Sterile inflammation: sensing and reacting to damage (original) (raw)
Mossman, B. T. & Churg, A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med.157, 1666–1680 (1998). ArticleCASPubMed Google Scholar
Cotran, R. S., Kumar, V. & Robbins, S. in Robbins Pathologic Basis of Disease (ed. Schoen, F. J.) 6–11 (W. B. Saunders Company, Philadelphia, 1994). Google Scholar
Cotran, R. S., Kumar, V. & Robbins, S . in Robbins Pathologic Basis of Disease (ed. Schoen, F. J.) 1255–1259 (W. B. Saunders Company, Philadelphia, 1994). Google Scholar
Weiner, H. L. & Frenkel, D. Immunology and immunotherapy of Alzheimer's disease. Nature Rev. Immunol.6, 404–416 (2006). ArticleCAS Google Scholar
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell140, 805–820 (2010). ArticleCASPubMed Google Scholar
Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nature Immunol.11, 997–1004 (2010). ArticleCAS Google Scholar
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994). ArticleCASPubMed Google Scholar
Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature418, 191–195 (2002). ArticleCASPubMed Google Scholar
Quintana, F. J. & Cohen, I. R. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J. Immunol.175, 2777–2782 (2005). ArticleCASPubMed Google Scholar
Bours, M. J., Swennen, E. L., Di Virgilio, F., Cronstein, B. N. & Dagnelie, P. C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther.112, 358–404 (2006). ArticleCASPubMed Google Scholar
Kono, H., Chen, C. J., Ontiveros, F. & Rock, K. L. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J. Clin. Invest.120, 1939–1949 (2010). ArticleCASPubMedPubMed Central Google Scholar
Babelova, A. et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via Toll-like and P2X receptors. J. Biol. Chem.284, 24035–24048 (2009). ArticleCASPubMedPubMed Central Google Scholar
Eigenbrod, T., Park, J. H., Harder, J., Iwakura, Y. & Nunez, G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1α released from dying cells. J. Immunol.181, 8194–8198 (2008). This paper shows that the passive release of IL-1α from necrotic cells, in particular necrotic dendritic cells, is important for the recruitment of neutrophils in the sterile inflammatory response through the production of CXCL1 by cells responsive to IL-1α. ArticleCASPubMed Google Scholar
Moussion, C., Ortega, N. & Girard, J. P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS One3, e3331 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nature Rev. Immunol.8, 279–289 (2008). ArticleCAS Google Scholar
Basu, S., Binder, R. J., Suto, R., Anderson, K. M. & Srivastava, P. K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol.12, 1539–1546 (2000). ArticleCASPubMed Google Scholar
Hofmann, M. A. et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell97, 889–901 (1999). ArticleCASPubMed Google Scholar
Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232 (2006). ArticleCASPubMed Google Scholar
Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature425, 516–521 (2003). ArticleCASPubMed Google Scholar
Chen, C. J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nature Med.13, 851–856 (2007). This paper demonstrates a crucial role for IL-1α in sterile inflammation and, in particular, neutrophil recruitment induced by necrotic cells. ArticleCASPubMed Google Scholar
Mbitikon-Kobo, F. M. et al. Characterization of a CD44/CD122int memory CD8 T cell subset generated under sterile inflammatory conditions. J. Immunol.182, 3846–3854 (2009). ArticleCASPubMed Google Scholar
Weber, A. N. et al. Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nature Immunol.4, 794–800 (2003). ArticleCAS Google Scholar
Vabulas, R. M. et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem.276, 31332–31339 (2001). ArticleCASPubMed Google Scholar
Yu, M. et al. HMGB1 signals through Toll-like receptor (TLR) 4 and TLR2. Shock26, 174–179 (2006). ArticleCASPubMed Google Scholar
Liu-Bryan, R., Scott, P., Sydlaske, A., Rose, D. M. & Terkeltaub, R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum.52, 2936–2946 (2005). ArticleCASPubMed Google Scholar
Gao, B. & Tsan, M. F. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor α release by murine macrophages. J. Biol. Chem.278, 174–179 (2003). ArticleCASPubMed Google Scholar
Rouhiainen, A., Tumova, S., Valmu, L., Kalkkinen, N. & Rauvala, H. Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J. Leukoc. Biol.81, 49–58 (2007). ArticleCASPubMed Google Scholar
Youn, J. H., Oh, Y. J., Kim, E. S., Choi, J. E. & Shin, J. S. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-α production in human monocytes. J. Immunol.180, 5067–5074 (2008). ArticleCASPubMed Google Scholar
Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Med.11, 1173–1179 (2005). This paper shows the dual role of TLRs in mediating sterile inflammation in response to hyaluronan fragments released during injury and in promoting tissue repair. ArticleCASPubMed Google Scholar
Scheibner, K. A. et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol.177, 1272–1281 (2006). ArticleCASPubMed Google Scholar
Schaefer, L. et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest.115, 2223–2233 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mullick, A. E., Tobias, P. S. & Curtiss, L. K. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest.115, 3149–3156 (2005). ArticleCASPubMedPubMed Central Google Scholar
Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA101, 10679–10684 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nature Med.10, 416–421 (2004). ArticleCASPubMed Google Scholar
Cavassani, K. A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med.205, 2609–2621 (2008). ArticleCASPubMedPubMed Central Google Scholar
Imaeda, A. B. et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest.119, 305–314 (2009). CASPubMedPubMed Central Google Scholar
Kono, H., Karmarkar, D., Iwakura, Y. & Rock, K. L. Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death. J. Immunol.184, 4470–4478 (2010). This study shows the crucial role for macrophages in mediating the inflammatory response to sterile cell death, such as by IL-1α production. ArticleCASPubMed Google Scholar
Wang, X., Feuerstein, G. Z., Gu, J. L., Lysko, P. G. & Yue, T. L. Interleukin-1β induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. Atherosclerosis115, 89–98 (1995). ArticleCASPubMed Google Scholar
Gabay, C., Lamacchia, C. & Palmer, G. IL-1 pathways in inflammation and human diseases. Nature Rev. Rheumatol.6, 232–241 (2010). ArticleCAS Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol.9, 847–856 (2008). This study was pivotal in providing a model of NLRP3 activation that involves lysosomal damage and cathepsin B activation. ArticleCAS Google Scholar
Raines, E. W., Dower, S. K. & Ross, R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science243, 393–396 (1989). ArticleCASPubMed Google Scholar
Boni-Schnetzler, M. et al. Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab.93, 4065–4074 (2008). ArticleCASPubMedPubMed Central Google Scholar
Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature Immunol.10, 266–272 (2009). ArticleCAS Google Scholar
Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature458, 509–513 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunol.11, 385–393 (2010). ArticleCAS Google Scholar
Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunol.11, 395–402 (2010). ArticleCAS Google Scholar
Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol.183, 787–791 (2009). ArticleCASPubMed Google Scholar
Franchi, L., Eigenbrod, T. & Nunez, G. Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol.183, 792–796 (2009). References 53 and 54 provide evidence that the first signal, or priming event, necessary for activation of the NLRP3 inflammasome involves upregulation of NLRP3 expression by NF-κB through the action of TLRs or pro-inflammatory cytokines such as TNF. ArticleCASPubMed Google Scholar
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006). This study is one of the first to identify an endogenous, non-microbial signal for NLPR3 inflammasome activation that can lead to a non-infectious inflammatory disease (in this case, gout). ArticleCASPubMed Google Scholar
Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nature Immunol.9, 857–865 (2008). ArticleCAS Google Scholar
Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science320, 674–677 (2008). This study led to the model of NLRP3 activation that is dependent on the sensing of ROS, and demonstrated a role for NLRP3 in asbestosis. ArticleCASPubMedPubMed Central Google Scholar
Cassel, S. L. et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl Acad. Sci. USA105, 9035–9040 (2008). ArticleCASPubMedPubMed Central Google Scholar
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature464, 1357–1361 (2010). ArticleCASPubMedPubMed Central Google Scholar
Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA106, 20388–20393 (2009). ArticleCASPubMedPubMed Central Google Scholar
Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nature Immunol.11, 897–904 (2010). ArticleCAS Google Scholar
Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunol.11, 136–140 (2010). ArticleCAS Google Scholar
el-Moatassim, C. & Dubyak, G. R. A novel pathway for the activation of phospholipase D by P2z purinergic receptors in BAC1.2F5 macrophages. J. Biol. Chem.267, 23664–23673 (1992). CASPubMed Google Scholar
Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J.25, 5071–5082 (2006). ArticleCASPubMedPubMed Central Google Scholar
Locovei, S., Wang, J. & Dahl, G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett.580, 239–244 (2006). ArticleCASPubMed Google Scholar
Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ.14, 1583–1589 (2007). ArticleCASPubMed Google Scholar
Fubini, B. & Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med.34, 1507–1516 (2003). ArticleCASPubMed Google Scholar
Cruz, C. M. et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem.282, 2871–2879 (2007). ArticleCASPubMed Google Scholar
Geijtenbeek, T. B. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nature Rev. Immunol.9, 465–479 (2009). ArticleCAS Google Scholar
Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and Langerhans cells. Nature Rev. Immunol.2, 77–84 (2002). ArticleCAS Google Scholar
Yamasaki, S. et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nature Immunol.9, 1179–1188 (2008). ArticleCAS Google Scholar
Cambi, A. & Figdor, C. Necrosis: C-type lectins sense cell death. Curr. Biol.19, R375–R378 (2009). ArticleCASPubMed Google Scholar
Nakamura, N. et al. Isolation and expression profiling of genes upregulated in bone marrow-derived mononuclear cells of rheumatoid arthritis patients. DNA Res.13, 169–183 (2006). ArticleCASPubMed Google Scholar
Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature458, 899–903 (2009). This paper showed a role for CLEC9A in regulating immune responses to sterile cell death, specifically through the cross-presentation of dead cell-associated antigens. ArticleCASPubMedPubMed Central Google Scholar
Rao, D. A. et al. Interleukin (IL)-1 promotes allogeneic T cell intimal infiltration and IL-17 production in a model of human artery rejection. J. Exp. Med.205, 3145–3158 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sakurai, T. et al. Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell14, 156–165 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cohen, I. et al. Differential release of chromatin-bound IL-1α discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc. Natl Acad. Sci. USA107, 2574–2579 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dinarello, C. A. IL-1: discoveries, controversies and future directions. Eur. J. Immunol.40, 599–606 (2010). ArticleCASPubMed Google Scholar
Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell80, 401–411 (1995). ArticleCASPubMed Google Scholar
Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science267, 2000–2003 (1995). ArticleCASPubMed Google Scholar
Keller, M., Ruegg, A., Werner, S. & Beer, H. D. Active caspase-1 is a regulator of unconventional protein secretion. Cell132, 818–831 (2008). ArticleCASPubMed Google Scholar
Fantuzzi, G. et al. Response to local inflammation of IL-1β-converting enzyme-deficient mice. J. Immunol.158, 1818–1824 (1997). CASPubMed Google Scholar
Mayer-Barber, K. D. et al. Caspase-1 independent IL-1β production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol.184, 3326–3330 (2010). ArticleCASPubMed Google Scholar
Luthi, A. U. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity31, 84–98 (2009). ArticleCASPubMed Google Scholar
Cayrol, C. & Girard, J. P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl Acad. Sci. USA106, 9021–9026 (2009). ArticleCASPubMedPubMed Central Google Scholar
Carriere, V. et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl Acad. Sci. USA104, 282–287 (2007). ArticleCASPubMed Google Scholar
Verri, W. A. Jr et al. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann. Rheum. Dis.69, 1697–1703 (2010). ArticleCASPubMed Google Scholar
Fang, F. et al. RAGE-dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease. FASEB J.24, 1043–1055 (2009). ArticleCASPubMed Google Scholar
Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R. & Coyle, A. J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol.28, 367–388 (2010). ArticleCASPubMed Google Scholar
Shang, L. et al. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3β signaling pathways. PLoSOne5, e10092 (2010). ArticleCAS Google Scholar
Bucciarelli, L. G. et al. RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell. Mol. Life Sci.59, 1117–1128 (2002). ArticleCASPubMed Google Scholar
Hori, O. et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem.270, 25752–25761 (1995). ArticleCASPubMed Google Scholar
Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature382, 685–691 (1996). ArticleCASPubMed Google Scholar
Huang, J. S. et al. Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J. Cell Biochem.81, 102–113 (2001). ArticleCASPubMed Google Scholar
Dukic-Stefanovic, S., Schinzel, R., Riederer, P. & Munch, G. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology2, 19–34 (2001). ArticleCASPubMed Google Scholar
Ishihara, K., Tsutsumi, K., Kawane, S., Nakajima, M. & Kasaoka, T. The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett.550, 107–113 (2003). ArticleCASPubMed Google Scholar
Tian, J. et al. Toll-like receptor 9-dependent activation by _DNA_-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol.8, 487–496 (2007). ArticleCAS Google Scholar
Ueno, H. et al. Receptor for advanced glycation end-products (RAGE) regulation of adiposity and adiponectin is associated with atherogenesis in apoE-deficient mouse. Atherosclerosis211, 431–436 (2010). ArticleCASPubMed Google Scholar
Soro-Paavonen, A. et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes57, 2461–2469 (2008). ArticleCASPubMedPubMed Central Google Scholar
Harja, E. et al. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in _apoE_−/− mice. J. Clin. Invest.118, 183–194 (2008). ArticleCASPubMed Google Scholar
Jiang, D., Liang, J. & Noble, P. W. Hyaluronan in tissue injury and repair. Annu. Rev. Cell Dev. Biol.23, 435–461 (2007). ArticleCASPubMed Google Scholar
Taylor, K. R. et al. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J. Biol. Chem.282, 18265–18275 (2007). ArticleCASPubMed Google Scholar
Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunol.11, 155–161 (2010). ArticleCAS Google Scholar
Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science323, 1722–1725 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y., Chen, G. Y. & Zheng, P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol.30, 557–561 (2009). ArticleCASPubMedPubMed Central Google Scholar
So, A., De Smedt, T., Revaz, S. & Tschopp, J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther.9, R28 (2007). ArticleCASPubMedPubMed Central Google Scholar
Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med.356, 1517–1526 (2007). ArticleCASPubMed Google Scholar
Larsen, C. M. et al. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care32, 1663–1668 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pantschenko, A. G. et al. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int. J. Oncol.23, 269–284 (2003). CASPubMed Google Scholar
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med.15, 1170–1178 (2009). ArticleCASPubMed Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004). ArticleCASPubMed Google Scholar
Brown, S. L. et al. Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J. Clin. Invest.117, 258–269 (2007). ArticleCASPubMedPubMed Central Google Scholar
Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med.13, 1050–1059 (2007). This paper showed the importance of TLR4 signalling in response to DAMPs derived from tumour cell death after chemotherapy or radiation treatment during the induction of host immune responses that are important for inhibiting tumour growth. ArticleCASPubMed Google Scholar
Martin, P. & Leibovich, S. J. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol.15, 599–607 (2005). ArticleCASPubMed Google Scholar
DiPietro, L. A. Wound healing: the role of the macrophage and other immune cells. Shock4, 233–240 (1995). ArticleCASPubMed Google Scholar
Kroemer, G . et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ.16, 3–11 (2009). ArticleCASPubMed Google Scholar
Silva, M. T., do Vale, A. & dos Santos, N. M. Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis13, 463–482 (2008). ArticlePubMedPubMed Central Google Scholar
Miwa, K. et al. Caspase 1-independent IL-1β release and inflammation induced by the apoptosis inducer Fas ligand. Nature Med.4, 1287–1292 (1998). ArticleCASPubMed Google Scholar
Marina-Garcia, N. et al. Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J. Immunol.180, 4050–4057 (2008). ArticleCASPubMed Google Scholar
Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity14, 303–313 (2001). ArticleCASPubMed Google Scholar
Kariko, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem.279, 12542–12550 (2004). ArticleCASPubMed Google Scholar
Johnson, G. B., Brunn, G. J., Kodaira, Y. & Platt, J. L. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol.168, 5233–5239 (2002). ArticleCASPubMed Google Scholar