics19, 149–150 (2003). CASPubMed Google Scholar
Li, B. & Leal, S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet.83, 311–321 (2008). CASPubMedPubMed Central Google Scholar
Madsen, B.E. & Browning, S.R. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet.5, e1000384 (2009). PubMedPubMed Central Google Scholar
Liu, D.J. & Leal, S.M. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet.6, e1001156 (2010). PubMedPubMed Central Google Scholar
Price, A.L. et al. Pooled association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet.86, 832–838 (2010). PubMedPubMed Central Google Scholar
Bansal, V., Libiger, O., Torkamani, A. & Schork, N.J. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet.11, 773–785 (2010). CASPubMedPubMed Central Google Scholar
Asimit, J. & Zeggini, E. Rare variant association analysis methods for complex traits. Annu. Rev. Genet.44, 293–308 (2010). CASPubMed Google Scholar
Basu, S. & Pan, W. Comparison of statistical tests for disease association with rare variants. Genet. Epidemiol.35, 606–619 (2011). PubMedPubMed Central Google Scholar
Stitziel, N.O., Kiezun, A. & Sunyaev, S.R. Computational and statistical approaches to analyzing variants identified by exome sequencing. Genome Biol.12, 227 (2011). PubMedPubMed Central Google Scholar
Wu, M.C. et al. Rare variant association testing for sequencing data using the sequence kernel association test (SKAT). Am. J. Hum. Genet.89, 82–93 (2011). CASPubMedPubMed Central Google Scholar
Kotowski, I.K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet.78, 410–422 (2006). CASPubMedPubMed Central Google Scholar
Hoffmann, T.J., Marini, N.J. & Witte, J.S. Comprehensive approach to analyzing rare genetic variants. PLoS ONE5, e13584 (2010). PubMedPubMed Central Google Scholar
Ionita-Laza, I., Buxbaum, J.D., Laird, N.M. & Lange, C. A new testing strategy to identify rare variants with either risk or protective effect on disease. PLoS Genet.7, e1001289 (2011). CASPubMedPubMed Central Google Scholar
Tavtigian, S.V. et al. Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am. J. Hum. Genet.85, 427–446 (2009). CASPubMedPubMed Central Google Scholar
Sul, J.H., Han, B., He, D. & Eskin, E. An optimal weighted aggregated association test for identification of rare variants involved in common diseases. Genetics188, 181–188 (2011). PubMedPubMed Central Google Scholar
Sul, J.H., Han, B. & Eskin, E. Increasing power of groupwise association test with likelihood ratio test. in Research in Computational Molecular Biology, Lecture Notes in Computer ScienceVol. 6577/2011 452–467 (Springer, Berlin/Heidelberg, 2011). Google Scholar
Cooper, G.M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res.15, 901–913 (2005). CASPubMedPubMed Central Google Scholar
Cooper, G.M. et al. Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat. Methods7, 250–251 (2010). CASPubMedPubMed Central Google Scholar
Ng, P.C. & Henikoff, S. Predicting the effects of amino acid substitutions on protein function. Annu. Rev. Genomics Hum. Genet.7, 61–80 (2006). CASPubMed Google Scholar
Jordan, D.M., Ramensky, V.E. & Sunyaev, S.R. Human allelic variation: perspective from protein function, structure, and evolution. Curr. Opin. Struct. Biol.20, 342–350 (2010). CASPubMedPubMed Central Google Scholar
Thusberg, J., Olatubosun, A. & Vihinen, M. Performance of mutation pathogenicity prediction methods on missense variants. Hum. Mutat.32, 358–368 (2011). PubMed Google Scholar
Cooper, G.M. & Shendure, J. Needles in stacks of needles: finding disease-causing variants in a wealth of genomic data. Nat. Rev. Genet.12, 628–640 (2011). CASPubMed Google Scholar
Hicks, S., Wheeler, D.A., Plon, S.E. & Kimmel, M. Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum. Mutat.32, 661–668 (2011). CASPubMedPubMed Central Google Scholar
Stephens, M. & Balding, D.J. Bayesian statistical methods for genetic association studies. Nat. Rev. Genet.10, 681–690 (2009). CASPubMed Google Scholar
Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature445, 881–885 (2007). CASPubMed Google Scholar
Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science316, 1331–1336 (2007). CASPubMed Google Scholar
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science327, 78–81 (2010). CASPubMed Google Scholar
Lipman, P.J. et al. On the follow-up of genome-wide association studies: an overall test for the most promising SNPs. Genet. Epidemiol.35, 303–309 (2011). PubMedPubMed Central Google Scholar
Price, A.L., Zaitlen, N.A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet.11, 459–463 (2010). CASPubMedPubMed Central Google Scholar
Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics155, 945–959 (2000). CASPubMedPubMed Central Google Scholar
Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet.38, 904–909 (2006). CASPubMed Google Scholar
Kang, H.M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet.42, 348–354 (2010). CASPubMedPubMed Central Google Scholar
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics55, 997–1004 (1999). CASPubMed Google Scholar
Keinan, A., Mullikin, J.C., Patterson, N. & Reich, D. Measurement of the human allele frequency spectrum demonstrates greater genetic drift in East Asians than in Europeans. Nat. Genet.39, 1251–1255 (2007). CASPubMedPubMed Central Google Scholar
Alexander, D.H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res.19, 1655–1664 (2009). CASPubMedPubMed Central Google Scholar
Li, H. & Durbin, R. ast and accurate short read alignment with Burrows Wheeler transform. Bioinformatics25, 1754–1760 (2009). CASPubMedPubMed Central Google Scholar
Holsinger, K.E. & Weir, B.S. Genetics in geographically structured populations: defining, estimating and interpreting _F_ST . Nat. Rev. Genet.10, 639–650 (2009). CASPubMedPubMed Central Google Scholar
Clayton, D.G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet.37, 1243–1246 (2005). CASPubMed Google Scholar