Epigenetic signatures of stem-cell identity (original) (raw)
Chambers, I. & Smith, A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene23, 7150–7160 (2004). ArticleCASPubMed Google Scholar
Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev.19, 1129–1155 (2005). ArticleCASPubMed Google Scholar
Smith, A. G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol.17, 435–462 (2001). ArticleCASPubMed Google Scholar
Pessina, A. & Gribaldo, L. The key role of adult stem cells: therapeutic perspectives. Curr. Med. Res. Opin.22, 2287–2300 (2006). ArticleCASPubMed Google Scholar
Johnson, B. V., Rathjen, J. & Rathjen, P. D. Transcriptional control of pluripotency: decisions in early development. Curr. Opin. Genet. Dev.16, 447–454 (2006). ArticleCASPubMed Google Scholar
Noggle, S. A., James, D. & Brivanlou, A. H. A molecular basis for human embryonic stem cell pluripotency. Stem Cell Rev.1, 111–118 (2005). ArticleCASPubMed Google Scholar
Chambers, I. The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells6, 386–391 (2004). ArticleCASPubMed Google Scholar
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981). ArticleCASPubMed Google Scholar
Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA95, 13726–13731 (1998). ArticleCASPubMedPubMed Central Google Scholar
McLaren, A. & Durcova-Hills, G. Germ cells and pluripotent stem cells in the mouse. Reprod. Fertil. Dev.13, 661–664 (2001). ArticleCASPubMed Google Scholar
Kubota, H. & Brinster, R. L. Technology insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nature Clin. Pract. Endocrinol. Metab.2, 99–108 (2006). ArticleCAS Google Scholar
Nagano, M. et al. Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc. Natl Acad. Sci. USA98, 13090–13095 (2001). ArticleCASPubMedPubMed Central Google Scholar
Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev.12, 2048–2060 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol.11, 1553–1558 (2001). ArticleCASPubMed Google Scholar
Tada, M., Tada, T., Lefebvre, L., Barton, S. C. & Surani, M. A. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J.16, 6510–6520 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002). ArticleCASPubMed Google Scholar
Conti, L., Reitano, E. & Cattaneo, E. Neural stem cell systems: diversities and properties after transplantation in animal models of diseases. Brain Pathol.16, 143–154 (2006). ArticleCASPubMedPubMed Central Google Scholar
Fortunel, N. O. et al. Comment on 'Stemness': transcriptional profiling of embryonic and adult stem cells' and 'A stem cell molecular signature'. Science302, 393 (2003). ArticleCASPubMed Google Scholar
Sato, N. et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol.260, 404–413 (2003). ArticleCASPubMed Google Scholar
Sperger, J. M. et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl Acad. Sci. USA100, 13350–13355 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bhattacharya, B. et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood103, 2956–2964 (2004). ArticleCASPubMed Google Scholar
Ginis, I. et al. Differences between human and mouse embryonic stem cells. Dev. Biol.269, 360–380 (2004). ArticleCASPubMed Google Scholar
Evsikov, A. V. & Solter, D. Comment on 'Stemness': transcriptional profiling of embryonic and adult stem cells' and 'A stem cell molecular signature'. Science302, 393 (2003). ArticleCASPubMed Google Scholar
Ivanova, N. B. et al. Response to Comments on 'Stemness': transcriptional profiling of embryonic and adult stem cells' and 'A stem cell molecular signature'. Science302, 393 (2002). Article Google Scholar
Pritsker, M., Doniger, T. T., Kramer, L. C., Westcot, S. E. & Lemischka, I. R. Diversification of stem cell molecular repertoire by alternative splicing. Proc. Natl Acad. Sci. USA102, 14290–14295 (2005). ArticleCASPubMedPubMed Central Google Scholar
Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science293, 1089–1093 (2001). ArticleCASPubMed Google Scholar
Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodelling: the industrial revolution of DNA around histones. Nature Rev. Mol. Cell Biol.7, 437–447 (2006). ArticleCAS Google Scholar
Mostoslavsky, R., Alt, F. W. & Bassing, C. H. Chromatin dynamics and locus accessibility in the immune system. Nature Immunol.4, 603–606 (2003). ArticleCAS Google Scholar
Donaldson, A. D. Shaping time: chromatin structure and the DNA replication programme. Trends Genet.21, 444–449 (2005). ArticleCASPubMed Google Scholar
Williams, R. R. & Fisher, A. G. Chromosomes, positions please! Nature Cell Biol.5, 388–390 (2003). ArticleCASPubMed Google Scholar
Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet.33, S245–S254 (2003). ArticleCAS Google Scholar
Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet.20, 320–326 (2004). ArticleCASPubMed Google Scholar
Nakatani, Y., Tagami, H. & Shestakova, E. How is epigenetic information on chromatin inherited after DNA replication? Ernst Schering Res. Found. Workshop57, 89–96 (2006). ArticleCAS Google Scholar
Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nature Rev. Genet.7, 395–401 (2006). ArticleCASPubMed Google Scholar
Smale, S. T. The establishment and maintenance of lymphocyte identity through gene silencing. Nature Immunol.4, 607–615 (2003). ArticleCAS Google Scholar
Lyko, F., Beisel, C., Marhold, J. & Paro, R. Epigenetic regulation in Drosophila. Curr. Top. Microbiol. Immunol.310, 23–44 (2006). CASPubMed Google Scholar
Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet.38, 413–443 (2004). ArticleCASPubMed Google Scholar
Arney, K. L. & Fisher, A. G. Epigenetic aspects of differentiation. J. Cell Sci.117, 4355–4363 (2004). ArticleCASPubMed Google Scholar
Wiblin, A. E., Cui, W., Clark, A. J. & Bickmore, W. A. Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells. J. Cell Sci.118, 3861–3868 (2005). ArticleCASPubMed Google Scholar
Williams, R. R. et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J. Cell Sci.119, 132–140 (2006). ArticleCASPubMed Google Scholar
Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell10, 105–116 (2006). This study uses FRAP to analyse the mobility of chromatin proteins in ES cells versus differentiated cells. ArticleCASPubMedPubMed Central Google Scholar
Keohane, A. M., O'Neill, L. P., Belyaev, N. D., Lavender, J. S. & Turner, B. M. X-inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol.180, 618–630 (1996). ArticleCASPubMed Google Scholar
Brown, K. E., Baxter, J., Graf, D., Merkenschlager, M. & Fisher, A. G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell3, 207–217 (1999). ArticleCASPubMed Google Scholar
Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell91, 845–854 (1997). ArticleCASPubMed Google Scholar
Su, R. C. et al. Dynamic assembly of silent chromatin during thymocyte maturation. Nature Genet.36, 502–506 (2004). ArticleCASPubMed Google Scholar
Phair, R. D., Gorski, S. A. & Misteli, T. Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol.375, 393–414 (2004). ArticleCASPubMed Google Scholar
Brown, D. T. Histone H1 and the dynamic regulation of chromatin function. Biochem. Cell Biol.81, 221–227 (2003). ArticleCASPubMed Google Scholar
Phair, R. D. et al. Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol.24, 6393–6402 (2004). ArticleCASPubMedPubMed Central Google Scholar
Perry, P. et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle3, 1645–1650 (2004). ArticleCASPubMed Google Scholar
Hiratani, I., Leskovar, A. & Gilbert, D. M. Differentiation-induced replication-timing changes are restricted to AT-rich/long interspersed nuclear element (LINE)-rich isochores. Proc. Natl Acad. Sci. USA101, 16861–16866 (2004). References54and55demonstrate that developmental genes alter their replication timing upon ES differentiation into neural progenitors. ArticleCASPubMedPubMed Central Google Scholar
Schubeler, D. et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genet.32, 438–442 (2002). ArticleCASPubMed Google Scholar
Azuara, V. et al. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nature Cell Biol.5, 668–674 (2003). ArticleCASPubMed Google Scholar
Lin, C. M., Fu, H., Martinovsky, M., Bouhassira, E. & Aladjem, M. I. Dynamic alterations of replication timing in mammalian cells. Curr. Biol.13, 1019–1028 (2003). ArticleCASPubMed Google Scholar
Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B. J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell10, 1223–1233 (2002). ArticleCASPubMed Google Scholar
Aparicio, J. G., Viggiani, C. J., Gibson, D. G. & Aparicio, O. M. The Rpd3–Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell. Biol.24, 4769–4780 (2004). ArticleCASPubMedPubMed Central Google Scholar
Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol.8, 532–538 (2006). This study shows that in mouse ES cells, but not in differentiated cells, many non-transcribed developmental genes replicate early in S phase and have bivalent chromatin profiles. ArticleCASPubMed Google Scholar
Chaumeil, J., Okamoto, I., Guggiari, M. & Heard, E. Integrated kinetics of X chromosome inactivation in differentiating embryonic stem cells. Cytogenet. Genome Res.99, 75–84 (2002). ArticleCASPubMed Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). This study identifies bivalent chromatin profiles in mouse ES cells using high-resolution ChIP-on-chip analysis. ArticleCASPubMed Google Scholar
Chambeyron, S., Da Silva, N. R., Lawson, K. A. & Bickmore, W. A. Nuclear re-organisation of the HOXB complex during mouse embryonic development. Development132, 2215–2223 (2005). ArticleCASPubMed Google Scholar
Szutorisz, H. et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell. Biol.25, 1804–1820 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev.20, 1123–1136 (2006). ArticleCASPubMedPubMed Central Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006). References67and69show that PcG complexes occupy promoters of repressed developmental genes in human and mouse ES cells. ArticleCASPubMed Google Scholar
Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genet.38, 700–705 (2006). ArticleCASPubMed Google Scholar
Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nature Genet.38, 694–699 (2006). ArticleCASPubMed Google Scholar
Jorgensen, H. F. et al. Stem cells primed for action: polycomb repressive complexes restrain the expression of lineage-specific regulators in embryonic stem cells. Cell Cycle5, 1411–1414 (2006). ArticleCASPubMed Google Scholar
Pera, M. F. & Trounson, A. O. Human embryonic stem cells: prospects for development. Development131, 5515–5525 (2004). ArticleCASPubMed Google Scholar
Schwartz, Y. B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev. Genet.8, 9–22 (2007). ArticleCASPubMed Google Scholar
Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell20, 845–854 (2005). ArticleCASPubMed Google Scholar
de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell7, 663–676 (2004). ArticleCASPubMed Google Scholar
Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature431, 873–878 (2004). ArticleCASPubMed Google Scholar
Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J.25, 3110–3122 (2006). ArticleCASPubMedPubMed Central Google Scholar
Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev.17, 1823–1828 (2003). ArticleCASPubMedPubMed Central Google Scholar
Dellino, G. I. et al. Polycomb silencing blocks transcription initiation. Mol. Cell13, 887–893 (2004). ArticleCASPubMed Google Scholar
Wang, L. et al. Hierarchical recruitment of polycomb group silencing complexes. Mol. Cell14, 637–646 (2004). ArticleCASPubMed Google Scholar
Mohd-Sarip, A. et al. Architecture of a Polycomb nucleoprotein complex. Mol. Cell24, 91–100 (2006). ArticleCASPubMed Google Scholar
Zhang, H. et al. The C. elegans Polycomb gene SOP-2 encodes an RNA binding protein. Mol. Cell14, 841–847 (2004). ArticleCASPubMed Google Scholar
Kim, D. H., Villeneuve, L. M., Morris, K. V. & Rossi, J. J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nature Struct. Mol. Biol.13, 793–797 (2006). ArticleCAS Google Scholar
Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature439, 871–874 (2006). ArticleCASPubMed Google Scholar
Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nature Genet.39, 157–158 (2007). ArticleCASPubMed Google Scholar
Ohm, J. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet.39, 237–242 (2007). ArticleCASPubMed Google Scholar
Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genet.39, 232–236 (2007). ArticleCASPubMed Google Scholar
Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet.38, 431–440 (2006). References90and91show that key regulator genesOct4andNanogbind activated as well as repressed developmental targets in human and mouse ES cells. ArticleCASPubMed Google Scholar
Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell121, 645–657 (2005). ArticleCASPubMed Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCASPubMed Google Scholar
Pritsker, M., Ford, N. R., Jenq, H. T. & Lemischka, I. R. Genomewide gain-of-function genetic screen identifies functionally active genes in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA103, 6946–6951 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gong, Y. et al. NSPc1 is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the RARE element. Nucleic Acids Res.34, 6158–6169 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature442, 533–538 (2006). ArticleCASPubMed Google Scholar
Parrish, J. R., Gulyas, K. D. & Finley, R. L. Jr . Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol.17, 387–393 (2006). ArticleCASPubMed Google Scholar
Wang, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature444, 364–368 (2006). ArticleCASPubMed Google Scholar
O'Neill, L. P., VerMilyea, M. D. & Turner, B. M. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genet.38, 835–841 (2006). ArticleCASPubMed Google Scholar
Dzierzak, E. The emergence of definitive hematopoietic stem cells in the mammal. Curr. Opin. Hematol.12, 197–202 (2005). ArticlePubMed Google Scholar
Park, I. K. et al. BMI-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423, 302–305 (2003). ArticleCASPubMed Google Scholar
Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. BMI-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev.19, 1432–1437 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397, 164–168 (1999). ArticleCASPubMed Google Scholar
Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev.13, 2678–2690 (1999). ArticleCASPubMedPubMed Central Google Scholar
Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425, 962–967 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chagraoui, J. et al. E4F1: a novel candidate factor for mediating BMI1 function in primitive hematopoietic cells. Genes Dev.20, 2110–2120 (2006). ArticleCASPubMedPubMed Central Google Scholar
Fischle, W., Wang, Y. & Allis, C. D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol.15, 172–183 (2003). ArticleCASPubMed Google Scholar
Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet.19, 187–191 (1998). ArticleCASPubMed Google Scholar
Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393, 386–389 (1998). ArticleCASPubMed Google Scholar
Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nature Rev. Genet.3, 662–673 (2002). ArticleCASPubMed Google Scholar
Richards, E. J. & Elgin, S. C. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell108, 489–500 (2002). ArticleCASPubMed Google Scholar
Zhang, J., Xu, F., Hashimshony, T., Keshet, I. & Cedar, H. Establishment of transcriptional competence in early and late S phase. Nature420, 198–202 (2002). ArticleCASPubMed Google Scholar
McNairn, A. J. & Gilbert, D. M. Epigenomic replication: linking epigenetics to DNA replication. BioEssays25, 647–656 (2003). ArticleCASPubMed Google Scholar
Orlando, V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci.25, 99–104 (2000). ArticleCASPubMed Google Scholar
Buck, M. J. & Lieb, J. D. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics83, 349–360 (2004). ArticleCASPubMed Google Scholar
Negre, N., Lavrov, S., Hennetin, J., Bellis, M. & Cavalli, G. Mapping the distribution of chromatin proteins by ChIP on chip. Methods Enzymol.410, 316–341 (2006). ArticleCASPubMed Google Scholar
Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell124, 207–219 (2006). ArticleCASPubMed Google Scholar
Gilbert, N. et al. DNA methylation affects nuclear organisation, histone modifications and linker histone binding but not chromatin compaction. J. Cell Biol. (in the press).