Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation (original) (raw)
von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol.3, 867–878 (2003). ArticleCAS Google Scholar
Butcher, E. C. Leukocyte-endothelial cell recognition — three (or more) steps to specificity and diversity. Cell67, 1033–1036 (1991). ArticleCASPubMed Google Scholar
Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol.57, 827–872 (1995). ArticleCASPubMed Google Scholar
Thatte, J., Dabak, V., Williams, M. B., Braciale, T. J. & Ley, K. LFA-1 is required for retention of effector CD8 T cells in mouse lungs. Blood101, 4916–4922 (2003). ArticleCASPubMed Google Scholar
Haddad, W. et al. P-selectin and P-selectin glycoprotein ligand 1 are major determinants for TH1 cell recruitment to nonlymphoid effector sites in the intestinal lamina propria. J. Exp. Med.198, 369–377 (2003). ArticleCASPubMedPubMed Central Google Scholar
Picker, L. J., Michie, S. A., Rott, L. S. & Butcher, E. C. A unique phenotype of skin-associated lymphocytes in humans. Am. J. Pathol.136, 1053 (1990). CASPubMedPubMed Central Google Scholar
Ransohoff, R. M., Kivisakk, P. & Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nature Rev. Immunol.3, 569–581 (2003). ArticleCAS Google Scholar
Kansas, G. S. Selectins and their ligands: current concepts and controversies. Blood88, 3259–3287 (1996). CASPubMed Google Scholar
Vestweber, D. & Blanks, J. E. Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev.79, 181–213 (1999). ArticleCASPubMed Google Scholar
Ley, K. The role of selectins in inflammation and disease. Trends Mol. Med.9, 263–268 (2003). ArticleCASPubMed Google Scholar
Crockett-Torabi, E. Selectins and mechanisms of signal transduction. J. Leukocyte Biol.63, 1–14 (1998). ArticleCASPubMed Google Scholar
Kivisakk, P. et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA100, 8389–8394 (2003). ArticlePubMedCASPubMed Central Google Scholar
Ouyang, Y. B., Lane, W. S. & Moore, K. L. Tyrosylprotein sulfotransferase purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common posttranslational modification of eukaryotic proteins. Proc. Natl Acad. Sci. USA95, 2896–2901 (1998). ArticleCASPubMedPubMed Central Google Scholar
Somers, W. S., Tang, J., Shaw, G. D. & Camphausen, R. T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell103, 467–479 (2000). ArticleCASPubMed Google Scholar
Moore, K. L. Structure and function of P-selectin gycoprotein ligand-1. Leuk. Lymphoma29, 1–15 (1998). ArticleCASPubMed Google Scholar
Hirata, T., Furie, B. C. & Furie, B. P-, E-, and L-selectin mediate migration of activated CD8+ T lymphocytes into inflamed skin. J. Immunol.169, 4307–4313 (2002). ArticleCASPubMed Google Scholar
Xia, L. et al. P-selectin glycoprotein ligand-1 deficient mice have impaired leukocyte tethering to E-selectin under flow. J. Clin. Invest.109, 939–950 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sperandio, M. et al. Severe impairment of leukocyte rolling in core 2 glucosaminyltransferase deficient mice. Blood97, 3812–3819 (2001). ArticleCASPubMed Google Scholar
Ellies, L. G. et al. Sialyltransferase specificity in selectin ligand formation. Blood100, 3618–3625 (2002). This paper describes sialyl 3-galactosyltransferase-IV (ST3Gal-IV)-knockout mice, which have a partial defect in E-selectin-dependent rolling, but not P- or L-selectin-dependent interactions. ArticleCASPubMed Google Scholar
Moore, K. L. et al. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, _O_-linked poly-_N_-acetyllactosamine. J. Biol. Chem.269, 23318–23327 (1994). CASPubMed Google Scholar
Thatte, A. et al. Binding of function-blocking mAbs to mouse and human P-selectin glycoprotein ligand-1 with and without tyrosine sulfation. J. Leukocyte Biol.72, 470–477 (2002). CASPubMed Google Scholar
Yang, J. et al. Targeted gene disruption demonstrates that P-selectin glycoprotein ligand 1 (PSGL-1) is required for P-selectin-mediated but not E-selectin-mediated neutrophil rolling and migration. J. Exp. Med.190, 1769–1782 (1999). This paper describes the phenotype of mice lacking P-selectin glycoprotein ligand 1 (Psgl1) and shows that Psgl1 is required for most P-selectin-dependent neutrophil rollingin vivo, but is dispensible for most E-selectin-dependent rolling. ArticleCASPubMedPubMed Central Google Scholar
Moore, K. L. et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J. Cell Biol.128, 661–671 (1995). ArticleCASPubMed Google Scholar
Snapp, K. R. et al. A novel P-selectin glycoprotein ligand-1 (PSGL-1) monoclonal antibody recognizes an epitope within the tyrosine sulfate motif of human PSGL-1 and blocks recognition of both P- and L-selectin. Blood91, 154–164 (1998). CASPubMed Google Scholar
Fuhlbrigge, R. C., Kieffer, J. D., Armerding, D. & Kupper, T. S. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature389, 978–981 (1997). ArticleCASPubMed Google Scholar
Picker, L. J. et al. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell66, 921–933 (1991). ArticleCASPubMed Google Scholar
Zöllner, O. et al. L-selectin from human, but not from mouse neutrophils binds directly to E-selectin. J. Cell Biol.136, 707–716 (1997). ArticlePubMedPubMed Central Google Scholar
Walcheck, B. K., Watts, G. & Jutila, M. A. Bovine γδ T cells bind E-selectin via a novel glycoprotein receptor: first characterization of a lymphocyte/E-selectin interaction in an animal model. J. Exp. Med.178, 853–863 (1993). ArticleCASPubMed Google Scholar
Steegmaier, M. et al. The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature373, 615–620 (1995). ArticleCASPubMed Google Scholar
Wagers, A. J., Stoolman, L. M., Craig, R., Knibbs, R. N. & Kansas, G. S. An SLex-deficient variant of HL60 cells exhibits high levels of adhesion to vascular selectins- further evidence that HECA-452 and CSLEX1 monoclonal antibody epitopes are not essential for high avidity binding to vascular selectins. J. Immunol.160, 5122–5129 (1998). CASPubMed Google Scholar
Berg, E. L. et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule-1. J. Exp. Med.174, 1461–1466 (1991). ArticleCASPubMed Google Scholar
Keelan, E. T., Licence, S. T., Peters, A. M., Binns, R. M. & Haskard, D. O. Characterization of E-selectin expression in vivo with use of a radiolabeled monoclonal antibody. Am. J. Physiol.266, H278–H290 (1994). CASPubMed Google Scholar
Tu, L. L., Murphy, P. G., Li, X. & Tedder, T. F. L-selectin ligands expressed by human leukocytes are HECA-452 antibody-defined carbohydrate epitopes preferentially displayed by P-selectin glycoprotein ligand-1. J. Immunol.163, 5070–5078 (1999). CASPubMed Google Scholar
Tu, L., Delahunty, M. D., Ding, H., Luscinskas, F. W. & Tedder, T. F. The cutaneous lymphocyte antigen is an essential component of the L-selectin ligand induced on human vascular endothelial cells. J. Exp. Med.189, 241–252 (1999). ArticleCASPubMedPubMed Central Google Scholar
Knibbs, R. N. et al. The fucosyltransferase FucT-VII regulates E-selectin ligand synthesis in human T cells. J. Cell Biol.133, 911–920 (1996). The first demonstration that fucosyltransferase-VII (FucT-VII) regulates E-selectin binding in T cells. ArticleCASPubMed Google Scholar
Knibbs, R. N. et al. α(1,3)-fucosyltransferase VII-dependent synthesis of P- and E-selectin ligands on cultured T lymphoblasts. J. Immunol.161, 6305–6315 (1998). CASPubMed Google Scholar
Bruehl, R. E., Bertozzi, C. R. & Rosen, S. D. Minimal sulfated carbohydrates for recognition by L-selectin and the MECA-79 antibody. J. Biol. Chem.275, 32642–32648 (2000). The paper defines the MECA-79 epitope in peripheral node addressin (PNAD) as a 6-sulphated glucosamine. ArticleCASPubMed Google Scholar
Rosen, S. D. Endothelial ligands for L-selectin- from lymphocyte recirculation to allograft rejection. Am. J. Pathol.155, 1013–1020 (1999). ArticleCASPubMedPubMed Central Google Scholar
Puri, K. D., Finger, E. B., Gaudernack, G. & Springer, T. A. Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules. J. Cell Biol.131, 261–270 (1995). ArticleCASPubMed Google Scholar
Hemmerich, S. et al. Sulfation of L-selectin ligands by an HEV-restricted sulfotransferase regulates lymphocyte homing to lymph nodes. Immunity15, 237–247 (2001). ArticleCASPubMed Google Scholar
Ruddle, N. H. Lymphoid neo-organogenesis- lymphotoxin's role in inflammation and development. Immunol. Res.19, 119–125 (1999). ArticleCASPubMed Google Scholar
Drayton, D. L., Ying, X., Lee, J., Lesslauer, W. & Ruddle, N. H. Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med.197, 1153–1163 (2003). The authors show expression of PNAD in extralymphoid sites, indicating an important role for L-selectin in T-cell trafficking to sites of chronic inflammation. ArticleCASPubMedPubMed Central Google Scholar
Renkonen, J., Tynninen, O., Hayry, P., Paavonen, T. & Renkonen, R. Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. Am. J. Pathol.161, 543–550 (2002). ArticleCASPubMedPubMed Central Google Scholar
Michie, S. A., Streeter, P. R., Butcher, E. C. & Rouse, R. V. L-selectin and α4β7 integrin homing receptor pathways mediate peripheral lymphocyte traffic to AKR mouse hyperplastic thymus. Am. J. Pathol.147, 412–421 (1995). CASPubMedPubMed Central Google Scholar
Xu, B. et al. Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNAd, α4β1 integrin/VCAM-1, and LFA-1 adhesion pathways. J. Exp. Med.197, 1255–1267 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yang, X. D. et al. A predominant role of integrin α4 in the spontaneous development of autoimmune diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA91, 12604–12608 (1994). ArticleCASPubMedPubMed Central Google Scholar
Mikulowska-Mennis, A., Xu, B., Berberian, J. M. & Michie, S. A. Lymphocyte migration to inflamed lacrimal glands is mediated by vascular cell adhesion molecule-1/α4β1 integrin, peripheral node addressin/l-selectin, and lymphocyte function-associated antigen-1 adhesion pathways. Am. J. Pathol.159, 671–681 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yang, X. -D., Karin, N., Tisch, R., Steinman, L. & McDevitt, H. O. Inhibition of insulitis and prevention of diabetes in nonobese diabetic mice by blocking L-selectin and very late antigen 4 adhesion receptors. Proc. Natl Acad. Sci. USA90, 10494–10498 (1993). ArticleCASPubMedPubMed Central Google Scholar
Fabien, N., Bergerot, I., Orgiazzi, J. & Thivolet, C. Lymphocyte function associated antigen-1, integrin α4, and L-selectin mediate T-cell homing to the pancreas in the model of adoptive transfer of diabetes in NOD mice. Diabetes45, 1181–1186 (1996). ArticleCASPubMed Google Scholar
Alon, R., Feizi, T., Yuen, C. -T., Fuhlbrigge, R. C. & Springer, T. A. Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions. J. Immunol.154, 5356–5366 (1995). CASPubMed Google Scholar
Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell86, 643–653 (1996). A description of the lack of most selectin-ligand activity in FucT-VII-deficient mice. ArticleCASPubMed Google Scholar
Erdmann, I. et al. Fucosyltransferase VII-deficient mice with defective E-, P-, and L-selectin ligands show impaired CD4+ and CD8+ T cell migration into the skin, but normal extravasation into visceral organs. J. Immunol.168, 2139–2146 (2002). ArticleCASPubMed Google Scholar
Wagers, A. J., Waters, C. M., Stoolman, L. M. & Kansas, G. S. Interleukin 12 and interleukin 4 control cell adhesion to endothelial selectins through opposite effects on α1,3-fucosyltransferase VII gene expression. J. Exp. Med.188, 2225–2231 (1998). The first description of the inverse effect of the T helper 1 (TH1)-type cytokine interleukin-12 (IL-12) and the TH2-type cytokine IL-4 on the expression of FucT-VII by T cells. ArticleCASPubMedPubMed Central Google Scholar
Lim, Y. C. et al. Expression of functional selectin ligands on TH cells is differentially regulated by IL-12 and IL-4. J. Immunol.162, 3193–3201 (1999). CASPubMed Google Scholar
Austrup, F. et al. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature385, 81–83 (1997). ArticleCASPubMed Google Scholar
Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity12, 665–676 (2000). ArticleCASPubMed Google Scholar
Barry, S. M., Zisoulis, D. G., Neal, J. W., Clipstone, N. A. & Kansas, G. S. Induction of FucT-VII by the Ras/MAP kinase cascade in Jurkat T cells. Blood102, 1771–1778 (2003). ArticleCASPubMed Google Scholar
Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-αβ-transgenic model. J. Exp. Med182, 1579–1584 (1995). ArticleCASPubMed Google Scholar
Blander, J. M., Visintin, I., Janeway, C. A. & Medzhitov, R. α(1,3)-fucosyltransferase VII and α(2,3)-sialyltransferase IV are upregulated in activated CD4 T cells and maintained after their differentiation into TH1 and migration into inflammatory sites. J. Immunol.163, 3746–3752 (1999). CASPubMed Google Scholar
White, S. J., Underhill, G. H., Kaplan, M. H. & Kansas, G. S. Cutting edge: differential requirements for STAT4 in expression of glycosyltransferases responsible for selectin ligand formation in TH1 cells. J. Immunol.167, 628–631 (2001). The first description of the regulation of core 2 β1, 6-glucosaminyltransferase-I (C2GlcNAcT-I), but not FucT-VII in T cells through signal transducer and activator of transcription 4 (STAT4). ArticleCASPubMed Google Scholar
van Wely, C. A., Blanchard, A. D. & Britten, C. J. Differential expression of α3 fucosyltransferases in TH1 and TH2 cells correlates with their ability to bind P-selectin. Biochem. Biophys. Res. Commun.247, 307–311 (1998). ArticleCASPubMed Google Scholar
Lukacs, N. W. et al. E- and P-selectins are essential for the development of cockroach allergen-induced airway responses. J. Immunol.169, 2120–2125 (2002). ArticleCASPubMed Google Scholar
Rossiter, H. et al. Skin disease-related T cells bind to endothelial selectins: expression of cutaneous lymphocyte antigen (CLA) predicts E-selectin but not P-selectin binding. Eur. J. Immunol.24, 205–210 (1994). ArticleCASPubMed Google Scholar
Teraki, Y. & Picker, L. J. Independent regulation of cutaneous lymphocyte-associated antigen expression and cytokine synthesis phenotype during human CD4+ memory T cell differentiation. J. Immunol.159, 6018–6029 (1997). CASPubMed Google Scholar
Ellies, L. G. et al. Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity9, 881–890 (1998). The first description of C2GlcNAcT-I-knockout mice with complete absence of L-selectin-ligand activity and reduced P-selectin-ligand activity on myeloid cells. ArticleCASPubMed Google Scholar
Snapp, K. R., Heitzig, C. E., Ellies, L. G., Marth, J. D. & Kansas, G. S. Differential requirements for the O-linked branching enzyme core 2 β1-6-_N_-glucosaminyltransferase in biosynthesis of ligands for E-selectin and P-selectin. Blood97, 3806–3811 (2001). This was the first paper to show that C2GlcNAcT-I is not required for the binding of T cells to E-selectin, but determines P-selectin-binding activity. ArticleCASPubMed Google Scholar
Quelle, F. W. et al. Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol. Cell. Biol.15, 3336–3343 (1995). ArticleCASPubMedPubMed Central Google Scholar
Carlow, D. A., Corbel, S. Y., Williams, M. J. & Ziltener, H. J. IL-2,-4, and-15 differentially regulate O-glycan branching and P-selectin ligand formation in activated CD8 T cells. J. Immunol.167, 6841–6848 (2001). ArticleCASPubMed Google Scholar
Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science295, 338–342 (2002). ArticleCASPubMed Google Scholar
Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell100, 655–669 (2000). ArticleCASPubMed Google Scholar
Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nature Immunol.3, 549–557 (2002). ArticleCAS Google Scholar
Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science292, 1907–1910 (2001). ArticleCASPubMed Google Scholar
Tsuji, S. Molecular cloning and functional analysis of sialyltransferases. J. Biochem.120, 1–13 (1996). ArticleCASPubMed Google Scholar
Underhill, G. H., Minges-Wols, H. A., Fornek, J. L., Witte, P. L. & Kansas, G. S. IgG plasma cells display a unique spectrum of leukocyte adhesion and homing molecules. Blood99, 2905–2912 (2002). ArticleCASPubMed Google Scholar
Xie, H. J., Lim, Y. C., Luscinskas, F. W. & Lichtman, A. H. Acquisition of selectin binding and peripheral homing properties by CD4+ and CD8+ T cells. J. Exp. Med.189, 1765–1775 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tietz, W. et al. CD4+ T cells migrate into inflamed skin only if they express ligands for E- and P-selectin. J. Immunol.161, 963–970 (1998). CASPubMed Google Scholar
Picker, L. J. et al. Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells. J. Immunol.150, 1122–1136 (1993). CASPubMed Google Scholar
Picker, L. J. et al. Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L-selectin on T cells during the virgin to memory cell transition. J. Immunol.150, 1105–1121 (1993). CASPubMed Google Scholar
Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature424, 88–93 (2003). The first demonstration that antigen encounter by T cells in the gut-associated lymphatic tissue determines their later homing to the gut compartment through contact-dependent signals received from dendritic cells. ArticleCASPubMed Google Scholar
Dudda, J. C., Simon, J. C. & Martin, S. Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J. Immunol.172, 857–863 (2004). ArticleCASPubMed Google Scholar
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). ArticleCASPubMed Google Scholar
Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science291, 2413–2417 (2001). ArticleCASPubMed Google Scholar
Bjorkdahl, O. et al. Characterization of CC-chemokine receptor 7 expression on murine T cells in lymphoid tissues. Immunology110, 170–179 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bluestone, J. A. & Abbas, A. K. Natural versus adaptive regulatory T cells. Nature Rev. Immunol.3, 253–257 (2003). ArticleCAS Google Scholar
Lehmann, J. et al. Expression of the integrin αEβ7 identifies unique subsets of CD25+ as well as CD25− regulatory T cells. Proc. Natl Acad. Sci. USA99, 13031–13036 (2002). ArticleCASPubMedPubMed Central Google Scholar
Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med199, 303–313 (2004). ArticleCASPubMedPubMed Central Google Scholar
Borges, E. et al. P-selectin glycoprotein ligand-1 (PSGL-1) on T helper 1 but not on T helper 2 cells binds to P-selectin and supports migration into inflamed skin. J. Exp. Med.185, 573–578 (1997). ArticleCASPubMedPubMed Central Google Scholar
Biedermann, T. et al. Targeting CLA/E-selectin interactions prevents CCR4-mediated recruitment of human TH2 memory cells to human skin in vivo. Eur. J. Immunol.32, 3171–3180 (2002). ArticleCASPubMed Google Scholar
Koelle, D. M. et al. Expression of cutaneous lymphocyte-associated antigen by CD8+ T cells specific for a skin-tropic virus. J. Clin. Invest.110, 537–548 (2002). ArticleCASPubMedPubMed Central Google Scholar
Luhn, K., Wild, M. K., Eckhardt, M., Gerardy-Schahn, R. & Vestweber, D. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nature Genet.28, 69–72 (2001). CASPubMed Google Scholar
Kuijpers, T. W., Etzioni, A., Pollack, S. & Pals, S. T. Antigen-specific immune responsiveness and lymphocyte recruitment in leukocyte adhesion deficiency type II. Int. Immunol.9, 607–613 (1997). ArticleCASPubMed Google Scholar
Tang, M. L. K., Hale, L. P., Steeber, D. A. & Tedder, T. F. L-selectin is involved in lymphocyte migration to sites of inflammation in the skin-delayed rejection of allografts in L-selectin-deficient mice. J. Immunol.158, 5191–5199 (1997). CASPubMed Google Scholar
Kerfoot, S. M. & Kubes, P. Overlapping roles of P-selectin and α4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J. Immunol.169, 1000–1006 (2002). ArticleCASPubMed Google Scholar
Engelhardt, B., Vestweber, D., Hallmann, R. & Schulz, M. E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood–brain barrier in experimental autoimmune encephalomyelitis. Blood90, 4459–4472 (1997). CASPubMed Google Scholar
Furtado, G. C. et al. Regulatory T cells in spontaneous autoimmune encephalomyelitis. Immunol. Rev.182, 122–134 (2001). ArticleCASPubMed Google Scholar
Ainslie, M. P., McNulty, C. A., Huynh, T., Symon, F. A. & Wardlaw, A. J. Characterisation of adhesion receptors mediating lymphocyte adhesion to bronchial endothelium provides evidence for a distinct lung homing pathway. Thorax57, 1054–1059 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wolber, F. M. et al. Endothelial selectins and α4 integrins regulate independent pathways of T lymphocyte recruitment in the pulmonary immune response. J. Immunol.161, 4396–4403 (1998). CASPubMed Google Scholar
Curtis, J. L. et al. Subset-specific reductions in lung lymphocyte accumulation following intratracheal antigen challenge in endothelial selectin-deficient mice. J. Immunol.169, 2570–2579 (2002). ArticleCASPubMed Google Scholar
Keramidaris, E., Merson, T. D., Steeber, D. A., Tedder, T. F. & Tang, M. L. L-selectin and intercellular adhesion molecule 1 mediate lymphocyte migration to the inflamed airway/lung during an allergic inflammatory response in an animal model of asthma. J. Allergy Clin. Immunol.107, 734–738 (2001). ArticleCASPubMed Google Scholar
Massaguer, A. et al. Concanavalin-A-induced liver injury is severely impaired in mice deficient in P-selectin. J. Leukocyte Biol.72, 262–270 (2002). CASPubMed Google Scholar
Diacovo, T. G., Puri, K. D., Warnock, R. A., Springer, T. A. & von Andrian, U. H. Platelet-mediated lymphocyte delivery to high endothelial venules. Science273, 252–255 (1996). ArticleCASPubMed Google Scholar
Friedline, R. H., Wong, C. P., Steeber, D. A., Tedder, T. F. & Tisch, R. L-selectin is not required for T cell-mediated autoimmune diabetes. J. Immunol.168, 2659–2666 (2002). ArticleCASPubMed Google Scholar
Kirveskari, J., Paavonen, T., Hayry, P. & Renkonen, R. De novo induction of endothelial L-selectin ligands during kidney allograft rejection. J. Am. Soc. Nephrol.11, 2358–2365 (2000). CASPubMed Google Scholar
Eppihimer, M. J., Russell, J., Anderson, D. C., Wolitzky, B. A. & Granger, D. N. Endothelial cell adhesion molecule expression in gene-targeted mice. Am. J. Physiol.42, H1903–H1908 (1997). Google Scholar
McEver, R. P. & Martin, M. N. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J. Biol. Chem.259, 9799–9804 (1984). CASPubMed Google Scholar
Falati, S. et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J. Exp. Med.197, 1585–1598 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tchernychev, B., Furie, B. & Furie, B. C. Peritoneal macrophages express both P-selectin and PSGL-1. J. Cell Biol.163, 1145–1155 (2003). ArticleCASPubMedPubMed Central Google Scholar
Frenette, P. S. et al. Platelet–endothelial interactions in inflamed mesenteric venules. Blood91, 1318–1324 (1998). CASPubMed Google Scholar
Sperandio, M. et al. P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J. Exp. Med.197, 1355–1363 (2003). This report showed that the L-selectin-binding activity of inflamed microvessels is due to myeloid cells and myeloid-cell-derived microparticles that present PSGL1 to rolling leukocytes. ArticleCASPubMedPubMed Central Google Scholar
Faust, N., Varas, F., Kelly, L. M., Heck, S. & Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood96, 719–726 (2000). CASPubMed Google Scholar
Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol.20, 4106–4114 (2000). ArticleCASPubMedPubMed Central Google Scholar
Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nature Med.9, 61–67 (2003). ArticleCASPubMed Google Scholar
Singbartl, K., Thatte, J., Smith, M. L., Day, K. & Ley, K. A CD2–GFP transgenic mouse reveals VLA-4 dependent CD8+ lymphocyte rolling in the inflamed microcirculation. J. Immunol.166, 7520–7526 (2001). ArticleCASPubMed Google Scholar
Bullard, D. C. et al. Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J. Exp. Med.183, 2329–2336 (1996). ArticleCASPubMed Google Scholar
Frenette, P. S., Mayadas, T. N., Rayburn, H., Hynes, R. O. & Wagner, D. D. Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell84, 563–574 (1996). ArticleCASPubMed Google Scholar
Forlow, S. B. et al. Increased granulopoiesis through interleukin-17 and granulocyte colony stimulating factor in adhesion molecule-deficient mice. Blood98, 3309–3314 (2001). ArticleCASPubMed Google Scholar