- Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).
CAS PubMed Google Scholar
- Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Ouchi, N., Kihara, S., Funahashi, T., Matsuzawa, Y. & Walsh, K. Obesity, adiponectin and vascular inflammatory disease. Curr. Opin. Lipidol. 14, 561–566 (2003).
Article CAS PubMed Google Scholar
- Berg, A. H. & Scherer, P. E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96, 939–949 (2005).
Article CAS PubMed Google Scholar
- Visser, M., Bouter, L. M., McQuillan, G. M., Wener, M. H. & Harris, T. B. Elevated C-reactive protein levels in overweight and obese adults. JAMA 282, 2131–2135 (1999).
Article CAS PubMed Google Scholar
- Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E. & Ridker, P. M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–334 (2001).
Article CAS PubMed Google Scholar
- Esposito, K. et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289, 1799–1804 (2003).
Article CAS PubMed Google Scholar
- Samaras, K., Botelho, N. K., Chisholm, D. J. & Lord, R. V. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity 18, 884–889 (2010).
Article CAS PubMed Google Scholar
- Fried, S. K., Bunkin, D. A. & Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83, 847–850 (1998).
CAS PubMed Google Scholar
- Chatterjee, T. K. et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ. Res. 104, 541–549 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Takaoka, M. et al. Periadventitial adipose tissue plays a critical role in vascular remodeling. Circ. Res. 105, 906–911 (2009). This study shows that periadventitial adipose tissue has a causal role in the pathogenesis of vascular disease under conditions of obesity.
Article CAS PubMed Google Scholar
- Cook, K. S. et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science 237, 402–405 (1987).
Article CAS PubMed Google Scholar
- Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993). This report shows for the first time that TNF acts as an adipokine that regulates obesity-linked insulin resistance.
CAS PubMed Google Scholar
- Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994). This report identifies the gene encoding leptin and shows the role of leptin in regulation of feeding behaviour.
Article CAS PubMed Google Scholar
- Shimomura, I. et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nature Med. 2, 800–803 (1996).
Article CAS PubMed Google Scholar
- Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996).
Article CAS PubMed Google Scholar
- Maeda, K. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289 (1996).
Article CAS PubMed Google Scholar
- Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995). References 16–18 report the identification of adiponectin in humans and mice.
Article CAS PubMed Google Scholar
- Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003). References 19 and 20 show that macrophage accumulation in fat tissue is important for systemic inflammation and insulin resistance.
Article CAS PubMed PubMed Central Google Scholar
- Cancello, R. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54, 2277–2286 (2005).
Article CAS PubMed Google Scholar
- Bruun, J. M., Lihn, A. S., Pedersen, S. B. & Richelsen, B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90, 2282–2289 (2005).
Article CAS PubMed Google Scholar
- Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell Biol. 29, 1575–1591 (2009).
Article CAS PubMed Google Scholar
- Ouchi, N. et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329, 454–457 (2010). This study identified SFRP5 as an adipokine that suppresses WNT5a-mediated JNK activation and inflammation in adipose tissue.
Article CAS PubMed PubMed Central Google Scholar
- Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007). Using adiponectin-transgenic mice, this work shows that in addition to the quantity of adipose tissue, the 'quality' of adipocytes in the adipose tissue can have a profound effect on systemic metabolic function.
Article CAS PubMed PubMed Central Google Scholar
- Apovian, C. M. et al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler. Thromb. Vasc. Biol. 28, 1654–1659 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).
Article CAS PubMed Google Scholar
- Murano, I. et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res. 49, 1562–1568 (2008).
Article CAS PubMed Google Scholar
- Pajvani, U. B. et al. Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nature Med. 11, 797–803 (2005).
Article CAS PubMed Google Scholar
- Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).
Article CAS PubMed Google Scholar
- Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007). This paper shows that obesity leads to a shift in adipose tissue macrophage polarization from an alternatively activated state to a classically activated state.
Article CAS PubMed PubMed Central Google Scholar
- Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).
Article CAS Google Scholar
- Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell. Metab. 7, 496–507 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Odegaard, J. I. & Chawla, A. Alternative macrophage activation and metabolism. Annu. Rev. Pathol. 15 Jan 2010 [epub ahead of print].
- Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Med. 15, 930–939 (2009).
Article CAS PubMed Google Scholar
- Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Med. 15, 914–920 (2009).
Article CAS PubMed Google Scholar
- Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Med. 15, 921–929 (2009). References 36–38 demonstrate that subsets of T cells in adipose tissue affect obesity-linked metabolic dysfunction.
Article CAS PubMed Google Scholar
- Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).
Article CAS PubMed Google Scholar
- Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. & Goldstein, J. L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).
Article CAS PubMed Google Scholar
- Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).
Article CAS PubMed Google Scholar
- Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Santos-Alvarez, J., Goberna, R. & Sanchez-Margalet, V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell. Immunol. 194, 6–11 (1999).
Article CAS PubMed Google Scholar
- Kiguchi, N., Maeda, T., Kobayashi, Y., Fukazawa, Y. & Kishioka, S. Leptin enhances CC-chemokine ligand expression in cultured murine macrophage. Biochem. Biophys. Res. Commun. 384, 311–315 (2009).
Article CAS PubMed Google Scholar
- Zarkesh-Esfahani, H. et al. Leptin indirectly activates human neutrophils via induction of TNF-α. J. Immunol. 172, 1809–1814 (2004).
Article CAS PubMed Google Scholar
- Grunfeld, C. et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J. Clin. Invest. 97, 2152–2157 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998).
Article CAS PubMed Google Scholar
- Faggioni, R. et al. Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor α and IL-18. Proc. Natl Acad. Sci. USA 97, 2367–2372 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Matarese, G. et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol. 166, 5909–5916 (2001).
Article CAS PubMed Google Scholar
- Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001). This study identified resistin as a thiazolidinedione-regulated adipokine that mediates obesity-linked insulin resistance.
Article CAS PubMed Google Scholar
- Banerjee, R. R. et al. Regulation of fasted blood glucose by resistin. Science 303, 1195–1198 (2004).
Article CAS PubMed Google Scholar
- Qi, Y. et al. Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes 55, 3083–3090 (2006).
Article CAS PubMed Google Scholar
- Steppan, C. M., Wang, J., Whiteman, E. L., Birnbaum, M. J. & Lazar, M. A. Activation of SOCS-3 by resistin. Mol. Cell Biol. 25, 1569–1575 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Heilbronn, L. K. et al. Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J. Clin. Endocrinol. Metab. 89, 1844–1848 (2004).
Article CAS PubMed Google Scholar
- Lee, J. H. et al. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J. Clin. Endocrinol. Metab. 88, 4848–4856 (2003).
Article CAS PubMed Google Scholar
- Patel, S. D., Rajala, M. W., Rossetti, L., Scherer, P. E. & Shapiro, L. Disulfide-dependent multimeric assembly of resistin family hormones. Science 304, 1154–1158 (2004).
Article CAS PubMed Google Scholar
- Savage, D. B. et al. Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-γ action in humans. Diabetes 50, 2199–2202 (2001).
Article CAS PubMed Google Scholar
- Kaser, S. et al. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 309, 286–290 (2003).
Article CAS PubMed Google Scholar
- Lehrke, M. et al. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med. 1, e45 (2004).
Article PubMed CAS PubMed Central Google Scholar
- Qatanani, M., Szwergold, N. R., Greaves, D. R., Ahima, R. S. & Lazar, M. A. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J. Clin. Invest. 119, 531–539 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Bokarewa, M., Nagaev, I., Dahlberg, L., Smith, U. & Tarkowski, A. Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 174, 5789–5795 (2005).
Article CAS PubMed Google Scholar
- Verma, S. et al. Resistin promotes endothelial cell activation: further evidence of adipokine–endothelial interaction. Circulation 108, 736–740 (2003).
Article CAS PubMed Google Scholar
- Kawanami, D. et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine–endothelial cell interactions. Biochem. Biophys. Res. Commun. 314, 415–419 (2004).
Article CAS PubMed Google Scholar
- Quadro, L. et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 18, 4633–4644 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005). This study shows that RBP4 is upregulated in the fat of adipose-specific GLUT4-deficient mice and that RBP4 contributes to the pathogenesis of type 2 diabetes.
Article CAS PubMed Google Scholar
- Broch, M. et al. Macrophages are novel sites of expression and regulation of retinol binding protein-4 (RBP4). Physiol. Res. 59, 299–303 (2010).
CAS PubMed Google Scholar
- Ost, A. et al. Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. FASEB J. 21, 3696–3704 (2007).
Article PubMed Google Scholar
- Graham, T. E. et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 354, 2552–2563 (2006).
Article CAS PubMed Google Scholar
- Kloting, N. et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell. Metab. 6, 79–87 (2007).
Article PubMed CAS Google Scholar
- Balagopal, P. et al. Reduction of elevated serum retinol binding protein in obese children by lifestyle intervention: association with subclinical inflammation. J. Clin. Endocrinol. Metab. 92, 1971–1974 (2007).
Article CAS PubMed Google Scholar
- Akbay, E., Muslu, N., Nayir, E., Ozhan, O. & Kiykim, A. Serum retinol binding protein 4 level is related with renal functions in type 2 diabetes. J. Endocrinol. Invest. 33, 725–729 (2010).
Article CAS PubMed Google Scholar
- Henze, A. et al. Evidence that kidney function but not type 2 diabetes determines retinol-binding protein 4 serum levels. Diabetes 57, 3323–3326 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Mody, N., Graham, T. E., Tsuji, Y., Yang, Q. & Kahn, B. B. Decreased clearance of serum retinol-binding protein and elevated levels of transthyretin in insulin-resistant ob/ob mice. Am. J. Physiol. Endocrinol. Metab. 294, E785–E793 (2008).
Article CAS PubMed Google Scholar
- Yan, Q. W. et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56, 2533–2540 (2007).
Article CAS PubMed Google Scholar
- Zhang, J. et al. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol. Endocrinol. 22, 1416–1426 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Cowland, J. B., Muta, T. & Borregaard, N. IL-1β-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IκB-ζ. J. Immunol. 176, 5559–5566 (2006).
Article CAS PubMed Google Scholar
- Wang, Y. et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin. Chem. 53, 34–41 (2007).
Article CAS PubMed Google Scholar
- Catalan, V. et al. Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans. J. Mol. Med. 87, 803–813 (2009).
Article CAS PubMed Google Scholar
- Law, I. K. et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 59, 872–882 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Guo, H. et al. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 59, 1376–1385 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Tabata, M. et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell. Metab. 10, 178–188 (2009). This report identifies ANGPTL2 as an adipokine that promotes adipose tissue inflammation and obesity-linked insulin resistance.
Article CAS PubMed Google Scholar
- Hotamisligil, G. S., Budavari, A., Murray, D. & Spiegelman, B. M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-α. J. Clin. Invest. 94, 1543–1549 (1994).
Article CAS PubMed PubMed Central Google Scholar
- Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).
Article CAS PubMed Google Scholar
- Kern, P. A. et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J. Clin. Invest. 95, 2111–2119 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Ziccardi, P. et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 105, 804–809 (2002).
Article CAS PubMed Google Scholar
- Hivert, M. F. et al. Associations of adiponectin, resistin, and tumor necrosis factor-α with insulin resistance. J. Clin. Endocrinol. Metab. 93, 3165–3172 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Dominguez, H. et al. Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525 (2005).
Article CAS PubMed Google Scholar
- Ofei, F., Hurel, S., Newkirk, J., Sopwith, M. & Taylor, R. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885 (1996).
Article PubMed Google Scholar
- Lo, J. et al. Effects of TNF-α neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 293, E102–E109 (2007).
Article CAS PubMed Google Scholar
- Gonzalez-Gay, M. A. et al. Anti-tumor necrosis factor-α blockade improves insulin resistance in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 24, 83–86 (2006).
CAS PubMed Google Scholar
- Marra, M. et al. Effect of etanercept on insulin sensitivity in nine patients with psoriasis. Int. J. Immunopathol. Pharmacol. 20, 731–736 (2007).
Article CAS PubMed Google Scholar
- Stanley, T. L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E146–E150 (2011).
Article CAS PubMed Google Scholar
- Senn, J. J. et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J. Biol. Chem. 278, 13740–13746 (2003).
Article CAS PubMed Google Scholar
- Kim, H. J. et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060–1067 (2004).
Article CAS PubMed Google Scholar
- Matthews, V. B. et al. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53, 2431–2441 (2010).
Article CAS PubMed Google Scholar
- Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Mooney, R. A. Counterpoint: interleukin-6 does not have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 816–818 (2007).
Article CAS PubMed Google Scholar
- Pedersen, B. K. & Febbraio, M. A. Point: interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 814–816 (2007).
Article CAS PubMed Google Scholar
- Wood, I. S., Wang, B., Jenkins, J. R. & Trayhurn, P. The pro-inflammatory cytokine IL-18 is expressed in human adipose tissue and strongly upregulated by TNFα in human adipocytes. Biochem. Biophys. Res. Commun. 337, 422–429 (2005).
Article CAS PubMed Google Scholar
- Esposito, K. et al. Weight loss reduces interleukin-18 levels in obese women. J. Clin. Endocrinol. Metab. 87, 3864–3866 (2002).
Article CAS PubMed Google Scholar
- Mallat, Z. et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104, 1598–1603 (2001).
Article CAS PubMed Google Scholar
- Tan, H. W. et al. IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis 208, 350–357 (2010).
Article CAS PubMed Google Scholar
- Elhage, R. et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res. 59, 234–240 (2003).
Article CAS PubMed Google Scholar
- Netea, M. G. et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nature Med. 12, 650–656 (2006).
Article CAS PubMed Google Scholar
- Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006). This report shows that an increase in adipose tissue CCL2 contributes to macrophage accumulation in adipose tissue and obesity-related metabolic dysfunction.
Article CAS PubMed PubMed Central Google Scholar
- Sartipy, P. & Loskutoff, D. J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 100, 7265–7270 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D. & Heinecke, J. W. Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue. Diabetes 57, 1254–1261 (2008).
Article CAS PubMed Google Scholar
- Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).
Article CAS PubMed Google Scholar
- Tamura, Y. et al. Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice. Arterioscler. Thromb. Vasc. Biol. 28, 2195–2201 (2008).
Article CAS PubMed Google Scholar
- Sarafi, M. N., Garcia-Zepeda, E. A., MacLean, J. A., Charo, I. F. & Luster, A. D. Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. J. Exp. Med. 185, 99–109 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Chavey, C. et al. CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell. Metab. 9, 339–349 (2009). This report demonstrates that CXCL5 acts as an adipokine that causes obesity-induced insulin resistance.
Article CAS PubMed PubMed Central Google Scholar
- Samal, B. et al. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell Biol. 14, 1431–1437 (1994).
Article CAS PubMed PubMed Central Google Scholar
- Revollo, J. R. et al. Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell. Metab. 6, 363–375 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Fukuhara, A. et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307, 426–430 (2005).
Article CAS PubMed Google Scholar
- Haider, D. G. et al. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J. Clin. Endocrinol. Metab. 91, 1578–1581 (2006).
Article CAS PubMed Google Scholar
- El-Mesallamy, H. O., Kassem, D. H., El-Demerdash, E. & Amin, A. I. Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus. Metabolism 60, 63–70 (2011).
Article CAS PubMed Google Scholar
- Moschen, A. R. et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 178, 1748–1758 (2007).
Article CAS PubMed Google Scholar
- Oki, K., Yamane, K., Kamei, N., Nojima, H. & Kohno, N. Circulating visfatin level is correlated with inflammation, but not with insulin resistance. Clin. Endocrinol. 67, 796–800 (2007).
Article CAS Google Scholar
- Ryo, M. et al. Adiponectin as a biomarker of the metabolic syndrome. Circ. J. 68, 975–981 (2004).
Article CAS PubMed Google Scholar
- Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).
Article CAS PubMed Google Scholar
- Li, S., Shin, H. J., Ding, E. L. & van Dam, R. M. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302, 179–188 (2009).
Article CAS PubMed Google Scholar
- Fruebis, J. et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Med. 8, 731–737 (2002). This study shows that adiponectin deficiency contributes to the development of diet-induced insulin resistance.
Article CAS PubMed Google Scholar
- Nawrocki, A. R. et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem. 281, 2654–2660 (2006).
Article CAS PubMed Google Scholar
- Tomas, E. et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA 99, 16309–16313 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Med. 8, 1288–1295 (2002).
Article CAS PubMed Google Scholar
- Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).
Article CAS PubMed Google Scholar
- Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Med. 13, 332–339 (2007). This study reports the molecular cloning and characterization of adiponectin receptors 1 and 2.
Article CAS PubMed Google Scholar
- Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 464, 1313–1319 (2010).
Article CAS PubMed Google Scholar
- Bjursell, M. et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes 56, 583–593 (2007).
Article CAS PubMed Google Scholar
- Liu, Y. et al. Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes. Endocrinology 148, 683–692 (2007).
Article CAS PubMed Google Scholar
- Ouchi, N. et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107, 671–674 (2003).
Article CAS PubMed Google Scholar
- Xu, A. et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest. 112, 91–100 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Ouchi, N. et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103, 1057–1063 (2001).
Article CAS PubMed Google Scholar
- Yokota, T. et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96, 1723–1732 (2000).
CAS PubMed Google Scholar
- Yamaguchi, N. et al. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett. 579, 6821–6826 (2005).
Article CAS PubMed Google Scholar
- Kumada, M. et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 109, 2046–2049 (2004).
Article CAS PubMed Google Scholar
- Ohashi, K. et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153–6160 (2010).
Article CAS PubMed Google Scholar
- Takemura, Y. et al. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J. Clin. Invest. 117, 375–386 (2007). This study shows that adiponectin promotes the clearance of apoptotic cells by macrophages, thereby modulating inflammatory responses.
Article CAS PubMed PubMed Central Google Scholar
- Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002).
Article CAS Google Scholar
- Fantuzzi, G. Adiponectin and inflammation: consensus and controversy. J. Allergy Clin. Immunol. 121, 326–330 (2008).
Article CAS PubMed Google Scholar
- Aprahamian, T. et al. The peroxisome proliferator-activated receptor γ agonist rosiglitazone ameliorates murine lupus by induction of adiponectin. J. Immunol. 182, 340–346 (2009).
Article CAS PubMed Google Scholar
- Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell. Metab. 6, 386–397 (2007).
Article CAS PubMed Google Scholar
- Vallerie, S. N., Furuhashi, M., Fucho, R. & Hotamisligil, G. S. A predominant role for parenchymal c-Jun amino terminal kinase (JNK) in the regulation of systemic insulin sensitivity. PLoS ONE 3, e3151 (2008).
Article PubMed CAS PubMed Central Google Scholar
- Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).
Article CAS PubMed Google Scholar
- Pasarica, M. et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58, 718–725 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Ye, J., Gao, Z., Yin, J. & He, Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118–E1128 (2007).
Article CAS PubMed Google Scholar
- Rupnick, M. A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl Acad. Sci. USA 99, 10730–10735 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Nishimura, S. et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 56, 1517–1526 (2007).
Article CAS PubMed Google Scholar
- Sattar, N. et al. Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation 114, 623–629 (2006).
Article CAS PubMed Google Scholar
- Iwashima, Y. et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 43, 1318–1323 (2004).
Article CAS PubMed Google Scholar
- Hong, S. J., Park, C. G., Seo, H. S., Oh, D. J. & Ro, Y. M. Associations among plasma adiponectin, hypertension, left ventricular diastolic function and left ventricular mass index. Blood Press 13, 236–242 (2004).
Article CAS PubMed Google Scholar
- Pischon, T. et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291, 1730–1737 (2004).
Article CAS PubMed Google Scholar
- Ouchi, N. et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100, 2473–2476 (1999).
Article CAS PubMed Google Scholar
- Kobashi, C. et al. Adiponectin inhibits endothelial synthesis of interleukin-8. Circ. Res. 97, 1245–1252 (2005).
Article CAS PubMed Google Scholar
- Ouchi, N. et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation 102, 1296–1301 (2000).
Article CAS PubMed Google Scholar
- Okamoto, Y. et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106, 2767–2770 (2002).
Article CAS PubMed Google Scholar
- Yamauchi, T. et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J. Biol. Chem. 278, 2461–2468 (2003).
Article CAS PubMed Google Scholar
- Okamoto, Y. et al. Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ. Res. 102, 218–225 (2008).
Article CAS PubMed Google Scholar
- Nawrocki, A. R. et al. Lack of association between adiponectin levels and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 30, 1159–1165 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Ouchi, N. et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279, 1304–1309 (2004).
Article CAS PubMed Google Scholar
- Chen, H., Montagnani, M., Funahashi, T., Shimomura, I. & Quon, M. J. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem. 278, 45021–45026 (2003).
Article CAS PubMed Google Scholar
- Kobayashi, H. et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 94, e27–e31 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Li, R. et al. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am. J. Physiol. Endocrinol. Metab. 293, E1703–E1708 (2007).
Article CAS PubMed Google Scholar
- Ohashi, K. et al. Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension 47, 1108–1116 (2006).
Article CAS PubMed Google Scholar
- Nishimura, M. et al. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation 117, 216–223 (2008).
Article CAS PubMed Google Scholar
- Shibata, R. et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of AMP-activated protein kinase signaling. J. Biol. Chem. 279, 28670–28674 (2004).
Article CAS PubMed Google Scholar
- Kondo, M. et al. Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J. Biol. Chem. 284, 1718–1724 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Ohashi, K. et al. Adiponectin promotes revascularization of ischemic muscle through a cyclooxygenase 2-dependent mechanism. Mol. Cell Biol. 29, 3487–3499 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Shibata, R. et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nature Med. 10, 1384–1389 (2004).
Article CAS PubMed Google Scholar
- Liao, Y. et al. Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc. Res. 67, 705–713 (2005).
Article CAS PubMed Google Scholar
- Shibata, R. et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J. Mol. Cell Cardiol. 42, 1065–1074 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Sam, F. et al. Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure. Endocrinology 151, 322–331 (2010).
Article CAS PubMed Google Scholar
- Denzel, M. S. et al. Adiponectin deficiency limits tumor vascularization in the MMTV-PyV-mT mouse model of mammary cancer. Clin. Cancer Res. 15, 3256–3264 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Denzel, M. S. et al. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Invest. 120, 4342–4352 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Summer, R. et al. Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L1035–L1042 (2008).
Article CAS PubMed Google Scholar
- Summer, R. et al. Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L432–L438 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Nakagawa, Y., Kishida, K., Kihara, S., Funahashi, T. & Shimomura, I. Adiponectin ameliorates hypoxia-induced pulmonary arterial remodeling. Biochem. Biophys. Res. Commun. 382, 183–188 (2009).
Article CAS PubMed Google Scholar
- Shore, S. A., Terry, R. D., Flynt, L., Xu, A. & Hug, C. Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J. Allergy Clin. Immunol. 118, 389–395 (2006).
Article CAS PubMed Google Scholar
- Miller, M., Cho, J. Y., Pham, A., Ramsdell, J. & Broide, D. H. Adiponectin and functional adiponectin receptor 1 are expressed by airway epithelial cells in chronic obstructive pulmonary disease. J. Immunol. 182, 684–691 (2009).
Article CAS PubMed Google Scholar
- Zhu, M. et al. Impact of adiponectin deficiency on pulmonary responses to acute ozone exposure in mice. Am. J. Respir. Cell. Mol. Biol. 43, 487–497 (2010).
Article CAS PubMed Google Scholar
- Walkey, A. J. et al. Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure. Crit. Care Med. 38, 2329–2334 (2010).
Article CAS PubMed PubMed Central Google Scholar