Vitamin D controls T cell antigen receptor signaling and activation of human T cells (original) (raw)
References
Peled, J.U. et al. The biochemistry of somatic hypermutation. Annu. Rev. Immunol.26, 481–511 (2008). ArticleCASPubMed Google Scholar
Margulies, D.H. TCR avidity: it's not how strong you make it, it's how you make it strong. Nat. Immunol.2, 669–670 (2001). ArticleCASPubMed Google Scholar
Slifka, M.K. & Whitton, J.L. Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nat. Immunol.2, 711–717 (2001). ArticleCASPubMed Google Scholar
Akbar, A.N., Terry, L., Timms, A., Beverley, P.C. & Janossy, G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J. Immunol.140, 2171–2178 (1988). CASPubMed Google Scholar
Byrne, J.A., Butler, J.L. & Cooper, M.D. Differential activation requirements for virgin and memory T cells. J. Immunol.141, 3249–3257 (1988). CASPubMed Google Scholar
Sanders, M.E., Makgoba, M.W., June, C.H., Young, H.A. & Shaw, S. Enhanced responsiveness of human memory T cells to CD2 and CD3 receptor-mediated activation. Eur. J. Immunol.19, 803–808 (1989). ArticleCASPubMed Google Scholar
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). ArticleCASPubMed Google Scholar
Luqman, M. & Bottomly, K. Activation requirements for CD4+ T cells differing in CD45R expression. J. Immunol.149, 2300–2306 (1992). CASPubMed Google Scholar
Sagerstrom, C.G., Kerr, E.M., Allison, J.P. & Davis, M.M. Activation and differentiation requirements of primary T cells in vitro. Proc. Natl. Acad. Sci. USA90, 8987–8991 (1993). ArticleCASPubMedPubMed Central Google Scholar
Croft, M., Bradley, L.M. & Swain, S.L. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J. Immunol.152, 2675–2685 (1994). CASPubMed Google Scholar
Pihlgren, M., Dubois, P.M., Tomkowiak, M., Sjogren, T. & Marvel, J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J. Exp. Med.184, 2141–2151 (1996). ArticleCASPubMedPubMed Central Google Scholar
Curtsinger, J.M., Lins, D.C. & Mescher, M.F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C−) to TCR/CD8 signaling in response to antigen. J. Immunol.160, 3236–3243 (1998). CASPubMed Google Scholar
Robinson, A.T., Miller, N. & Alexander, D.R. CD3 antigen-mediated calcium signals and protein kinase C activation are higher in CD45R0+ than in CD45RA+ human T lymphocyte subsets. Eur. J. Immunol.23, 61–68 (1993). ArticleCASPubMed Google Scholar
Ericsson, P.O., Orchansky, P.L., Carlow, D.A. & Teh, H.S. Differential activation of phospholipase C-γ1 and mitogen-activated protein kinase in naive and antigen-primed CD4 T cells by the peptide/MHC ligand. J. Immunol.156, 2045–2053 (1996). CASPubMed Google Scholar
Abraham, R.T. & Weiss, A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat. Rev. Immunol.4, 301–308 (2004). ArticleCASPubMed Google Scholar
Salvador, J.M. et al. Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat. Immunol.6, 390–395 (2005). ArticleCASPubMed Google Scholar
Ashwell, J.D. The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat. Rev. Immunol.6, 532–540 (2006). ArticleCASPubMed Google Scholar
Finco, T.S., Kadlecek, T., Zhang, W., Samelson, L.E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity9, 617–626 (1998). ArticleCASPubMed Google Scholar
Mittelstadt, P.R., Yamaguchi, H., Appella, E. & Ashwell, J.D. T cell receptor-mediated activation of p38α by mono-phosphorylation of the activation loop results in altered substrate specificity. J. Biol. Chem.284, 15469–15474 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lauritsen, J.P.H. et al. Two distinct pathways exist for down-regulation of the TCR. J. Immunol.161, 260–267 (1998). CASPubMed Google Scholar
Chakrabarti, R., Jung, C.Y., Lee, T.P., Liu, H. & Mookerjee, B.K. Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J. Immunol.152, 2660–2668 (1994). CASPubMed Google Scholar
Pillai, S., Bikle, D.D., Su, M.J., Ratnam, A. & Abe, J. 1,25-Dihydroxyvitamin D3 upregulates the phosphatidylinositol signaling pathway in human keratinocytes by increasing phospholipase C levels. J. Clin. Invest.96, 602–609 (1995). ArticleCASPubMedPubMed Central Google Scholar
Xie, Z. & Bikle, D.D. Cloning of the human phospholipase C-gamma1 promoter and identification of a DR6-type vitamin D-responsive element. J. Biol. Chem.272, 6573–6577 (1997). ArticleCASPubMed Google Scholar
Provvedini, D.M., Tsoukas, C.D., Deftos, L.J. & Manolagas, S.C. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science221, 1181–1183 (1983). ArticleCASPubMed Google Scholar
Mizwicki, M.T., Bula, C.M., Bishop, J.E. & Norman, A.W. New insights into vitamin D sterol-VDR proteolysis, allostery, structure-function from the perspective of a conformational ensemble model. J. Steroid Biochem. Mol. Biol.103, 243–262 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zugel, U., Steinmeyer, A., Giesen, C. & Asadullah, K. A novel immunosuppressive 1α,25-dihydroxyvitamin D3 analog with reduced hypercalcemic activity. J. Invest. Dermatol.119, 1434–1442 (2002). ArticleCASPubMed Google Scholar
Zugel, U., Steinmeyer, A., May, E., Lehmann, M. & Asadullah, K. Immunomodulation by a novel, dissociated Vitamin D analogue. Exp. Dermatol.18, 619–627 (2009). ArticlePubMed Google Scholar
Mizwicki, M.T. et al. On the mechanism underlying (23S)-25-dehydro-1α(OH)-vitamin D3–26,23-lactone antagonism of hVDRwt gene activation and its switch to a superagonist. J. Biol. Chem.284, 36292–36301 (2009). ArticleCASPubMedPubMed Central Google Scholar
Neufeld, T.P. & Edgar, B.A. Connections between growth and the cell cycle. Curr. Opin. Cell Biol.10, 784–790 (1998). ArticleCASPubMed Google Scholar
Liu, P.T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science311, 1770–1773 (2006). ArticleCASPubMed Google Scholar
Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nat. Immunol.8, 285–293 (2007). ArticleCASPubMed Google Scholar
Costa, E.M. & Feldman, D. Measurement of 1,25-dihydroxyvitamin D3 receptor turnover by dense amino acid labeling: changes during receptor up-regulation by vitamin D metabolites. Endocrinology120, 1173–1178 (1987). ArticleCASPubMed Google Scholar
Qi, X. et al. The p38 and JNK pathways cooperate to trans-activate vitamin D receptor via c-Jun/AP-1 and sensitize human breast cancer cells to vitamin D3-induced growth inhibition. J. Biol. Chem.277, 25884–25892 (2002). ArticleCASPubMed Google Scholar
Maiti, A., Hait, N.C. & Beckman, M.J. Extracellular calcium-sensing receptor activation induces vitamin D receptor levels in proximal kidney HK-2G cells by a mechanism that requires phosphorylation of p38α MAPK. J. Biol. Chem.283, 175–183 (2008). ArticleCASPubMed Google Scholar
Irvin, B.J., Williams, B.L., Nilson, A.E., Maynor, H.O. & Abraham, R.T. Pleiotropic contributions of phospholipase C-γ1 (PLC-γ1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-γ1-deficient Jurkat T-cell line. Mol. Cell. Biol.20, 9149–9161 (2000). ArticleCASPubMedPubMed Central Google Scholar
Harden, T.K. & Sondek, J. Regulation of phospholipase C isozymes by Ras superfamily GTPases. Annu. Rev. Pharmacol. Toxicol.46, 355–379 (2006). ArticleCASPubMed Google Scholar
Ting, A.T., Karnitz, L.M., Schoon, R.A., Abraham, R.T. & Leibson, P.J. Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-γ1 and PLC-γ2 in natural killer cells. J. Exp. Med.176, 1751–1755 (1992). ArticleCASPubMed Google Scholar
Dienz, O. et al. Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and phospholipase Cγ1 are required for NF-kappa B activation and lipid raft recruitment of protein kinase Cθ induced by T cell costimulation. J. Immunol.170, 365–372 (2003). ArticleCASPubMed Google Scholar
Veldman, C.M., Cantorna, M.T. & DeLuca, H.F. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch. Biochem. Biophys.374, 334–338 (2000). ArticleCASPubMed Google Scholar
Yu, S. & Cantorna, M.T. The vitamin D receptor is required for iNKT cell development. Proc. Natl. Acad. Sci. USA105, 5207–5212 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yu, S., Bruce, D., Froicu, M., Weaver, V. & Cantorna, M.T. Failure of T cell homing, reduced CD4/CD8αα intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc. Natl. Acad. Sci. USA105, 20834–20839 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mathieu, C. et al. In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice. J. Bone Miner. Res.16, 2057–2065 (2001). ArticleCASPubMed Google Scholar
Dong, S. et al. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. J. Exp. Med.203, 2509–2518 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhang, W., Irvin, B.J., Trible, R.P., Abraham, R.T. & Samelson, L.E. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int. Immunol.11, 943–950 (1999). ArticleCASPubMed Google Scholar
Lin, J., Weiss, A. & Finco, T.S. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem.274, 28861–28864 (1999). ArticleCASPubMed Google Scholar
Whitmire, J.K., Eam, B. & Whitton, J.L. Tentative T cells: memory cells are quick to respond, but slow to divide. PLoS Pathog.4, e1000041 (2008). ArticlePubMedPubMed Central Google Scholar
Geisler, C. et al. Characterization and expression of the human T cell receptor-T3 complex by monoclonal antibody F101.01. Scand. J. Immunol.27, 685–696 (1988). ArticleCASPubMed Google Scholar
Kadi, F. et al. The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J. Physiol. (Lond.)558, 1005–1012 (2004). ArticleCAS Google Scholar
Bonefeld, C.M. et al. TCR down-regulation controls virus-specific CD8+ T cell responses. J. Immunol.181, 7786–7799 (2008). ArticleCASPubMed Google Scholar