Salaman, R. N. Protective inoculation against a plant virus. Nature131, 468 (1933). Article Google Scholar
White, P. B. Lysogenic strains of V. cholerae and the influence of lysozyme on cholera phage activity. J. Pathol. Bacteriol.44, 276–278 (1937). Article Google Scholar
Hoskins, M. A protective action of neurotropic against viscerotropic yellow fever virus in Macacus rhesus. Am. J. Trop. Med.15, 675–680 (1935). Article Google Scholar
Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci.147, 258–267 (1957). ArticleCASPubMed Google Scholar
Pestka, S., Krause, C. D. & Walter, M. R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev.202, 8–32 (2004). ArticleCASPubMed Google Scholar
Gad, H. H. et al. Interferon-λ is functionally an interferon but structurally related to the interleukin-10 family. J. Biol. Chem.284, 20869–20875 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature439, 204–207 (2006). This study showed that TRAF3 is essential for both type I IFN and IL-10 production, but dispensable for the production of pro-inflammatory cytokines. ArticlePubMedCAS Google Scholar
Schafer, S. L., Lin, R., Moore, P. A., Hiscott, J. & Pitha, P. M. Regulation of type I interferon gene expression by interferon regulatory factor-3. J. Biol. Chem.273, 2714–2720 (1998). ArticleCASPubMed Google Scholar
Barber, G. N. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr. Opin. Immunol.23, 10–20 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461, 788–792 (2009). A description of STING as an important mediator in the host defence response against DNA-containing pathogens and in the adjuvant activity of DNA-based vaccines. ArticleCASPubMedPubMed Central Google Scholar
Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature448, 501–505 (2007). The first identification of DAI as a new cytosolic DNA sensor that enhances the induction of type I IFN genes and other genes involved in innate immunity. ArticleCASPubMed Google Scholar
Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-κB activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol.181, 6427–6434 (2008). ArticleCASPubMed Google Scholar
Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature451, 725–729 (2008). ArticleCASPubMed Google Scholar
Chiu, Y. H., Macmillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell138, 576–591 (2009). ArticleCASPubMedPubMed Central Google Scholar
Honda, K. & Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature Rev. Immunol.6, 644–658 (2006). ArticleCAS Google Scholar
Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature Rev. Immunol.5, 375–386 (2005). An excellent review of the signalling mechanisms of type I IFNs, including the classical JAK–STAT pathways, as well as the MAPK and mTOR pathways. ArticleCAS Google Scholar
Fasler-Kan, E., Pansky, A., Wiederkehr, M., Battegay, M. & Heim, M. H. Interferon-α activates signal transducers and activators of transcription 5 and 6 in Daudi cells. Eur. J. Biochem.254, 514–519 (1998). ArticleCASPubMed Google Scholar
Matikainen, S. et al. Interferon-α activates multiple STAT proteins and upregulates proliferation-associated IL-2R α, c-myc, and pim-1 genes in human T cells. Blood93, 1980–1991 (1999). CASPubMed Google Scholar
Aaronson, D. S. & Horvath, C. M. A road map for those who don't know JAK–STAT. Science296, 1653–1655 (2002). ArticleCASPubMed Google Scholar
Platanias, L. C. & Fish, E. N. Signaling pathways activated by interferons. Exp. Hematol.27, 1583–1592 (1999). ArticleCASPubMed Google Scholar
Sato, T., Selleri, C., Young, N. S. & Maciejewski, J. P. Inhibition of interferon regulatory factor-1 expression results in predominance of cell growth stimulatory effects of interferon-γ due to phosphorylation of Stat1 and Stat3. Blood90, 4749–4758 (1997). CASPubMed Google Scholar
Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F. & Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J.334, 297–314 (1998). ArticleCASPubMedPubMed Central Google Scholar
Baker, S. J., Rane, S. G. & Reddy, E. P. Hematopoietic cytokine receptor signaling. Oncogene26, 6724–6737 (2007). ArticleCASPubMed Google Scholar
Regis, G., Pensa, S., Boselli, D., Novelli, F. & Poli, V. Ups and downs: the STAT1:STAT3 seesaw of interferon and gp130 receptor signalling. Semin. Cell Dev. Biol.19, 351–359 (2008). ArticleCASPubMed Google Scholar
Stephanou, A., Brar, B. K., Knight, R. A. & Latchman, D. S. Opposing actions of STAT-1 and STAT-3 on the Bcl-2 and Bcl-x promoters. Cell Death Differ.7, 329–330 (2000). ArticleCASPubMed Google Scholar
Azare, J. et al. Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin β6. Mol. Cell. Biol.27, 4444–4453 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dechow, T. N. et al. Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc. Natl Acad. Sci. USA101, 10602–10607 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dustin, M. L., Singer, K. H., Tuck, D. T. & Springer, T. A. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon γ and is mediated by intercellular adhesion molecule 1 (ICAM-1). J. Exp. Med.167, 1323–1340 (1988). ArticleCASPubMed Google Scholar
Yoshimura, A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci.97, 439–447 (2006). ArticleCASPubMed Google Scholar
Brucet, M., Marques, L., Sebastian, C., Lloberas, J. & Celada, A. Regulation of murine Tap1 and Lmp2 genes in macrophages by interferon γ is mediated by STAT1 and IRF-1. Genes Immun.5, 26–35 (2004). ArticleCASPubMed Google Scholar
Marques, L., Brucet, M., Lloberas, J. & Celada, A. STAT1 regulates lipopolysaccharide- and TNF-α-dependent expression of transporter associated with antigen processing 1 and low molecular mass polypeptide 2 genes in macrophages by distinct mechanisms. J. Immunol.173, 1103–1110 (2004). ArticleCASPubMed Google Scholar
Ito, S. et al. Interleukin-10 inhibits expression of both interferon α- and interferon γ-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood93, 1456–1463 (1999). CASPubMed Google Scholar
Yasukawa, H. et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nature Immunol.4, 551–556 (2003). ArticleCAS Google Scholar
El Kasmi, K. C. et al. General nature of the STAT3-activated anti-inflammatory response. J. Immunol.177, 7880–7888 (2006). ArticleCASPubMed Google Scholar
Tanabe, Y. et al. Cutting edge: role of STAT1, STAT3, and STAT5 in IFN-αβ responses in T lymphocytes. J. Immunol.174, 609–613 (2005). ArticleCASPubMed Google Scholar
Qing, Y. & Stark, G. R. Alternative activation of STAT1 and STAT3 in response to interferon-γ. J. Biol. Chem.279, 41679–41685 (2004). ArticleCASPubMed Google Scholar
Chang, E. Y., Guo, B., Doyle, S. E. & Cheng, G. Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J. Immunol.178, 6705–6709 (2007). ArticleCASPubMed Google Scholar
Wang, X., Chen, M., Wandinger, K. P., Williams, G. & Dhib-Jalbut, S. IFN-β-1b inhibits IL-12 production in peripheral blood mononuclear cells in an IL-10-dependent mechanism: relevance to IFN-β-1b therapeutic effects in multiple sclerosis. J. Immunol.165, 548–557 (2000). ArticleCASPubMed Google Scholar
Ziegler-Heitbrock, L. et al. IFN-α induces the human IL-10 gene by recruiting both IFN regulatory factor 1 and Stat3. J. Immunol.171, 285–290 (2003). ArticleCASPubMed Google Scholar
Wang, H. et al. The role of glycogen synthase kinase 3 in regulating IFN-β-mediated IL-10 production. J. Immunol.186, 675–684 (2011). ArticleCASPubMed Google Scholar
Uddin, S. et al. Activation of the p38 mitogen-activated protein kinase by type I interferons. J. Biol. Chem.274, 30127–30131 (1999). ArticleCASPubMed Google Scholar
Uddin, S. et al. The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon α-dependent transcriptional activation but not serine phosphorylation of Stat proteins. J. Biol. Chem.275, 27634–27640 (2000). CASPubMed Google Scholar
Li, Y. et al. Role of p38α Map kinase in type I interferon signaling. J. Biol. Chem.279, 970–979 (2004). ArticleCASPubMed Google Scholar
Mayer, I. A. et al. The p38 MAPK pathway mediates the growth inhibitory effects of interferon-α in BCR-ABL-expressing cells. J. Biol. Chem.276, 28570–28577 (2001). ArticleCASPubMed Google Scholar
Ishida, H. et al. Involvement of p38 signaling pathway in interferon-α-mediated antiviral activity toward hepatitis C virus. Biochem. Biophys. Res. Commun.321, 722–727 (2004). ArticleCASPubMed Google Scholar
David, M. et al. Requirement for MAP kinase (ERK2) activity in interferon α- and interferon β-stimulated gene expression through STAT proteins. Science269, 1721–1723 (1995). ArticleCASPubMed Google Scholar
Wang, F. et al. Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nature Immunol.5, 1266–1274 (2004). ArticleCAS Google Scholar
Uddin, S. et al. Interferon-α engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3′-kinase. J. Biol. Chem.270, 15938–15941 (1995). ArticleCASPubMed Google Scholar
Kaur, S. et al. Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc. Natl Acad. Sci. USA105, 4808–4813 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kaur, S. et al. Dual regulatory roles of phosphatidylinositol 3-kinase in IFN signaling. J. Immunol.181, 7316–7323 (2008). ArticleCASPubMed Google Scholar
Lekmine, F. et al. Activation of the p70 S6 kinase and phosphorylation of the 4E-BP1 repressor of mRNA translation by type I interferons. J. Biol. Chem.278, 27772–27780 (2003). ArticleCASPubMed Google Scholar
Lekmine, F. et al. Interferon-γ engages the p70 S6 kinase to regulate phosphorylation of the 40S S6 ribosomal protein. Exp. Cell Res.295, 173–182 (2004). ArticleCASPubMed Google Scholar
Matsumoto, A. et al. Interferon-α-induced mTOR activation is an anti-hepatitis C virus signal via the phosphatidylinositol 3-kinase–Akt-independent pathway. J. Gastroenterol.44, 856–863 (2009). ArticleCASPubMed Google Scholar
Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Rev. Immunol.9, 313–323 (2009). ArticleCAS Google Scholar
Katakura, K. et al. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Invest.115, 695–702 (2005). This study demonstrated that the protective effect of TLR9 signalling in colonic injury is mediated by type I IFNs. ArticleCASPubMedPubMed Central Google Scholar
Rachmilewitz, D. et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology126, 520–528 (2004). ArticleCASPubMed Google Scholar
Vijay-Kumar, M. et al. Activation of Toll-like receptor 3 protects against DSS-induced acute colitis. Inflamm. Bowel Dis.13, 856–864 (2007). ArticlePubMed Google Scholar
McFarland, A. P. et al. Localized delivery of interferon-β by Lactobacillus exacerbates experimental colitis. PloS ONE6, e16967 (2011). ArticleCASPubMedPubMed Central Google Scholar
Abe, K. et al. Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells. Proc. Natl Acad. Sci. USA104, 17022–17027 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hall, J. A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity29, 637–649 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hofmann, C. et al. T cell-dependent protective effects of CpG motifs of bacterial DNA in experimental colitis are mediated by CD11c+ dendritic cells. Gut59, 1347–1354 (2010). ArticleCASPubMed Google Scholar
Bleich, A. et al. CpG motifs of bacterial DNA exert protective effects in mouse models of IBD by antigen-independent tolerance induction. Gastroenterology136, 278–287 (2009). ArticlePubMed Google Scholar
Bilsborough, J., George, T. C., Norment, A. & Viney, J. L. Mucosal CD8α+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology108, 481–492 (2003). CASPubMedPubMed Central Google Scholar
Levings, M. K. et al. IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol.166, 5530–5539 (2001). ArticleCASPubMed Google Scholar
Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science295, 338–342 (2002). ArticleCASPubMed Google Scholar
Cho, S. S. et al. Activation of STAT4 by IL-12 and IFN-α: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J. Immunol.157, 4781–4789 (1996). CASPubMed Google Scholar
Rogge, L. et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol.161, 6567–6574 (1998). CASPubMed Google Scholar
Cousens, L. P. et al. Two roads diverged: interferon α/β- and interleukin 12-mediated pathways in promoting T cell interferon γ responses during viral infection. J. Exp. Med.189, 1315–1328 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, K. B. et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science297, 2063–2066 (2002). ArticleCASPubMed Google Scholar
Berenson, L. S., Farrar, J. D., Murphy, T. L. & Murphy, K. M. Frontline: absence of functional STAT4 activation despite detectable tyrosine phosphorylation induced by murine IFN-α. Eur. J. Immunol.34, 2365–2374 (2004). ArticleCASPubMed Google Scholar
Farrar, J. D., Smith, J. D., Murphy, T. L. & Murphy, K. M. Recruitment of Stat4 to the human interferon-α/β receptor requires activated Stat2. J. Biol. Chem.275, 2693–2697 (2000). ArticleCASPubMed Google Scholar
Berenson, L. S., Gavrieli, M., Farrar, J. D., Murphy, T. L. & Murphy, K. M. Distinct characteristics of murine STAT4 activation in response to IL-12 and IFN-α. J. Immunol.177, 5195–5203 (2006). ArticleCASPubMed Google Scholar
Matikainen, S. et al. IFN-α and IL-18 synergistically enhance IFN-γ production in human NK cells: differential regulation of Stat4 activation and IFN-γ gene expression by IFN-α and IL-12. Eur. J. Immunol.31, 2236–2245 (2001). ArticleCASPubMed Google Scholar
Strengell, M., Julkunen, I. & Matikainen, S. IFN-α regulates IL-21 and IL-21R expression in human NK and T cells. J. Leukoc. Biol.76, 416–422 (2004). ArticleCASPubMed Google Scholar
Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol.6, 1123–1132 (2005). ArticleCAS Google Scholar
Moschen, A. R., Geiger, S., Krehan, I., Kaser, A. & Tilg, H. Interferon-α controls IL-17 expression in vitro and in vivo. Immunobiology213, 779–787 (2008). ArticleCASPubMed Google Scholar
Qiu, H. et al. Type I IFNs enhance susceptibility to Chlamydia muridarum lung infection by enhancing apoptosis of local macrophages. J. Immunol.181, 2092–2102 (2008). ArticleCASPubMed Google Scholar
Karaghiosoff, M. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nature Immunol.4, 471–477 (2003). ArticleCAS Google Scholar
Vandenbark, A. A. et al. Interferon-β-1a treatment increases CD56bright natural killer cells and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J. Neuroimmunol.215, 125–128 (2009). ArticleCASPubMed Google Scholar
Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunol.10, 1000–1007 (2009). ArticleCAS Google Scholar
Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity31, 772–786 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nature Med.17, 673–675 (2011). ArticleCASPubMed Google Scholar
Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity34, 213–223 (2011). An important study showing that type I IFN signalling inhibits NLRP1 and NLRP3 inflammasomes in a two-step process through STAT1 and IL-10. ArticleCASPubMed Google Scholar
Henry, T., Brotcke, A., Weiss, D. S., Thompson, L. J. & Monack, D. M. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med.204, 987–994 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunol.11, 385–393 (2010). ArticleCAS Google Scholar
Fujita, T. et al. Induction of the transcription factor IRF-1 and interferon-β mRNAs by cytokines and activators of second-messenger pathways. Proc. Natl Acad. Sci. USA86, 9936–9940 (1989). ArticleCASPubMedPubMed Central Google Scholar
Rivieccio, M. A. et al. The cytokine IL-1β activates IFN response factor 3 in human fetal astrocytes in culture. J. Immunol.174, 3719–3726 (2005). ArticleCASPubMed Google Scholar
Gonzalez-Navajas, J. M. et al. Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. J. Exp. Med.207, 2799–2807 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tseng, P. H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunol.11, 70–75 (2010). An elegant study showing the different effects of K63- and K48-linked polyubiquitylation on the biological functions of TRAF3. ArticleCAS Google Scholar
Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science318, 1628–1632 (2007). The first report that DUBA binds to TRAF3 and selectively cleaves the K63-linked polyubiquitin chains, thereby dampening type I IFN production. ArticleCASPubMed Google Scholar
Lebeis, S. L., Powell, K. R., Merlin, D., Sherman, M. A. & Kalman, D. Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Infect. Immun.77, 604–614 (2009). ArticleCASPubMed Google Scholar
Kojouharoff, G. et al. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin. Exp. Immunol.107, 353–358 (1997). ArticleCASPubMedPubMed Central Google Scholar
Auerbuch, V., Brockstedt, D. G., Meyer-Morse, N., O'Riordan, M. & Portnoy, D. A. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med.200, 527–533 (2004). ArticleCASPubMedPubMed Central Google Scholar
Carrero, J. A., Calderon, B. & Unanue, E. R. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J. Exp. Med.200, 535–540 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stanley, S. A., Johndrow, J. E., Manzanillo, P. & Cox, J. S. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol.178, 3143–3152 (2007). ArticleCASPubMed Google Scholar
Nagarajan, U. M. et al. Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect. Immun.76, 4642–4648 (2008). ArticleCASPubMedPubMed Central Google Scholar
Henry, T. et al. Type I IFN signaling constrains IL-17A/F secretion by γδ T cells during bacterial infections. J. Immunol.184, 3755–3767 (2010). ArticleCASPubMed Google Scholar
Carrero, J. A. & Unanue, E. R. Lymphocyte apoptosis as an immune subversion strategy of microbial pathogens. Trends Immunol.27, 497–503 (2006). ArticleCASPubMed Google Scholar
Mancuso, G. et al. Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. J. Immunol.178, 3126–3133 (2007). ArticleCASPubMed Google Scholar
Coers, J., Vance, R. E., Fontana, M. F. & Dietrich, W. F. Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell. Microbiol.9, 2344–2357 (2007). ArticleCASPubMed Google Scholar
Burger, D. & Travis, S. Conventional medical management of inflammatory bowel disease. Gastroenterology140, 1827–1837 (2011). ArticlePubMed Google Scholar
Musch, E., Andus, T., Malek, M., Chrissafidou, A. & Schulz, M. Successful treatment of steroid refractory active ulcerative colitis with natural interferon-β — an open long-term trial. Z. Gastroenterol.45, 1235–1240 (2007). ArticleCASPubMed Google Scholar
Nikolaus, S. et al. Interferon β-1a in ulcerative colitis: a placebo controlled, randomised, dose escalating study. Gut52, 1286–1290 (2003). ArticleCASPubMedPubMed Central Google Scholar
Madsen, S. M. et al. An open-labeled, randomized study comparing systemic interferon-α-2A and prednisolone enemas in the treatment of left-sided ulcerative colitis. Am. J. Gastroenterol.96, 1807–1815 (2001). CASPubMed Google Scholar
Pena Rossi, C. et al. Interferon β-1a for the maintenance of remission in patients with Crohn's disease: results of a phase II dose-finding study. BMC Gastroenterol.9, 22 (2009). ArticlePubMedCASPubMed Central Google Scholar
Pena-Rossi, C. et al. Clinical trial: a multicentre, randomized, double-blind, placebo-controlled, dose-finding, phase II study of subcutaneous interferon-β-1a in moderately active ulcerative colitis. Aliment. Pharmacol. Ther.28, 758–767 (2008). ArticleCASPubMed Google Scholar
Gasche, C. et al. Prospective evaluation of interferon-α in treatment of chronic active Crohn's disease. Dig. Dis. Sci.40, 800–804 (1995). ArticleCASPubMed Google Scholar
Musch, E. et al. Interferon-β-1a for the treatment of steroid-refractory ulcerative colitis: a randomized, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol.3, 581–586 (2005). ArticleCASPubMed Google Scholar
Mitoro, A. et al. Exacerbation of ulcerative colitis during α-interferon therapy for chronic hepatitis C. Intern. Med.32, 327–331 (1993). ArticleCASPubMed Google Scholar
Watanabe, T. et al. A case of exacerbation of ulcerative colitis induced by combination therapy with PEG-interferon α-2b and ribavirin. Gut55, 1682–1683 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schott, E. et al. Development of ulcerative colitis in a patient with multiple sclerosis following treatment with interferon β1a. World J. Gastroenterol.13, 3638–3640 (2007). ArticlePubMedPubMed Central Google Scholar
Freeman, H. J., Chopra, A., Clandinin, M. T. & Thomson, A. B. Recent advances in celiac disease. World J. Gastroenterol.17, 2259–2272 (2011). ArticlePubMedPubMed Central Google Scholar
MacDonald, T. T. & Spencer, J. Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J. Exp. Med.167, 1341–1349 (1988). ArticleCASPubMed Google Scholar
Neurath, M. F., Finotto, S. & Glimcher, L. H. The role of Th1/Th2 polarization in mucosal immunity. Nature Med.8, 567–573 (2002). ArticleCASPubMed Google Scholar
Monteleone, G., Pender, S. L., Wathen, N. C. & MacDonald, T. T. Interferon-α drives T cell-mediated immunopathology in the intestine. Eur. J. Immunol.31, 2247–2255 (2001). ArticleCASPubMed Google Scholar
Di Sabatino, A. et al. Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology133, 1175–1187 (2007). ArticleCASPubMed Google Scholar
Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nature Med.4, 713–717 (1998). ArticleCASPubMed Google Scholar
Molberg, O. et al. Gliadin specific, HLA DQ2-restricted T cells are commonly found in small intestinal biopsies from coeliac disease patients, but not from controls. Scand. J. Immunol.46, 103–109 (1997). ArticleCASPubMed Google Scholar
Ting, J. P. & Trowsdale, J. Genetic control of MHC class II expression. Cell109, S21–S33 (2002). ArticleCASPubMed Google Scholar
Cammarota, G., Cuoco, L., Cianci, R., Pandolfi, F. & Gasbarrini, G. Onset of coeliac disease during treatment with interferon for chronic hepatitis C. Lancet356, 1494–1495 (2000). ArticleCASPubMed Google Scholar
Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature445, 648–651 (2007). CASPubMed Google Scholar
Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med.202, 135–143 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dzionek, A. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J. Exp. Med.194, 1823–1834 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hua, J., Kirou, K., Lee, C. & Crow, M. K. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum.54, 1906–1916 (2006). ArticleCASPubMed Google Scholar
Kirou, K. A. et al. Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum.52, 1491–1503 (2005). ArticleCASPubMed Google Scholar
Blanco, P., Palucka, A. K., Gill, M., Pascual, V. & Banchereau, J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science294, 1540–1543 (2001). ArticleCASPubMed Google Scholar
Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity19, 225–234 (2003). ArticleCASPubMed Google Scholar
Yao, Y. et al. Neutralization of interferon-α/β-inducible genes and downstream effect in a phase I trial of an anti-interferon-α monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum.60, 1785–1796 (2009). ArticleCASPubMed Google Scholar
Ann Marrie, R. & Rudick, R. A. Drug insight: interferon treatment in multiple sclerosis. Nature Clin. Pract. Neurol.2, 34–44 (2006). ArticleCAS Google Scholar
Bendtzen, K. Critical review: assessment of interferon-β immunogenicity in multiple sclerosis. J. Interferon Cytokine Res.30, 759–766 (2010). ArticleCASPubMed Google Scholar
The IFNB Multiple Sclerosis Study Group. Interferon β-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology43, 655–661 (1993).
Teige, I. et al. IFN-β gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J. Immunol.170, 4776–4784 (2003). ArticleCASPubMed Google Scholar
Brod, S. A. & Burns, D. K. Suppression of relapsing experimental autoimmune encephalomyelitis in the SJL/J mouse by oral administration of type I interferons. Neurology44, 1144–1148 (1994). ArticleCASPubMed Google Scholar
Prinz, M. et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity28, 675–686 (2008). ArticleCASPubMed Google Scholar
Guo, B., Chang, E. Y. & Cheng, G. The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J. Clin. Invest.118, 1680–1690 (2008). ArticleCASPubMedPubMed Central Google Scholar
Teige, I., Liu, Y. & Issazadeh-Navikas, S. IFN-β inhibits T cell activation capacity of central nervous system APCs. J. Immunol.177, 3542–3553 (2006). ArticleCASPubMed Google Scholar
Rudick, R. A. et al. Interferon β induces interleukin-10 expression: relevance to multiple sclerosis. Ann. Neurol.40, 618–627 (1996). ArticleCASPubMed Google Scholar
Ferrantini, M., Capone, I. & Belardelli, F. Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie89, 884–893 (2007). ArticleCASPubMed Google Scholar
Rizza, P., Moretti, F. & Belardelli, F. Recent advances on the immunomodulatory effects of IFN-α: implications for cancer immunotherapy and autoimmunity. Autoimmunity43, 204–209 (2010). ArticleCASPubMed Google Scholar
Ferrantini, M. & Belardelli, F. Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications. Semin. Cancer Biol.10, 145–157 (2000). ArticleCASPubMed Google Scholar
Di Pucchio, T. et al. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-α results in the activation of specific CD8+ T cells and monocyte/dendritic cell precursors. Cancer Res.66, 4943–4951 (2006). ArticleCASPubMed Google Scholar
Lapenta, C. et al. IFN-α-conditioned dendritic cells are highly efficient in inducing cross-priming CD8+ T cells against exogenous viral antigens. Eur. J. Immunol.36, 2046–2060 (2006). ArticleCASPubMed Google Scholar
Lapenta, C. et al. Potent immune response against HIV-1 and protection from virus challenge in hu-PBL-SCID mice immunized with inactivated virus-pulsed dendritic cells generated in the presence of IFN-α. J. Exp. Med.198, 361–367 (2003). ArticleCASPubMedPubMed Central Google Scholar
Santodonato, L. et al. Monocyte-derived dendritic cells generated after a short-term culture with IFN-α and granulocyte-macrophage colony-stimulating factor stimulate a potent Epstein-Barr virus-specific CD8+ T cell response. J. Immunol.170, 5195–5202 (2003). ArticleCASPubMed Google Scholar