The impact of whole-genome sequencing on the reconstruction of human population history (original) (raw)
Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, 1994). Google Scholar
Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature325, 31–36 (1987). ArticleCASPubMed Google Scholar
Rosenberg, N. A. & Nordborg, M. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature Rev. Genet.3, 380–390 (2002). ArticleCASPubMed Google Scholar
Rosenberg, N. A. et al. Genetic structure of human populations. Science298, 2381–2385 (2002). ArticleCASPubMed Google Scholar
Novembre, J. & Ramachandran, S. Perspectives on human population structure at the cusp of the sequencing era. Annu. Rev. Genom. Hum. Genet.12, 245–274 (2011). ArticleCAS Google Scholar
Lachance, J. & Tishkoff, S. A. SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. Bioessays35, 780–786 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sousa, V. & Hey, J. Understanding the origin of species with genome-scale data: modelling gene flow. Nature Rev. Genet.14, 404–414 (2013). This is an excellent overview of methods for analysing genome-wide data for inferring population genetic parameters and demographic history. ArticleCASPubMed Google Scholar
Underhill, P. A. & Kivisild, T. Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations. Annu. Rev. Genet.41, 539–564 (2007). ArticleCASPubMed Google Scholar
Nielsen, R. & Beaumont, M. A. Statistical inferences in phylogeography. Mol. Ecol.18, 1034–1047 (2009). ArticleCASPubMed Google Scholar
Stringer, C. B. & Andrews, P. Genetic and fossil evidence for the origin of modern humans. Science239, 1263–1268 (1988). ArticleCASPubMed Google Scholar
Wolpoff, M. H., Wu, X. Z. & Thorne, A. in The Origin of Modern Humans: a World Survey of the Fossil Evidence (eds Smith, F. H. & Spence, F.) 411–483 (John Wiley & Sons, 1984). Google Scholar
Ingman, M., Kaessmann, H., Paabo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature408, 708–713 (2000). ArticleCASPubMed Google Scholar
Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. African populations and the evolution of human mitochondrial DNA. Science253, 1503–1507 (1991). ArticleCASPubMed Google Scholar
Thomson, R., Pritchard, J. K., Shen, P., Oefner, P. J. & Feldman, M. W. Recent common ancestry of human Y chromosomes: evidence from DNA sequence data. Proc. Natl Acad. Sci. USA97, 7360–7365 (2000). ArticleCASPubMedPubMed Central Google Scholar
Underhill, P. A. et al. Y chromosome sequence variation and the history of human populations. Nature Genet.26, 358–361 (2000). ArticleCASPubMed Google Scholar
Hawks, J. D. & Wolpoff, M. H. The four faces of Eve: hypothesis compatibility and human origins. Quatern. Int.75, 41–50 (2001). Article Google Scholar
Wall, J. D. Detecting ancient admixture in humans using sequence polymorphism data. Genetics154, 1271–1279 (2000). CASPubMedPubMed Central Google Scholar
Currat, M. & Excoffier, L. Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol.2, e421 (2004). ArticleCASPubMedPubMed Central Google Scholar
Garrigan, D., Mobasher, Z., Kingan, S. B., Wilder, J. A. & Hammer, M. F. Deep haplotype divergence and long-range linkage disequilibrium at xp21.1 provide evidence that humans descend from a structured ancestral population. Genetics170, 1849–1856 (2005). ArticleCASPubMedPubMed Central Google Scholar
Prugnolle, F., Manica, A. & Balloux, F. Geography predicts neutral genetic diversity of human populations. Curr. Biol.15, R159–R160 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ramachandran, S. et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl Acad. Sci. USA102, 15942–15947 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature451, 998–1003 (2008). ArticleCASPubMed Google Scholar
Templeton, A. R. Genetics and recent human evolution. Evolution61, 1507–1519 (2007). ArticlePubMed Google Scholar
DeGiorgio, M., Jakobsson, M. & Rosenberg, N. A. Explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc. Natl Acad. Sci. USA106, 16057–16062 (2009). ArticlePubMedPubMed Central Google Scholar
Hammer, M. F., Woerner, A. E., Mendez, F. L., Watkins, J. C. & Wall, J. D. Genetic evidence for archaic admixture in Africa. Proc. Natl Acad. Sci. USA108, 15123–15128 (2011). ArticlePubMedPubMed Central Google Scholar
Wall, J. D., Lohmueller, K. E. & Plagnol, V. Detecting ancient admixture and estimating demographic parameters in multiple human populations. Mol. Biol. Evol.26, 1823–1827 (2009). ArticleCASPubMedPubMed Central Google Scholar
Green, R. E. et al. A draft sequence of the Neandertal genome. Science328, 710–722 (2010). This study presents the first archaic human genome, which represents a key advance in ancient-DNA-sequencing technology. ArticleCASPubMedPubMed Central Google Scholar
Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature468, 1053–1060 (2010). The study is the first to use ancient-DNA-sequencing technology to identify a hominin lineage that was not previously known to exist. ArticleCASPubMedPubMed Central Google Scholar
Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol.28, 2239–2252 (2011). ArticleCASPubMedPubMed Central Google Scholar
Eriksson, A. & Manica, A. Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proc. Natl Acad. Sci. USA109, 13956–13960 (2012). ArticlePubMedPubMed Central Google Scholar
Sankararaman, S., Patterson, N., Li, H., Paabo, S. & Reich, D. The date of interbreeding between Neandertals and modern humans. PLoS Genet.8, e1002947 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yang, M. A., Malaspinas, A. S., Durand, E. Y. & Slatkin, M. Ancient structure in Africa unlikely to explain Neanderthal and non-African genetic similarity. Mol. Biol. Evol.29, 2987–2995 (2012). ArticleCASPubMedPubMed Central Google Scholar
Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature464, 894–897 (2010). ArticleCASPubMed Google Scholar
Mendez, F. L., Watkins, J. C. & Hammer, M. F. Global genetic variation at OAS1 provides evidence of archaic admixture in Melanesian populations. Mol. Biol. Evol.29, 1513–1520 (2012). ArticleCASPubMed Google Scholar
Prufer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature505, 43–49 (2013). This study sequenced the first high coverage Neanderthal genome, which provides evidence for complex models of archaic admixture in hominin evolution. ArticleCASPubMedPubMed Central Google Scholar
Alves, I., Sramkova Hanulova, A., Foll, M. & Excoffier, L. Genomic data reveal a complex making of humans. PLoS Genet.8, e1002837 (2012). This is an overview of previous and current models for the origins of AMHs that include archaic interbreeding and introgression. ArticleCASPubMedPubMed Central Google Scholar
Lahr, M. M. & Foley, R. Multiple dispersals and modern human origins. Evol. Anthropol.3, 48–60 (1994). Article Google Scholar
Macaulay, V. et al. Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science308, 1034–1036 (2005). ArticleCASPubMed Google Scholar
Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science334, 94–98 (2011). This study obtained good coverage next-generation sequencing data from a 100-year-old lock of hair that provided evidence for multiple waves of migration into Eurasia. ArticleCASPubMedPubMed Central Google Scholar
Wollstein, A. et al. Demographic history of Oceania inferred from genome-wide data. Curr. Biol.20, 1983–1992 (2010). ArticleCASPubMed Google Scholar
Shi, W. et al. A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations. Mol. Biol. Evol.27, 385–393 (2010). ArticleCASPubMed Google Scholar
Liu, H., Prugnolle, F., Manica, A. & Balloux, F. A geographically explicit genetic model of worldwide human-settlement history. Am. J. Hum. Genet.79, 230–237 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gravel, S. et al. Demographic history and rare allele sharing among human populations. Proc. Natl Acad. Sci. USA108, 11983–11988 (2011). ArticlePubMedPubMed Central Google Scholar
Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nature Genet.43, 1031–1034 (2011). ArticleCASPubMed Google Scholar
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature475, 493–496 (2011). This is one of the first methods to incorporate recombination for analysing WGS data. ArticleCASPubMedPubMed Central Google Scholar
Conrad, D. F. et al. Variation in genome-wide mutation rates within and between human families. Nature Genet.43, 712–714 (2011). ArticleCASPubMed Google Scholar
Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nature Rev. Genet.13, 745–753 (2012). This is an excellent opinion piece that describes the implications for current models of human population history given new estimates of the mutation rate based on second-generation sequencing data. ArticleCASPubMed Google Scholar
Petraglia, M. et al. Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science317, 114–116 (2007). ArticleCASPubMed Google Scholar
Pagani, L. et al. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am. J. Hum. Genet.91, 83–96 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wood, E. T. et al. Contrasting patterns of Y chromosome and mtDNA variation in Africa: evidence for sex-biased demographic processes. Eur. J. Hum. Genet.13, 867–876 (2005). ArticleCASPubMed Google Scholar
Henn, B. M. et al. Hunter-gatherer genomic diversity suggests a southern African origin for modern humans. Proc. Natl Acad. Sci. USA108, 5154–5162 (2011). ArticlePubMedPubMed Central Google Scholar
Schlebusch, C. M. et al. Genomic variation in seven Khoe–San groups reveals adaptation and complex African history. Science338, 374–379 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tishkoff, S. A. et al. History of click-speaking populations of Africa inferred from mtDNA and Y chromosome genetic variation. Mol. Biol. Evol.24, 2180–2195 (2007). ArticleCASPubMed Google Scholar
Veeramah, K. R. et al. An early divergence of KhoeSan ancestors from those of other modern humans is supported by an ABC-based analysis of autosomal resequencing data. Mol. Biol. Evol.29, 617–630 (2012). ArticleCASPubMed Google Scholar
Lachance, J. et al. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell150, 457–469 (2012). This paper publishes the first set of high coverage African genomes. ArticleCASPubMedPubMed Central Google Scholar
Pickrell, J. K. et al. The genetic prehistory of southern Africa. Nature Commun.3, 1143 (2012). ArticleCAS Google Scholar
Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet.8, e1002967 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rightmire, G. P. Out of Africa: modern human origins special feature: middle and later Pleistocene hominins in Africa and Southwest Asia. Proc. Natl Acad. Sci. USA106, 16046–16050 (2009). ArticleCASPubMedPubMed Central Google Scholar
Campana, M. G., Bower, M. A. & Crabtree, P. J. Ancient DNA for the archaeologist: the future of African research. Afr. Archaeol. Rev.30, 21–37 (2013). Article Google Scholar
Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature479, 525–528 (2011). ArticleCASPubMed Google Scholar
Higham, T. et al. The earliest evidence for anatomically modern humans in northwestern Europe. Nature479, 521–524 (2011). ArticleCASPubMed Google Scholar
Stewart, J. R. & Stringer, C. B. Human evolution out of Africa: the role of refugia and climate change. Science335, 1317–1321 (2012). ArticleCASPubMed Google Scholar
Pinhasi, R., Thomas, M. G., Hofreiter, M., Currat, M. & Burger, J. The genetic history of Europeans. Trends Genet.28, 496–505 (2012). This is a thorough review of the use of genetic data from both ancient and contemporary samples for inferring the population history of Europe. ArticleCASPubMed Google Scholar
Menozzi, P., Piazza, A. & Cavalli-Sforza, L. Synthetic maps of human gene frequencies in Europeans. Science201, 786–792 (1978). ArticleCASPubMed Google Scholar
Novembre, J. & Stephens, M. Interpreting principal component analyses of spatial population genetic variation. Nature Genet.40, 646–649 (2008). ArticleCASPubMed Google Scholar
Barbujani, G., Bertorelle, G. & Chikhi, L. Evidence for Paleolithic and Neolithic gene flow in Europe. Am. J. Hum. Genet.62, 488–492 (1998). ArticleCASPubMedPubMed Central Google Scholar
Richards, M. B., Macaulay, V. A., Bandelt, H. J. & Sykes, B. C. Phylogeography of mitochondrial DNA in western Europe. Ann. Hum. Genet.62, 241–260 (1998). ArticleCASPubMed Google Scholar
Simoni, L., Calafell, F., Pettener, D., Bertranpetit, J. & Barbujani, G. Geographic patterns of mtDNA diversity in Europe. Am. J. Hum. Genet.66, 262–278 (2000). ArticleCASPubMed Google Scholar
Chikhi, L., Nichols, R. A., Barbujani, G. & Beaumont, M. A. Y genetic data support the Neolithic demic diffusion model. Proc. Natl Acad. Sci. USA99, 11008–11013 (2002). ArticleCASPubMedPubMed Central Google Scholar
Semino, O. et al. The genetic legacy of Paleolithic Homo sapiens sapiens in extant Europeans: a Y chromosome perspective. Science290, 1155–1159 (2000). ArticleCASPubMed Google Scholar
Belle, E. M., Landry, P. A. & Barbgv ujani, G. Origins and evolution of the Europeans' genome: evidence from multiple microsatellite loci. Proc. Biol. Sci.273, 1595–1602 (2006). ArticleCASPubMedPubMed Central Google Scholar
Auton, A. et al. Global distribution of genomic diversity underscores rich complex history of continental human populations. Genome Res.19, 795–803 (2009). ArticleCASPubMedPubMed Central Google Scholar
Botigue, L. R. et al. Gene flow from North Africa contributes to differential human genetic diversity in southern Europe. Proc. Natl Acad. Sci. USA110, 11791–11796 (2013). ArticlePubMedPubMed Central Google Scholar
Lacan, M., Keyser, C., Crubezy, E. & Ludes, B. Ancestry of modern Europeans: contributions of ancient DNA. Cell. Mol. Life Sci.70, 2473–2487 (2013). ArticleCASPubMed Google Scholar
Bramanti, B. et al. Genetic discontinuity between local hunter-gatherers and central Europe's first farmers. Science326, 137–140 (2009). ArticleCASPubMed Google Scholar
Malmstrom, H. et al. Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Curr. Biol.19, 1758–1762 (2009). ArticleCASPubMed Google Scholar
Brandt, G. et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science342, 257–261 (2013). ArticleCASPubMedPubMed Central Google Scholar
Brotherton, P. et al. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nature Commun.4, 1764 (2013). ArticleCAS Google Scholar
Haak, W. et al. Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol.8, e1000536 (2010). ArticleCASPubMedPubMed Central Google Scholar
Haak, W. et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science310, 1016–1018 (2005). CASPubMed Google Scholar
Hervella, M. et al. Ancient DNA from hunter-gatherer and farmer groups from northern Spain supports a random dispersion model for the Neolithic expansion into Europe. PLoS ONE7, e34417 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sampietro, M. L. et al. Palaeogenetic evidence supports a dual model of Neolithic spreading into Europe. Proc. Biol. Sci.274, 2161–2167 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lacan, M. et al. Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. Proc. Natl Acad. Sci. USA108, 9788–9791 (2011). ArticlePubMedPubMed Central Google Scholar
Keller, A. et al. New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing. Nature Commun.3, 698 (2012). This paper reports the whole-genome sequence of the enigmatic Tyrolean Iceman. ArticleCAS Google Scholar
Veeramah, K. R. et al. Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic diversity. Eur. J. Hum. Genet.19, 995–1001 (2011). ArticlePubMedPubMed Central Google Scholar
Sanchez-Quinto, F. et al. Genomic affinities of two 7,000-year-old Iberian hunter-gatherers. Curr. Biol.22, 1494–1499 (2012). ArticleCASPubMed Google Scholar
Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science336, 466–469 (2012). This study generates the first autosomal sequence data using second-generation sequencing methods from ancient hunter-gatherer and farming groups in Europe. ArticleCASPubMed Google Scholar
Wilson, J. F. et al. Genetic evidence for different male and female roles during cultural transitions in the British Isles. Proc. Natl Acad. Sci. USA98, 5078–5083 (2001). ArticleCASPubMedPubMed Central Google Scholar
O'Rourke, D. H. & Raff, J. A. The human genetic history of the Americas: the final frontier. Curr. Biol.20, R202–R207 (2010). ArticleCASPubMed Google Scholar
Dillehay, T. D. Monte Verde, a Late Pleistocene Settlement in Chile (Smithsonian Institution Press, 1989). Google Scholar
Greenberg, J. H., Turner, C. G. & Zegura, S. L. The settlement of the America — a comparison of the linguistic, dental, and genetic-evidence. Curr. Anthropol.27, 477–497 (1986). Article Google Scholar
Fagundes, N. J. et al. Mitochondrial population genomics supports a single pre-Clovis origin with a coastal route for the peopling of the Americas. Am. J. Hum. Genet.82, 583–592 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zegura, S. L., Karafet, T. M., Zhivotovsky, L. A. & Hammer, M. F. High-resolution SNPs and microsatellite haplotypes point to a single, recent entry of Native American Y chromosomes into the Americas. Mol. Biol. Evol.21, 164–175 (2004). ArticleCASPubMed Google Scholar
Ray, N. et al. A statistical evaluation of models for the initial settlement of the American continent emphasizes the importance of gene flow with Asia. Mol. Biol. Evol.27, 337–345 (2010). ArticleCASPubMed Google Scholar
Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature463, 757–762 (2010). This paper publishes the first ancient human genome. ArticleCASPubMedPubMed Central Google Scholar
Reich, D. et al. Reconstructing Native American population history. Nature488, 370–374 (2012). This is a comprehensive study of genome-wide SNP variation that provided support for a three-wave model for the early peopling of the Americas. ArticleCASPubMedPubMed Central Google Scholar
Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Naturehttp://dx.doi.org/10.1038/nature12736 (2013). This recent WGS study of a 24,000-year-old specimen shows how genetic ancestry can vary over time in a given geographical region.
Raff, J. A., Bolnick, D. A., Tackney, J. & O'Rourke, D. H. Ancient DNA perspectives on American colonization and population history. Am. J. Phys. Anthropol.146, 503–514 (2011). ArticlePubMed Google Scholar
Gilbert, M. T. et al. DNA from pre-Clovis human coprolites in Oregon, North America. Science320, 786–789 (2008). ArticleCASPubMed Google Scholar
Stoneking, M. & Krause, J. Learning about human population history from ancient and modern genomes. Nature Rev. Genet.12, 603–614 (2011). This is an excellent review of the theory and the practice of ancient DNA sequencing using second-generation methods as applied to human populations. ArticleCASPubMed Google Scholar
Pool, J. E., Hellmann, I., Jensen, J. D. & Nielsen, R. Population genetic inference from genomic sequence variation. Genome Res.20, 291–300 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nielsen, R., Korneliussen, T., Albrechtsen, A., Li, Y. & Wang, J. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS ONE7, e37558 (2012). ArticleCASPubMedPubMed Central Google Scholar
Keightley, P. D. & Halligan, D. L. Inference of site frequency spectra from high-throughput sequence data: quantification of selection on nonsynonymous and synonymous sites in humans. Genetics188, 931–940 (2011). ArticlePubMedPubMed Central Google Scholar
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics27, 2987–2993 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hellmann, I. et al. Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals. Genome Res.18, 1020–1029 (2008). ArticleCASPubMedPubMed Central Google Scholar
Johnson, P. L. & Slatkin, M. Accounting for bias from sequencing error in population genetic estimates. Mol. Biol. Evol.25, 199–206 (2008). ArticleCASPubMed Google Scholar
Lynch, M. Estimation of nucleotide diversity, disequilibrium coefficients, and mutation rates from high-coverage genome-sequencing projects. Mol. Biol. Evol.25, 2409–2419 (2008). ArticleCASPubMedPubMed Central Google Scholar
Luca, F., Hudson, R. R., Witonsky, D. B. & Di Rienzo, A. A reduced representation approach to population genetic analyses and applications to human evolution. Genome Res.21, 1087–1098 (2011). ArticleCASPubMedPubMed Central Google Scholar
Futschik, A. & Schlotterer, C. The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics186, 207–218 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gautier, M. et al. Estimation of population allele frequencies from next-generation sequencing data: pool-versus individual-based genotyping. Mol. Ecol.22, 3766–3779 (2013). ArticleCASPubMed Google Scholar
Mailund, T. et al. A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLoS Genet.8, e1003125 (2012). ArticlePubMedPubMed Central Google Scholar
Sheehan, S., Harris, K. & Song, Y. S. Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach. Genetics194, 647–662 (2013) ArticlePubMedPubMed Central Google Scholar
McVean, G. A. & Cardin, N. J. Approximating the coalescent with recombination. Phil. Trans. R. Soc. B360, 1387–1393 (2005). This seminal paper describes an algorithm for characterizing sequence evolution along a genome, which forms the basis of emerging methodologies for inferring population history using WGS data. ArticleCASPubMedPubMed Central Google Scholar
Palamara, P. F., Lencz, T., Darvasi, A. & Pe'er, I. Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet.91, 809–822 (2012). ArticleCASPubMedPubMed Central Google Scholar
Browning, S. R. & Browning, B. L. Haplotype phasing: existing methods and new developments. Nature Rev. Genet.12, 703–714 (2011). ArticleCASPubMed Google Scholar
Kitzman, J. O. et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nature Biotech.29, 59–63 (2011). ArticleCAS Google Scholar
English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE7, e47768 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schneider, G. F. & Dekker, C. DNA sequencing with nanopores. Nature Biotech.30, 326–328 (2012). ArticleCAS Google Scholar
Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature499, 74–78 (2013). ArticleCASPubMed Google Scholar
Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature Genet.45, 1176–1182 (2013). ArticleCASPubMed Google Scholar
Mane, S. P. et al. Host-interactive genes in Amerindian Helicobacter pylori diverge from their Old World homologs and mediate inflammatory responses. J. Bacteriol.192, 3078–3092 (2010). ArticleCASPubMedPubMed Central Google Scholar
Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet.89, 516–528 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cox, M. P., Karafet, T. M., Lansing, J. S., Sudoyo, H. & Hammer, M. F. Autosomal and X-linked single nucleotide polymorphisms reveal a steep Asian–Melanesian ancestry cline in eastern Indonesia and a sex bias in admixture rates. Proc. Biol. Sci.277, 1589–1596 (2010). ArticleCASPubMedPubMed Central Google Scholar
Xu, S. et al. Genetic dating indicates that the Asian–Papuan admixture through Eastern Indonesia corresponds to the Austronesian expansion. Proc. Natl Acad. Sci. USA109, 4574–4579 (2012). ArticlePubMedPubMed Central Google Scholar
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA110, 2223–2227 (2013). ArticlePubMedPubMed Central Google Scholar
Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. Genetics156, 297–304 (2000). CASPubMedPubMed Central Google Scholar
Awadalla, P. et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet.87, 316–324 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nelson, M. R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science337, 100–104 (2012). ArticleCASPubMed Google Scholar
Knapp, M. & Hofreiter, M. Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes1, 227–243 (2010). ArticleCASPubMedPubMed Central Google Scholar
Maricic, T., Whitten, M. & Paabo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE5, e14004 (2010). ArticleCASPubMedPubMed Central Google Scholar
Axelsson, E., Willerslev, E., Gilbert, M. T. & Nielsen, R. The effect of ancient DNA damage on inferences of demographic histories. Mol. Biol. Evol.25, 2181–2187 (2008). ArticleCASPubMed Google Scholar
Rambaut, A., Ho, S. Y., Drummond, A. J. & Shapiro, B. Accommodating the effect of ancient DNA damage on inferences of demographic histories. Mol. Biol. Evol.26, 245–248 (2009). ArticleCASPubMed Google Scholar
Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res.38, e87 (2010). ArticleCASPubMed Google Scholar
Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics29, 1682–1684 (2013). ArticleCASPubMedPubMed Central Google Scholar
Barbujani, G. & Goldstein, D. B. Africans and Asians abroad: genetic diversity in Europe. Annu. Rev. Genom. Hum. Genet.5, 119–150 (2004). ArticleCAS Google Scholar