Wilson, A. & Radtke, F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett.580, 2860–2868 (2006). ArticleCASPubMed Google Scholar
Liu, J., Sato, C., Cerletti, M. & Wagers, A. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr. Top. Dev. Biol.92, 367–409 (2010). ArticleCASPubMed Google Scholar
Koch, U. & Radtke, F. Notch and cancer: a double-edged sword. Cell. Mol. Life Sci.64, 2746–2762 (2007). ArticleCASPubMed Google Scholar
Radtke, F. & Raj, K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer3, 756–767 (2003). ArticleCASPubMed Google Scholar
Koch, U. & Radtke, F. Notch in T-ALL: new players in a complex disease. Trends Immunol.32, 434–442 (2011). ArticleCASPubMed Google Scholar
Koch, U. & Radtke, F. Mechanisms of T cell development and transformation. Annu. Rev. Cell Dev. Biol.27, 539–562 (2011). ArticleCASPubMed Google Scholar
Teodorczyk, M. & Schmidt, M. H. Notching on cancer's door: Notch signaling in brain tumors. Front. Oncol.4, 341 (2014). PubMed Google Scholar
McAuliffe, S. M. et al. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc. Natl Acad. Sci. USA109, E2939–E2948 (2012). ArticleCASPubMedPubMed Central Google Scholar
Andersson, E. R., Sandberg, R. & Lendahl, U. Notch signaling: simplicity in design, versatility in function. Development138, 3593–3612 (2011). ArticleCASPubMed Google Scholar
Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA95, 8108–8112 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gordon, W. R. et al. Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol.14, 295–300 (2007). ArticlePubMedCAS Google Scholar
Dunwoodie, S. L., Henrique, D., Harrison, S. M. & Beddington, R. S. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development124, 3065–3076 (1997). CASPubMed Google Scholar
Ladi, E. et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Biol.170, 983–992 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Bozkulak, E. C. & Weinmaster, G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol. Cell. Biol.29, 5679–5695 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Fortini, M. E. Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat. Rev. Mol. Cell Biol.3, 673–684 (2002). ArticleCASPubMed Google Scholar
Gordon, W. R. et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood113, 4381–4390 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Hori, K., Sen, A., Kirchhausen, T. & Artavanis-Tsakonas, S. Regulation of ligand-independent Notch signal through intracellular trafficking. Commun. Integr. Biol.5, 374–376 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Bray, S. J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol.7, 678–679 (2006). ArticleCASPubMed Google Scholar
Ishibashi, M. Molecular mechanisms for morphogenesis of the central nervous system in mammals. Anat. Sci. Int.79, 226–234 (2004). ArticleCASPubMed Google Scholar
Holmberg, J. et al. SoxB1 transcription factors and Notch signaling use distinct mechanisms to regulate proneural gene function and neural progenitor differentiation. Development135, 1843–1851 (2008). ArticleCASPubMed Google Scholar
Koch, U., Lehal, R. & Radtke, F. Stem cells living with a Notch. Development140, 689–704 (2013). ArticleCASPubMed Google Scholar
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity10, 547–558 (1999). ArticleCASPubMed Google Scholar
Riccio, O. et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep.9, 377–383 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Pellegrinet, L. et al. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology140, 1230–1240 (2011). ArticlePubMedCAS Google Scholar
Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol.10, 207–217 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science333, 1154–1157 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
South, A. P. et al. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J. Invest. Dermatol.134, 2630–2638 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, N. J. et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl Acad. Sci. USA108, 17761–17766 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rampias, T. et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat. Med.20, 1199–1205 (2014). ArticleCASPubMed Google Scholar
Gao, Y. B. et al. Genetic landscape of esophageal squamous cell carcinoma. Nat. Genet.46, 1097–1102 (2014). ArticleCASPubMed Google Scholar
Song, Y. et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature509, 91–95 (2014). ArticleCASPubMed Google Scholar
The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature507, 315–322 (2014).
Pickering, C. R. et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov.3, 770–781 (2013). ArticleCASPubMed Google Scholar
Abel, E. L., Angel, J. M., Kiguchi, K. & DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat. Protoc.4, 1350–1362 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Nassar, D., Latil, M., Boeckx, B., Lambrechts, D. & Blanpain, C. Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat. Med.21, 946–954 (2015). This study provided a comprehensive analysis of the genomic aberrations that occur in genetic and chemically induced mouse SCC. ArticleCASPubMed Google Scholar
Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet.33, 416–421 (2003). This work provided the first functionalin vivoevidence that NOTCH1 functions as a tumour suppressor in non-melanoma skin cancer. ArticleCASPubMed Google Scholar
Extance, A. Alzheimer's failure raises questions about disease-modifying strategies. Nat. Rev. Drug Discov.9, 749–751 (2010). ArticleCASPubMed Google Scholar
Maraver, A. et al. NOTCH pathway inactivation promotes bladder cancer progression. J. Clin. Invest.125, 824–830 (2015). This study presentedin vivofunctional evidence that Notch signalling functions as a tumour suppressor in the bladder. ArticlePubMedPubMed Central Google Scholar
Alcolea, M. P. et al. Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change. Nat. Cell Biol.16, 615–622 (2014). This work demonstrated how impaired Notch signalling in oesophageal epithelial progenitor cells could result in perturbed differentiation promoting 'field change' in the oesophagus. ArticlePubMedPubMed CentralCAS Google Scholar
Zeng, Q. et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell8, 13–23 (2005). ArticleCASPubMed Google Scholar
Gokulan, R. & Halagowder, D. Expression pattern of Notch intracellular domain (NICD) and Hes-1 in preneoplastic and neoplastic human oral squamous epithelium: their correlation with c-Myc, clinicopathological factors and prognosis in oral cancer. Med. Oncol.31, 126 (2014). ArticleCASPubMed Google Scholar
Yoshida, R. et al. The pathological significance of Notch1 in oral squamous cell carcinoma. Lab. Invest.93, 1068–1081 (2013). ArticleCASPubMed Google Scholar
Zhao, Z. L. et al. NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci. Rep.6, 24704 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Hijioka, H. et al. Upregulation of Notch pathway molecules in oral squamous cell carcinoma. Int. J. Oncol.36, 817–822 (2010). CASPubMed Google Scholar
Yao, J., Duan, L., Fan, M. & Wu, X. Gamma-secretase inhibitors exerts antitumor activity via down-regulation of Notch and nuclear factor kappa B in human tongue carcinoma cells. Oral Dis.13, 555–563 (2007). ArticleCASPubMed Google Scholar
George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature524, 47–53 (2015). This paper identified loss-of-function mutations in Notch family members in SCLC and providedin vivoevidence of a tumour-suppressor role of Notch signalling using a mouse model. ArticlePubMedPubMed CentralCAS Google Scholar
Viatour, P. et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J. Exp. Med.208, 1963–1976 (2011). This study demonstrated that the use of a GSI to inhibit Notch signalling in a mouse model of HCC resulted in impaired tumour development. ArticlePubMedPubMed CentralCAS Google Scholar
Kawaguchi, K. et al. Jagged1 DNA copy number variation is associated with poor outcome in liver cancer. Am. J. Pathol.186, 2055–2067 (2016). ArticleCASPubMed Google Scholar
Ma, L. et al. Overexpression of protein _O_-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway. Biochem. Biophys. Res. Commun.473, 503–510 (2016). ArticleCASPubMed Google Scholar
Giachino, C. et al. A tumor suppressor function for Notch signaling in forebrain tumor subtypes. Cancer Cell28, 730–742 (2015). This study used a mouse model of glioma to functionally demonstrate for the first timein vivothat Notch signalling functions as a tumour suppressor in forebrain tumours. ArticleCASPubMed Google Scholar
Alcantara Llaguno, S. et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell15, 45–56 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). ArticleCASPubMed Google Scholar
Brat, D. J. et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med.372, 2481–2498 (2015). ArticleCASPubMed Google Scholar
Suzuki, H. et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat. Genet.47, 458–468 (2015). ArticleCASPubMed Google Scholar
Fan, X. et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells28, 5–16 (2010). PubMedPubMed CentralCAS Google Scholar
Purow, B. W. et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res.65, 2353–2363 (2005). ArticleCASPubMed Google Scholar
Xu, P. et al. The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J. Neurooncol.97, 41–51 (2010). ArticleCASPubMed Google Scholar
Krop, I. et al. Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J. Clin. Oncol.30, 2307–2313 (2012). ArticleCASPubMed Google Scholar
Schonberg, D. L., Lubelski, D., Miller, T. E. & Rich, J. N. Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol. Aspects Med.39, 82–101 (2014). ArticleCASPubMed Google Scholar
Kunnimalaiyaan, M., Vaccaro, A. M., Ndiaye, M. A. & Chen, H. Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J. Biol. Chem.281, 39819–39830 (2006). ArticleCASPubMed Google Scholar
Kunnimalaiyaan, M., Yan, S., Wong, F., Zhang, Y. W. & Chen, H. Hairy enhancer of split-1 (HES-1), a Notch1 effector, inhibits the growth of carcinoid tumor cells. Surgery138, 1137–1142 (2005). ArticlePubMed Google Scholar
Nakakura, E. K. et al. Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by notch signaling. J. Clin. Endocrinol. Metab.90, 4350–4356 (2005). ArticleCASPubMed Google Scholar
Rekhtman, N. et al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin. Cancer Res.22, 3618–3629 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Almoguera, C. et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell53, 549–554 (1988). ArticleCASPubMed Google Scholar
Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell4, 437–450 (2003). ArticleCASPubMed Google Scholar
De La O, J.-P. et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc. Natl Acad. Sci. USA105, 18907–18912 (2008). ArticleCASPubMedPubMed Central Google Scholar
Miyamoto, Y. et al. Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell3, 565–576 (2003). ArticleCASPubMed Google Scholar
Mazur, P. K. et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc. Natl Acad. Sci. USA107, 13438–13443 (2010). ArticleCASPubMedPubMed Central Google Scholar
Plentz, R. et al. Inhibition of gamma-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology136, 1741–1749 (2009). ArticlePubMedCAS Google Scholar
Maniati, E. et al. Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice. J. Clin. Invest.121, 4685–4699 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Cook, N. et al. Gamma secretase inhibition promotes hypoxic necrosis in mouse pancreatic ductal adenocarcinoma. J. Exp. Med.209, 437–444 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Hanlon, L. et al. Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res.70, 4280–4286 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Bilous, N. I., Abramenko, I. V., Chumak, A. A., Dyagil, I. S. & Martina, Z. V. Detection of NOTCH1 c.7541_7542delCT mutation in chronic lymphocytic leukemia using conventional and real-time polymerase chain reaction. Exp. Oncol.38, 112–116 (2016). ArticleCASPubMed Google Scholar
Lobry, C. et al. Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J. Exp. Med.210, 301–319 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Dill, M. T. et al. Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis, and angiosarcomas in livers of mice. Gastroenterology142, 967–977 (2012). ArticleCASPubMed Google Scholar
Kuhnert, F., Kirshner, J. R. & Thurston, G. Dll4–Notch signaling as a therapeutic target in tumor angiogenesis. Vasc. Cell3, 20 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature444, 1083–1087 (2006). ArticleCASPubMed Google Scholar
Yugawa, T. et al. DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Res.70, 4034–4044 (2010). ArticleCASPubMed Google Scholar
Chidgey, M. et al. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. J. Cell Biol.155, 821–832 (2001). ArticlePubMedPubMed CentralCAS Google Scholar
Dumortier, A. et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS ONE5, e9258 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Ezhkova, E. et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev.25, 485–498 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Tan, M. J. et al. Cutaneous beta-human papillomavirus E6 proteins bind Mastermind-like coactivators and repress Notch signaling. Proc. Natl Acad. Sci. USA109, E1473–E1480 (2012). ArticleCASPubMedPubMed Central Google Scholar
Meyers, J. M., Spangle, J. M. & Munger, K. The human papillomavirus type 8 E6 protein interferes with NOTCH activation during keratinocyte differentiation. J. Virol.87, 4762–4767 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Aldabagh, B., Angelas, J. G., Cardones, A. R. & Arron, S. T. Cutaneous squamous cell carcinoma and human papillomavirus: is there an association? Dermatol. Surg.39, 1–23 (2013). ArticleCASPubMed Google Scholar
Connolly, K., Manders, P., Earls, P. & Epstein, R. J. Papillomavirus-associated squamous skin cancers following transplant immunosuppression: one Notch closer to control. Cancer Treat. Rev.40, 205–214 (2014). ArticlePubMed Google Scholar
Lefort, K. et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev.21, 562–577 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Parsa, R., Yang, A., McKeon, F. & Green, H. Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J. Invest. Dermatol.113, 1099–1105 (1999). ArticleCASPubMed Google Scholar
Rocco, J. W., Leong, C. O., Kuperwasser, N., DeYoung, M. P. & Ellisen, L. W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell9, 45–56 (2006). ArticleCASPubMed Google Scholar
Keyes, W. M. et al. DeltaNp63alpha is an oncogene that targets chromatin remodeler Lsh to drive skin stem cell proliferation and tumorigenesis. Cell Stem Cell8, 164–176 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Xu, C. et al. Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell25, 590–604 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Yang, A. et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell2, 305–316 (1998). ArticleCASPubMed Google Scholar
Senoo, M., Pinto, F., Crum, C. P. & McKeon, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell129, 523–536 (2007). ArticleCASPubMed Google Scholar
Nguyen, B. C. et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev.20, 1028–1042 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Eferl, R. & Wagner, E. F. AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer3, 859–868 (2003). ArticleCASPubMed Google Scholar
Guinea-Viniegra, J. et al. Differentiation-induced skin cancer suppression by FOS, 53, and TACE/ADAM17. J. Clin. Invest.122, 2898–2910 (2012). The findings of this study demonstrated that FOS and p53 prevented skin cancer development by inducing Notch activity through promoting ADAM17 expression. ArticlePubMedPubMed CentralCAS Google Scholar
Kolev, V. et al. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat. Cell Biol.10, 902–911 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol.17, 1218–1227 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Murthy, A. et al. Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity36, 105–119 (2012). ArticleCASPubMed Google Scholar
Nowell, C. S. et al. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat. Cell Biol.18, 168–180 (2016). This study revealed how loss of Notch signalling in regenerating epithelia induces aberrant cell fate in stem and progenitor cells indirectly by altering the mechanical properties of the tissue stroma as a consequence of chronic inflammation. CASPubMed Google Scholar
Demehri, S. et al. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol.6, e123 (2008). References 95, 114 and 116 all used mouse models to show that many of the pathological consequences of loss of Notch signalling in the epidermis may in part be due to aberrant inflammatory responses in the skin. ArticlePubMedPubMed CentralCAS Google Scholar
Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J.20, 3427–3436 (2001). ArticlePubMedPubMed CentralCAS Google Scholar
Restivo, G. et al. IRF6 is a mediator of Notch pro-differentiation and tumour suppressive function in keratinocytes. EMBO J.30, 4571–4585 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Vauclair, S. et al. Corneal epithelial cell fate is maintained during repair by Notch1 signaling via the regulation of vitamin A metabolism. Dev. Cell13, 242–253 (2007). ArticleCASPubMed Google Scholar
Collins, C. A. & Watt, F. M. Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for beta-catenin and Notch signalling. Dev. Biol.324, 55–67 (2008). ArticleCASPubMed Google Scholar
Saitou, M. et al. Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor. Nature374, 159–162 (1995). ArticleCASPubMed Google Scholar
Syed, Z. et al. All-trans retinoic acid suppresses Stat3 signaling during skin carcinogenesis. Cancer Prev. Res.2, 903–911 (2009). ArticleCAS Google Scholar
Andersen, J. et al. A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron83, 1085–1097 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Imayoshi, I. et al. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science342, 1203–1208 (2013). ArticleCASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). CASPubMed Google Scholar
Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature454, 436–444 (2008). ArticleCASPubMed Google Scholar
Demehri, S., Turkoz, A. & Kopan, R. Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell16, 55–66 (2009). This work importantly demonstrated a non-cell-autonomous mechanism of Notch-mediated tumour suppression. ArticlePubMedPubMed CentralCAS Google Scholar
Demehri, S. et al. Elevated epidermal thymic stromal lymphopoietin levels establish an antitumor environment in the skin. Cancer Cell22, 494–505 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Di Piazza, M., Nowell, C. S., Koch, U., Durham, A. D. & Radtke, F. Loss of cutaneous TSLP-dependent immune responses skews the balance of inflammation from tumor protective to tumor promoting. Cancer Cell22, 479–493 (2012). References 131 and 132 demonstrated how aberrant cytokine activity in Notch-deficient epidermal epithelial cells influenced pro-tumorigenic versus antitumorigenic inflammation in the skin. ArticleCASPubMed Google Scholar
Espinosa, L. et al. The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell18, 268–281 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Coombs, C. C., Tavakkoli, M. & Tallman, M. S. Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J.5, e304 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Yu, X. M., Phan, T., Patel, P. N., Jaskula-Sztul, R. & Chen, H. Chrysin activates Notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinoma in vitro and in vivo. Cancer119, 774–781 (2013). ArticleCASPubMed Google Scholar
Patel, P. N., Yu, X. M., Jaskula-Sztul, R. & Chen, H. Hesperetin activates the Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer. Ann. Surg. Oncol.21 (Suppl. 4), S497–S504 (2014). ArticlePubMed Google Scholar
Greenblatt, D. Y. et al. Valproic acid activates notch-1 signaling and regulates the neuroendocrine phenotype in carcinoid cancer cells. Oncologist12, 942–951 (2007). ArticleCASPubMed Google Scholar
Mohammed, T. A. et al. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist16, 835–843 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem.283, 8046–8054 (2008). ArticleCASPubMed Google Scholar
Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature464, 1052–1057 (2010). ArticleCASPubMed Google Scholar
Chiu, M. L. & Gilliland, G. L. Engineering antibody therapeutics. Curr. Opin. Struct. Biol.38, 163–173 (2016). ArticleCASPubMed Google Scholar
Auderset, F., Coutaz, M. & Tacchini-Cottier, F. The role of Notch in the differentiation of CD4+ T helper cells. Curr. Top. Microbiol. Immunol.360, 115–134 (2012). CASPubMed Google Scholar
Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell117, 515–526 (2004). ArticleCASPubMed Google Scholar
Amsen, D., Antov, A. & Flavell, R. A. The different faces of Notch in T-helper-cell differentiation. Nat. Rev. Immunol.9, 116–124 (2009). ArticleCASPubMed Google Scholar
Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol.7, 145–173 (1989). ArticleCASPubMed Google Scholar
Vinay, D. S. et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol.35, 185–198 (2015). ArticleCAS Google Scholar
Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell66, 649–661 (1991). ArticleCASPubMed Google Scholar
Reynolds, T. C., Smith, S. D. & Sklar, J. Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the beta T cell receptor gene in human lymphoblastic neoplasms. Cell50, 107–117 (1987). ArticleCASPubMed Google Scholar
Capobianco, A. J., Zagouras, P., Blaumueller, C. M., Artavanis-Tsakonas, S. & Bishop, J. M. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell. Biol.17, 6265–6273 (1997). ArticlePubMedPubMed CentralCAS Google Scholar
Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med.183, 2283–2291 (1996). ArticleCASPubMed Google Scholar
Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science306, 269–271 (2004). ArticleCASPubMed Google Scholar
Di Ianni, M. et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br. J. Haematol.146, 689–691 (2009). ArticleCASPubMed Google Scholar
Fabbri, G. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med.208, 1389–1401 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature475, 101–105 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Sportoletti, P. et al. NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. Br. J. Haematol.151, 404–406 (2010). ArticlePubMed Google Scholar
Kridel, R. et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood119, 1963–1971 (2012). ArticleCASPubMed Google Scholar
Rossi, D. et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J. Exp. Med.209, 1537–1551 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Kiel, M. J. et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J. Exp. Med.209, 1553–1565 (2012). PubMedPubMed CentralCAS Google Scholar
Gallahan, D., Kozak, C. & Callahan, R. A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J. Virol.61, 218–220 (1987). PubMedPubMed CentralCAS Google Scholar
Reedijk, M. et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res.65, 8530–8537 (2005). ArticleCASPubMed Google Scholar
Reedijk, M. et al. JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Res. Treat.111, 439–448 (2008). ArticleCASPubMed Google Scholar
Pece, S. et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol.167, 215–221 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Robinson, D. R. et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat. Med.17, 1646–1651 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Maraver, A. et al. Therapeutic effect of gamma-secretase inhibition in _Kras_G12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell22, 222–234 (2012). ArticleCASPubMed Google Scholar
Koch, U. & Radtke, F. Notch signaling in solid tumors. Curr. Top. Dev. Biol.92, 411–455 (2010). ArticleCASPubMed Google Scholar
Ranganathan, P., Weaver, K. L. & Capobianco, A. J. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat. Rev. Cancer11, 338–351 (2011). ArticleCASPubMed Google Scholar
Zender, S. et al. A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell23, 784–795 (2013). ArticleCASPubMed Google Scholar