Vitamin D controls T cell antigen receptor signaling and activation of human T cells (original) (raw)

References

  1. Peled, J.U. et al. The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 26, 481–511 (2008).
    Article CAS PubMed Google Scholar
  2. Margulies, D.H. TCR avidity: it's not how strong you make it, it's how you make it strong. Nat. Immunol. 2, 669–670 (2001).
    Article CAS PubMed Google Scholar
  3. Slifka, M.K. & Whitton, J.L. Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nat. Immunol. 2, 711–717 (2001).
    Article CAS PubMed Google Scholar
  4. Akbar, A.N., Terry, L., Timms, A., Beverley, P.C. & Janossy, G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J. Immunol. 140, 2171–2178 (1988).
    CAS PubMed Google Scholar
  5. Byrne, J.A., Butler, J.L. & Cooper, M.D. Differential activation requirements for virgin and memory T cells. J. Immunol. 141, 3249–3257 (1988).
    CAS PubMed Google Scholar
  6. Sanders, M.E., Makgoba, M.W., June, C.H., Young, H.A. & Shaw, S. Enhanced responsiveness of human memory T cells to CD2 and CD3 receptor-mediated activation. Eur. J. Immunol. 19, 803–808 (1989).
    Article CAS PubMed Google Scholar
  7. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
    Article CAS PubMed Google Scholar
  8. Luqman, M. & Bottomly, K. Activation requirements for CD4+ T cells differing in CD45R expression. J. Immunol. 149, 2300–2306 (1992).
    CAS PubMed Google Scholar
  9. Sagerstrom, C.G., Kerr, E.M., Allison, J.P. & Davis, M.M. Activation and differentiation requirements of primary T cells in vitro. Proc. Natl. Acad. Sci. USA 90, 8987–8991 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  10. Croft, M., Bradley, L.M. & Swain, S.L. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J. Immunol. 152, 2675–2685 (1994).
    CAS PubMed Google Scholar
  11. Pihlgren, M., Dubois, P.M., Tomkowiak, M., Sjogren, T. & Marvel, J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J. Exp. Med. 184, 2141–2151 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  12. Curtsinger, J.M., Lins, D.C. & Mescher, M.F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C−) to TCR/CD8 signaling in response to antigen. J. Immunol. 160, 3236–3243 (1998).
    CAS PubMed Google Scholar
  13. Robinson, A.T., Miller, N. & Alexander, D.R. CD3 antigen-mediated calcium signals and protein kinase C activation are higher in CD45R0+ than in CD45RA+ human T lymphocyte subsets. Eur. J. Immunol. 23, 61–68 (1993).
    Article CAS PubMed Google Scholar
  14. Ericsson, P.O., Orchansky, P.L., Carlow, D.A. & Teh, H.S. Differential activation of phospholipase C-γ1 and mitogen-activated protein kinase in naive and antigen-primed CD4 T cells by the peptide/MHC ligand. J. Immunol. 156, 2045–2053 (1996).
    CAS PubMed Google Scholar
  15. Abraham, R.T. & Weiss, A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat. Rev. Immunol. 4, 301–308 (2004).
    Article CAS PubMed Google Scholar
  16. Smith-Garvin, J.E., Koretzky, G.A. & Jordan, M.S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  17. Salvador, J.M. et al. Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat. Immunol. 6, 390–395 (2005).
    Article CAS PubMed Google Scholar
  18. Ashwell, J.D. The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat. Rev. Immunol. 6, 532–540 (2006).
    Article CAS PubMed Google Scholar
  19. Finco, T.S., Kadlecek, T., Zhang, W., Samelson, L.E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–626 (1998).
    Article CAS PubMed Google Scholar
  20. Mittelstadt, P.R., Yamaguchi, H., Appella, E. & Ashwell, J.D. T cell receptor-mediated activation of p38α by mono-phosphorylation of the activation loop results in altered substrate specificity. J. Biol. Chem. 284, 15469–15474 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  21. Lauritsen, J.P.H. et al. Two distinct pathways exist for down-regulation of the TCR. J. Immunol. 161, 260–267 (1998).
    CAS PubMed Google Scholar
  22. Chakrabarti, R., Jung, C.Y., Lee, T.P., Liu, H. & Mookerjee, B.K. Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J. Immunol. 152, 2660–2668 (1994).
    CAS PubMed Google Scholar
  23. Pillai, S., Bikle, D.D., Su, M.J., Ratnam, A. & Abe, J. 1,25-Dihydroxyvitamin D3 upregulates the phosphatidylinositol signaling pathway in human keratinocytes by increasing phospholipase C levels. J. Clin. Invest. 96, 602–609 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  24. Xie, Z. & Bikle, D.D. Cloning of the human phospholipase C-gamma1 promoter and identification of a DR6-type vitamin D-responsive element. J. Biol. Chem. 272, 6573–6577 (1997).
    Article CAS PubMed Google Scholar
  25. Provvedini, D.M., Tsoukas, C.D., Deftos, L.J. & Manolagas, S.C. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science 221, 1181–1183 (1983).
    Article CAS PubMed Google Scholar
  26. Mizwicki, M.T., Bula, C.M., Bishop, J.E. & Norman, A.W. New insights into vitamin D sterol-VDR proteolysis, allostery, structure-function from the perspective of a conformational ensemble model. J. Steroid Biochem. Mol. Biol. 103, 243–262 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  27. Zugel, U., Steinmeyer, A., Giesen, C. & Asadullah, K. A novel immunosuppressive 1α,25-dihydroxyvitamin D3 analog with reduced hypercalcemic activity. J. Invest. Dermatol. 119, 1434–1442 (2002).
    Article CAS PubMed Google Scholar
  28. Zugel, U., Steinmeyer, A., May, E., Lehmann, M. & Asadullah, K. Immunomodulation by a novel, dissociated Vitamin D analogue. Exp. Dermatol. 18, 619–627 (2009).
    Article PubMed Google Scholar
  29. Mizwicki, M.T. et al. On the mechanism underlying (23S)-25-dehydro-1α(OH)-vitamin D3–26,23-lactone antagonism of hVDRwt gene activation and its switch to a superagonist. J. Biol. Chem. 284, 36292–36301 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  30. Neufeld, T.P. & Edgar, B.A. Connections between growth and the cell cycle. Curr. Opin. Cell Biol. 10, 784–790 (1998).
    Article CAS PubMed Google Scholar
  31. Liu, P.T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773 (2006).
    Article CAS PubMed Google Scholar
  32. Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nat. Immunol. 8, 285–293 (2007).
    Article CAS PubMed Google Scholar
  33. Costa, E.M. & Feldman, D. Measurement of 1,25-dihydroxyvitamin D3 receptor turnover by dense amino acid labeling: changes during receptor up-regulation by vitamin D metabolites. Endocrinology 120, 1173–1178 (1987).
    Article CAS PubMed Google Scholar
  34. Qi, X. et al. The p38 and JNK pathways cooperate to trans-activate vitamin D receptor via c-Jun/AP-1 and sensitize human breast cancer cells to vitamin D3-induced growth inhibition. J. Biol. Chem. 277, 25884–25892 (2002).
    Article CAS PubMed Google Scholar
  35. Maiti, A., Hait, N.C. & Beckman, M.J. Extracellular calcium-sensing receptor activation induces vitamin D receptor levels in proximal kidney HK-2G cells by a mechanism that requires phosphorylation of p38α MAPK. J. Biol. Chem. 283, 175–183 (2008).
    Article CAS PubMed Google Scholar
  36. Irvin, B.J., Williams, B.L., Nilson, A.E., Maynor, H.O. & Abraham, R.T. Pleiotropic contributions of phospholipase C-γ1 (PLC-γ1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-γ1-deficient Jurkat T-cell line. Mol. Cell. Biol. 20, 9149–9161 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  37. Harden, T.K. & Sondek, J. Regulation of phospholipase C isozymes by Ras superfamily GTPases. Annu. Rev. Pharmacol. Toxicol. 46, 355–379 (2006).
    Article CAS PubMed Google Scholar
  38. Ting, A.T., Karnitz, L.M., Schoon, R.A., Abraham, R.T. & Leibson, P.J. Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-γ1 and PLC-γ2 in natural killer cells. J. Exp. Med. 176, 1751–1755 (1992).
    Article CAS PubMed Google Scholar
  39. Dienz, O. et al. Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and phospholipase Cγ1 are required for NF-kappa B activation and lipid raft recruitment of protein kinase Cθ induced by T cell costimulation. J. Immunol. 170, 365–372 (2003).
    Article CAS PubMed Google Scholar
  40. Veldman, C.M., Cantorna, M.T. & DeLuca, H.F. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch. Biochem. Biophys. 374, 334–338 (2000).
    Article CAS PubMed Google Scholar
  41. Yu, S. & Cantorna, M.T. The vitamin D receptor is required for iNKT cell development. Proc. Natl. Acad. Sci. USA 105, 5207–5212 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  42. Yu, S., Bruce, D., Froicu, M., Weaver, V. & Cantorna, M.T. Failure of T cell homing, reduced CD4/CD8αα intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc. Natl. Acad. Sci. USA 105, 20834–20839 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  43. Mathieu, C. et al. In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice. J. Bone Miner. Res. 16, 2057–2065 (2001).
    Article CAS PubMed Google Scholar
  44. Dong, S. et al. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. J. Exp. Med. 203, 2509–2518 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  45. Zhang, W., Irvin, B.J., Trible, R.P., Abraham, R.T. & Samelson, L.E. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int. Immunol. 11, 943–950 (1999).
    Article CAS PubMed Google Scholar
  46. Lin, J., Weiss, A. & Finco, T.S. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem. 274, 28861–28864 (1999).
    Article CAS PubMed Google Scholar
  47. Whitmire, J.K., Eam, B. & Whitton, J.L. Tentative T cells: memory cells are quick to respond, but slow to divide. PLoS Pathog. 4, e1000041 (2008).
    Article PubMed PubMed Central Google Scholar
  48. Geisler, C. et al. Characterization and expression of the human T cell receptor-T3 complex by monoclonal antibody F101.01. Scand. J. Immunol. 27, 685–696 (1988).
    Article CAS PubMed Google Scholar
  49. Kadi, F. et al. The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J. Physiol. (Lond.) 558, 1005–1012 (2004).
    Article CAS Google Scholar
  50. Bonefeld, C.M. et al. TCR down-regulation controls virus-specific CD8+ T cell responses. J. Immunol. 181, 7786–7799 (2008).
    Article CAS PubMed Google Scholar

Download references