- Lis, J. Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harb. Symp. Quant. Biol. 63, 347–356 (1998).
Article CAS PubMed Google Scholar
- Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008). GRO-seq maps the position, amount and orientation of transcriptionally engaged RNA polymerases genome-wide and shows peaks of promoter-proximal polymerase residing on ~30% of human genes.
Article CAS PubMed PubMed Central Google Scholar
- Gilchrist, D. A. et al. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 143, 540–551 (2010). Global analyses of Pol II pausing and nucleosome occupancy reveal that Pol II and nucleosomes compete for promoter occupancy to regulate gene expression coordinately.
Article CAS PubMed PubMed Central Google Scholar
- Lee, C. et al. NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol. Cell. Biol. 28, 3290–3300 (2008). Comprehensive analysis of promoter-associated Pol II in D. melanogaster using ChIP–chip and permanganate footprinting demonstrates that NELF-mediated pausing of Pol II is common in D. melanogaster.
Article CAS PubMed PubMed Central Google Scholar
- Min, I. M. et al. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev. 25, 742–754 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Muse, G. W. et al. RNA polymerase is poised for activation across the genome. Nature Genet. 39, 1507–1511 (2007). Genome-wide Pol II ChIP–chip assays, coupled with permanganate footprinting and genetic manipulation of NELF, indicated that Pol II pausing is widespread in D. melanogaster.
Article CAS PubMed Google Scholar
- Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010).
Article CAS PubMed Google Scholar
- Rahl, P. B. et al. c-Myc tegulates transcriptional pause release. Cell 141, 432–445 (2010). Investigation of transcription factor MYC reveals its important role in releasing paused Pol II through recruitment of P-TEFb.
Article CAS PubMed PubMed Central Google Scholar
- Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genet. 39, 1512–1516 (2007). Genome-wide Pol II ChIP–chip assays indicated that Pol II pausing is widespread during early embryonic development in D. melanogaster.
Article CAS PubMed Google Scholar
- Fraser, N. W., Sehgal, P. B. & Darnell, J. E. DRB-induced premature termination of late adenovirus transcription. Nature 272, 590–593 (1978).
Article CAS PubMed Google Scholar
- Gariglio, P., Bellard, M. & Chambon, P. Clustering of RNA polymerase B molecules in the 5′ moiety of the adult beta-globin gene of hen erythrocytes. Nucleic Acids Res. 9, 2589–2598 (1981).
Article CAS PubMed PubMed Central Google Scholar
- Gilmour, D. S. & Lis, J. T. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell. Biol. 6, 3984–3989 (1986).
Article CAS PubMed PubMed Central Google Scholar
- Rougvie, A. E. & Lis, J. T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795–804 (1988). Nuclear run-on assays demonstrate that the Pol II complex associated with the Hsp70 promoter is transcriptionally engaged but is unable to penetrate further into the gene without heat shock induction.
Article CAS PubMed Google Scholar
- Giardina, C., Perez-Riba, M. & Lis, J. T. Promoter melting and TFIID complexes on Drosophila genes in vivo. Genes Dev. 6, 2190–2200 (1992).
Article CAS PubMed Google Scholar
- Rasmussen, E. B. & Lis, J. T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl Acad. Sci. USA 90, 7923–7927 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Grayhack, E. J., Yang, X. J., Lau, L. F. & Roberts, J. W. Phage lambda gene Q antiterminator recognizes RNA polymerase near the promoter and accelerates it through a pause site. Cell 42, 259–269 (1985).
Article CAS PubMed Google Scholar
- Rougvie, A. E. & Lis, J. T. Postinitiation transcriptional control in Drosophila melanogaster. Mol. Cell. Biol. 10, 6041–6045 (1990).
Article CAS PubMed PubMed Central Google Scholar
- Law, A., Hirayoshi, K., O'Brien, T. & Lis, J. T. Direct cloning of DNA that interacts in vivo with a specific protein: application to RNA polymerase II and sites of pausing in Drosophila. Nucleic Acids Res. 26, 919–924 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Strobl, L. J. & Eick, D. Hold back of RNA polymerase II at the transcription start site mediates down-regulation of c-Myc in vivo. EMBO J. 11, 3307–3314 (1992).
Article CAS PubMed PubMed Central Google Scholar
- Krumm, A., Meulia, T., Brunvand, M. & Groudine, M. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev. 6, 2201–2213 (1992).
- Plet, A., Eick, D. & Blanchard, J. M. Elongation and premature termination of transcripts initiated from c-Fos and c-Myc promoters show dissimilar patterns. Oncogene 10, 319–328 (1995).
CAS PubMed Google Scholar
- Kao, S. Y., Calman, A. F., Luciw, P. A. & Peterlin, B. M. Anti-termination of transcription within the long terminal repeat of HIV-1 by Tat gene product. Nature 330, 489–493 (1987).
Article CAS PubMed Google Scholar
- Stargell, L. A. & Struhl, K. Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet. 12, 311–315 (1996).
Article CAS PubMed Google Scholar
- Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).
Article CAS PubMed Google Scholar
- Steinmetz, E. J. et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24, 735–746 (2006).
Article CAS PubMed Google Scholar
- Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Larschan, E. et al. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471, 115–118 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Kephart, D. D., Marshall, N. F. & Price, D. H. Stability of Drosophila RNA polymerase II elongation complexes in vitro. Mol. Cell. Biol. 12, 2067–2077 (1992).
Article CAS PubMed PubMed Central Google Scholar
- Nechaev, S. & Adelman, K. Promoter-proximal Pol II: when stalling speeds things up. Cell Cycle 7, 1539–1544 (2008).
Article CAS PubMed Google Scholar
- Hargreaves, D. C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).
Article CAS PubMed Google Scholar
- Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).
Article CAS PubMed Google Scholar
- Gromak, N., West, S. & Proudfoot, N. J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3996 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Proudfoot, N. J. Ending the message: poly(A) signals then and now. Genes Dev. 25, 1770–1782 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K. M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571–581 (2010).
Article CAS PubMed Google Scholar
- de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).
Article CAS PubMed Google Scholar
- Juven-Gershon, T. & Kadonaga, J. T. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev. Biol. 339, 225–229 (2010).
Article CAS PubMed Google Scholar
- Roeder, R. G. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett. 579, 909–915 (2005).
Article CAS PubMed Google Scholar
- Marshall, N. F. & Price, D. H. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol. Cell. Biol. 12, 2078–2090 (1992).
Article CAS PubMed PubMed Central Google Scholar
- Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999). Biochemical assays reveal the presence and identity of the NELF complex and elucidate its role in inhibiting early transcription elongation.
Article CAS PubMed Google Scholar
- Narita, T. et al. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex. Mol. Cell. Biol. 23, 1863–1873 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Cheng, B. et al. Functional association of Gdown1 with RNA polymerase II poised on human genes. Mol. Cell 45, 38–50 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Brannan, K. et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell 46, 311–324 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Marshall, N. F. & Price, D. H. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270, 12335–12338 (1995). This pioneering paper describes the purification and characterization of the kinase P-TEFb.
Article CAS PubMed Google Scholar
- Wada, T., Takagi, T., Yamaguchi, Y., Watanabe, D. & Handa, H. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17, 7395–7403 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Czudnochowski, N., Bosken, C. A. & Geyer, M. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nature Commun. 3, 842 (2012).
Article CAS Google Scholar
- Jang, M. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).
Article CAS PubMed Google Scholar
- Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).
Article CAS PubMed Google Scholar
- Barboric, M., Nissen, R. M., Kanazawa, S., Jabrane-Ferrat, N. & Peterlin, B. M. NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol. Cell 8, 327–337 (2001).
Article CAS PubMed Google Scholar
- Eberhardy, S. & Farnham, P. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).
Article CAS PubMed Google Scholar
- Takahashi, H. et al. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146, 92–104 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Mueller, D. et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110, 4445–4454 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Lin, C. et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 37, 429–437 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Sobhian, B. et al. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol. Cell 38, 439–451 (2010).
Article CAS PubMed PubMed Central Google Scholar
- He, N. et al. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol. Cell 38, 428–438 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Ni, Z. et al. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Mol. Cell. Biol. 28, 1161–1170 (2008).
Article CAS PubMed Google Scholar
- Workman, J. L. Nucleosome displacement in transcription. Genes Dev. 20, 2009–2017 (2006).
Article CAS PubMed Google Scholar
- Boeger, H., Griesenbeck, J., Strattan, J. S. & Kornberg, R. D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598 (2003).
Article CAS PubMed Google Scholar
- Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607 (2003).
Article CAS PubMed Google Scholar
- Wu, C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286, 854–860 (1980).
Article CAS PubMed Google Scholar
- Costlow, N. & Lis, J. T. High-resolution mapping of DNase I-hypersensitive sites of Drosophila heat shock genes in Drosophila melanogaster and Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1853–1863 (1984).
Article CAS PubMed PubMed Central Google Scholar
- Shopland, L. S., Hirayoshi, K., Fernandes, M. & Lis, J. T. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev. 9, 2756–2769 (1995).
Article CAS PubMed Google Scholar
- Gilchrist, D. A. et al. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 22, 1921–1933 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Leibovitch, B. A. et al. GAGA factor and the TFIID complex collaborate in generating an open chromatin structure at the Drosophila melanogaster hsp26 promoter. Mol. Cell. Biol. 22, 6148–6157 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Lee, H., Kraus, K. W., Wolfner, M. F. & Lis, J. T. DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev. 6, 284–295 (1992).
Article CAS PubMed Google Scholar
- Iyer, V. & Struhl, K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 14, 2570–2579 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).
Article CAS PubMed Google Scholar
- Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Rev. Genet. 13, 484–492 (2012).
Article CAS PubMed Google Scholar
- Tillo, D. et al. High nucleosome occupancy is encoded at human regulatory sequences. PLoS ONE 5, e9129 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Valouev, A. et al. Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Gilchrist, D. A. & Adelman, K. Coupling polymerase pausing and chromatin landscapes for precise regulation of transcription. Biochim. Biophys. Acta 1819, 700–706 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).
Article CAS PubMed Google Scholar
- Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Chopra, V. S. et al. The polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo. Mol. Cell 42, 837–844 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Weake, V. & Workman, J. Inducible gene expression: diverse regulatory mechanisms. Nature Rev. Genet. 11, 426–437 (2010).
Article CAS PubMed Google Scholar
- Bryant, G. O. & Ptashne, M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol. Cell 11, 1301–1309 (2003).
Article CAS PubMed Google Scholar
- Yudkovsky, N., Ranish, J. A. & Hahn, S. A transcription reinitiation intermediate that is stabilized by activator. Nature 408, 225–229 (2000).
Article CAS PubMed Google Scholar
- Bai, L., Charvin, G., Siggia, E. D. & Cross, F. R. Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. Dev. Cell 18, 544–555 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Hendrix, D. A., Hong, J. W., Zeitlinger, J., Rokhsar, D. S. & Levine, M. S. Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc. Natl Acad. Sci. USA 105, 7762–7767 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Boettiger, A. N. & Levine, M. Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 325, 471–473 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Aida, M. et al. Transcriptional pausing caused by NELF plays a dual role in regulating immediate-early expression of the junB gene. Mol. Cell. Biol. 26, 6094–6104 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Adelman, K. et al. Immediate mediators of the inflammatory response are poised for gene activation through RNA polymerase II stalling. Proc. Natl Acad. Sci. USA 106, 18207–18212 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Nissen, R. M. & Yamamoto, K. R. The glucocorticoid receptor inhibits NFκB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 14, 2314–2329 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Kininis, M. et al. Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol. Cell. Biol. 27, 5090–5104 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Lin, C. et al. Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes Dev. 25, 1486–1498 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Gilchrist, D. A. et al. Regulating the regulators: the pervasive effects of Pol II pausing on stimulus-responsive gene networks. Genes Dev. 26, 933–944 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Blau, J. et al. Three functional classes of transcriptional activation domain. Mol. Cell. Biol. 16, 2044–2055 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Egloff, S., Dienstbier, M. & Murphy, S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet. 28, 333–341 (2012).
Article CAS PubMed Google Scholar
- Ghosh, A., Shuman, S. & Lima, C. D. Structural insights to how mammalian capping enzyme reads the CTD code. Mol. Cell 43, 299–310 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Mandal, S. S. et al. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc. Natl Acad. Sci. USA 101, 7572–7577 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).
Article CAS PubMed Google Scholar
- Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Levine, M. Paused, R. N. A. Polymerase II as a developmental checkpoint. Cell 145, 502–511 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Gould, T. J., Verkhusha, V. V. & Hess, S. T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nature Protoc. 4, 291–308 (2009).
Article CAS Google Scholar
- Rasmussen, E. B. & Lis, J. T. Short transcripts of the ternary complex provide insight into RNA polymerase II elongational pausing. J. Mol. Biol. 252, 522–535 (1995).
Article CAS PubMed Google Scholar