Ectopic lymphoid-like structures in infection, cancer and autoimmunity (original) (raw)
Jones, S. A. Directing transition from innate to acquired immunity: defining a role for IL-6. J. Immunol.175, 3463–3468 (2005). ArticleCASPubMed Google Scholar
McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Rev. Immunol.7, 429–442 (2007). ArticleCAS Google Scholar
Choy, E. H., Kavanaugh, A. F. & Jones, S. A. The problem of choice: current biologic agents and future prospects in RA. Nature Rev. Rheumatol.9, 154–163 (2013). ArticleCAS Google Scholar
Jones, S. A., Scheller, J. & Rose-John, S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J. Clin. Invest.121, 3375–3383 (2011). ArticleCASPubMedPubMed Central Google Scholar
Raza, K. The Michael Mason prize: early rheumatoid arthritis—the window narrows. Rheumatology49, 406–410 (2010). ArticlePubMed Google Scholar
Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nature Rev. Immunol.6, 205–217 (2006). This is an excellent commentary on the development of lymphoid structures in disease. ArticleCAS Google Scholar
Neyt, K., Perros, F., GeurtsvanKessel, C. H., Hammad, H. & Lambrecht, B. N. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol.33, 297–305 (2012). ArticleCASPubMed Google Scholar
Cañete, J. D. et al. Clinical significance of synovial lymphoid neogenesis and its reversal after anti-tumour necrosis factor-α therapy in rheumatoid arthritis. Ann. Rheum. Dis.68, 751–756 (2009). This study provides an example of how distinct synovial histopathology may influence the response to biological therapy. The presence of ELSs was associated with an inferior response to anti-TNF therapy. ArticleCASPubMed Google Scholar
Coppola, D. et al. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am. J. Pathol.179, 37–45 (2011). ArticlePubMedPubMed Central Google Scholar
Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nature Immunol.7, 344–353 (2006). This is an excellent review about the mechanisms controlling lymphoid neogenesis. ArticleCAS Google Scholar
De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science264, 703–707 (1994). ArticleCASPubMed Google Scholar
Kratz, A., Campos-Neto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med.183, 1461–1472 (1996). ArticleCASPubMed Google Scholar
Drayton, D. L., Ying, X., Lee, J., Lesslauer, W. & Ruddle, N. H. Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med.197, 1153–1163 (2003). ArticleCASPubMedPubMed Central Google Scholar
Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell157, 832–844 (2014). ArticleCASPubMedPubMed Central Google Scholar
Meier, D. et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity26, 643–654 (2007). This is an early report on the role of IL-7 and LTi cells in lymphoid neogenesis. ArticleCASPubMed Google Scholar
Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science330, 665–669 (2010). ArticleCASPubMed Google Scholar
Schmutz, S. et al. Cutting edge: IL-7 regulates the peripheral pool of adult RORγ+ lymphoid tissue inducer cells. J. Immunol.183, 2217–2221 (2009). The study describes the role of RORγt in LTi cells and provides a potential link to the involvement of TH17-like cells in lymphoid neogenesis. ArticleCASPubMed Google Scholar
Luther, S. A., Ansel, K. M. & Cyster, J. G. Overlapping roles of CXCL13, interleukin 7 receptor-α, and CCR7 ligands in lymph node development. J. Exp. Med.197, 1191–1198 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, H. et al. Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor-α cells that differentially engender lymph nodes and Peyer's patches. Immunity17, 823–833 (2002). This study suggests that unique cellular and molecular mechanisms contribute to lymphoid neogenesis in distinct anatomical sites. ArticleCASPubMed Google Scholar
Sato, M. et al. Stromal activation and formation of lymphoid-like stroma in chronic lung allograft dysfunction. Transplantation91, 1398–1405 (2011). ArticleCASPubMed Google Scholar
Rangel-Moreno, J., Moyron-Quiroz, J. E., Hartson, L., Kusser, K. & Randall, T. D. Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc. Natl Acad. Sci. USA104, 10577–10582 (2007). This study demonstrates the importance of homeostatic chemokines in the organization of lymphoid structures. ArticleCASPubMed Google Scholar
Braun, A., Takemura, S., Vallejo, A. N., Goronzy, J. J. & Weyand, C. M. Lymphotoxin β-mediated stimulation of synoviocytes in rheumatoid arthritis. Arthritis Rheum.50, 2140–2150 (2004). ArticleCASPubMed Google Scholar
Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol.167, 1072–1080 (2001). ArticleCASPubMed Google Scholar
Timmer, T. C. et al. Inflammation and ectopic lymphoid structures in rheumatoid arthritis synovial tissues dissected by genomics technology: identification of the interleukin-7 signaling pathway in tissues with lymphoid neogenesis. Arthritis Rheum.56, 2492–2502 (2007). This is an investigative study of ELS development in the context of human disease. ArticleCASPubMed Google Scholar
Deteix, C. et al. Intragraft Th17 infiltrate promotes lymphoid neogenesis and hastens clinical chronic rejection. J. Immunol.184, 5344–5351 (2010). ArticleCASPubMed Google Scholar
Peters, A. et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity35, 986–996 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nature Immunol.12, 639–646 (2011). References 29 and 30 suggest a role of IL-17 and TH17-like cells in ELS development. ArticleCAS Google Scholar
Link, A. et al. Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. Am. J. Pathol.178, 1662–1675 (2011). ArticleCASPubMedPubMed Central Google Scholar
Furtado, G. C. et al. TNFα-dependent development of lymphoid tissue in the absence of RORγt lymphoid tissue inducer cells. Mucosal Immunol.7, 602–614 (2013). This study supports a role for resident myeloid cells and stromal cells in lymphoid neogenesis. ArticleCASPubMedPubMed Central Google Scholar
Lochner, M. et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J. Exp. Med.208, 125–134 (2011). ArticleCASPubMedPubMed Central Google Scholar
Luther, S. A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol.169, 424–433 (2002). ArticleCASPubMed Google Scholar
Luther, S. A., Lopez, T., Bai, W., Hanahan, D. & Cyster, J. G. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity12, 471–481 (2000). ArticleCASPubMed Google Scholar
Chen, S. C. et al. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J. Immunol.168, 1001–1008 (2002). ArticleCASPubMed Google Scholar
Fan, L., Reilly, C. R., Luo, Y., Dorf, M. E. & Lo, D. Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J. Immunol.164, 3955–3959 (2000). ArticleCASPubMed Google Scholar
Slight, S. R. et al. CXCR5+ T helper cells mediate protective immunity against tuberculosis. J. Clin. Invest.123, 712–726 (2013). CASPubMedPubMed Central Google Scholar
Bombardieri, M. et al. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. J. Immunol.189, 3767–3776 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gu-Trantien, C. et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest.123, 2873–2892 (2013). This study uses imaging to correlate the infiltration of TFHcells with clinical outcome in patients with breast cancer. ArticleCASPubMedPubMed Central Google Scholar
Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med.192, 1545–1552 (2000). ArticleCASPubMedPubMed Central Google Scholar
Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med.192, 1553–1562 (2000). This study describes the original identification and functional characterization of TFHcells. ArticleCASPubMedPubMed Central Google Scholar
Lu, K. T. et al. Functional and epigenetic studies reveal multistep differentiation and plasticity of _in vitro_-generated and _in vivo_-derived follicular T helper cells. Immunity35, 622–632 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fahey, L. M. et al. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med.208, 987–999 (2011). ArticleCASPubMedPubMed Central Google Scholar
King, I. L. & Mohrs, M. IL-4–producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med.206, 1001–1007 (2009). ArticleCASPubMedPubMed Central Google Scholar
Glatman Zaretsky, A. et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med.206, 991–999 (2009). ArticleCASPubMed Google Scholar
Bauquet, A. T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH17 cells. Nature Immunol.10, 167–175 (2009). ArticleCAS Google Scholar
Huber, M. et al. IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc. Natl Acad. Sci. USA105, 20846–20851 (2008). ArticlePubMed Google Scholar
Ma, C. S. et al. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood119, 3997–4008 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mitsdoerffer, M. et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl Acad. Sci. USA107, 14292–14297 (2010). ArticlePubMed Google Scholar
Nurieva, R. I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity29, 138–149 (2008). ArticleCASPubMedPubMed Central Google Scholar
Manzo, A. et al. Mature antigen-experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint. Arthritis Rheum.58, 3377–3387 (2008). ArticleCASPubMed Google Scholar
Tokoyoda, K. et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity30, 721–730 (2009). ArticleCASPubMed Google Scholar
Odegard, J. M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med.205, 2873–2886 (2008). ArticleCASPubMedPubMed Central Google Scholar
Marinkovic, T. et al. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J. Clin. Invest.116, 2622–2632 (2006). ArticleCASPubMedPubMed Central Google Scholar
Muniz, L. R., Pacer, M. E., Lira, S. A. & Furtado, G. C. A critical role for dendritic cells in the formation of lymphatic vessels within tertiary lymphoid structures. J. Immunol.187, 828–834 (2011). ArticleCASPubMedPubMed Central Google Scholar
GeurtsvanKessel, C. H. et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med.206, 2339–2349 (2009). ArticleCASPubMedPubMed Central Google Scholar
Halle, S. et al. Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. J. Exp. Med.206, 2593–2601 (2009). ArticleCASPubMedPubMed Central Google Scholar
Teng, G. & Papavasiliou, F. N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet.41, 107–120 (2007). ArticleCASPubMed Google Scholar
Stavnezer, J., Guikema, J. E. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol.26, 261–292 (2008). ArticleCASPubMedPubMed Central Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000). ArticleCASPubMed Google Scholar
Barreto, V., Reina-San-Martin, B., Ramiro, A. R., McBride, K. M. & Nussenzweig, M. C. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol. Cell12, 501–508 (2003). ArticleCASPubMed Google Scholar
Bombardieri, M. et al. Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjogren's syndrome. J. Immunol.179, 4929–4938 (2007). ArticleCASPubMed Google Scholar
Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med.6, e1 (2009). This study describes the functional properties of ELSs in patients with rheumatoid arthritis. ArticlePubMedPubMed Central Google Scholar
Nacionales, D. C. et al. B cell proliferation, somatic hypermutation, class switch recombination, and autoantibody production in ectopic lymphoid tissue in murine lupus. J. Immunol.182, 4226–4236 (2009). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, E. et al. Oral clarithromycin enhances airway immunoglobulin A (IgA) immunity through induction of IgA class switching recombination and B-cell-activating factor of the tumor necrosis factor family molecule on mucosal dendritic cells in mice infected with influenza A virus. J. Virol.86, 10924–10934 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cheng, J. et al. Ectopic B-cell clusters that infiltrate transplanted human kidneys are clonal. Proc. Natl Acad. Sci. USA108, 5560–5565 (2011). ArticlePubMed Google Scholar
Scheel, T., Gursche, A., Zacher, J., Haupl, T. & Berek, C. V-region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthritis Rheum.63, 63–72 (2011). This study provides a functional evaluation of ELSs in patients with rheumatoid arthritis. ArticleCASPubMed Google Scholar
Stott, D. I., Hiepe, F., Hummel, M., Steinhauser, G. & Berek, C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjogren's syndrome. J. Clin. Invest.102, 938–946 (1998). ArticleCASPubMedPubMed Central Google Scholar
Grewal, J. S. et al. Salivary glands act as mucosal inductive sites via the formation of ectopic germinal centers after site-restricted MCMV infection. FASEB J.25, 1680–1696 (2011). ArticleCASPubMedPubMed Central Google Scholar
Khader, S. A. et al. In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity. J. Immunol.183, 8004–8014 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mazzucchelli, L. et al. BCA-1 is highly expressed in _Helicobacter pylori_-induced mucosa-associated lymphoid tissue and gastric lymphoma. J. Clin. Invest.104, R49–R54 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mosnier, J. F. et al. The intraportal lymphoid nodule and its environment in chronic active hepatitis C: an immunohistochemical study. Hepatology17, 366–371 (1993). ArticleCASPubMed Google Scholar
Ulrichs, T. et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J. Pathol.204, 217–228 (2004). ArticlePubMed Google Scholar
Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nature Med.10, 927–934 (2004). ArticleCASPubMed Google Scholar
Xu, B. et al. Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNAd, α4β1 integrin/VCAM-1, and LFA-1 adhesion pathways. J. Exp. Med.197, 1255–1267 (2003). ArticleCASPubMedPubMed Central Google Scholar
Moyron-Quiroz, J. E. et al. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity25, 643–654 (2006). ArticleCASPubMed Google Scholar
Manzo, A., Bombardieri, M., Humby, F. & Pitzalis, C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol. Rev.233, 267–285 (2010). ArticleCASPubMed Google Scholar
Bombardieri, M. & Pitzalis, C. Ectopic lymphoid neogenesis and lymphoid chemokines in Sjogren's syndrome: at the interplay between chronic inflammation, autoimmunity and lymphomagenesis. Curr. Pharm. Biotechnol.13, 1989–1996 (2012). ArticleCASPubMed Google Scholar
Berrih-Aknin, S., Ragheb, S., Le Panse, R. & Lisak, R. P. Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev.12, 885–893 (2013). ArticleCASPubMed Google Scholar
Armengol, M. P. et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am. J. Pathol.159, 861–873 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ekland, E. H., Forster, R., Lipp, M. & Cyster, J. G. Requirements for follicular exclusion and competitive elimination of autoantigen-binding B cells. J. Immunol.172, 4700–4708 (2004). ArticleCASPubMed Google Scholar
Le Pottier, L. et al. Ectopic germinal centers are rare in Sjogren's syndrome salivary glands and do not exclude autoreactive B cells. J. Immunol.182, 3540–3547 (2009). ArticleCASPubMed Google Scholar
Salomonsson, S. et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren's syndrome. Arthritis Rheum.48, 3187–3201 (2003). ArticleCASPubMed Google Scholar
Shimaoka, Y. et al. Nurse-like cells from bone marrow and synovium of patients with rheumatoid arthritis promote survival and enhance function of human B cells. J. Clin. Invest.102, 606–618 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pender, M. P. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol.24, 584–588 (2003). ArticleCASPubMed Google Scholar
Cavalcante, P. et al. Epstein–Barr virus persistence and reactivation in myasthenia gravis thymus. Ann. Neurol.67, 726–738 (2010). PubMed Google Scholar
Croia, C. et al. Epstein–Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann. Rheum. Dis.72, 1559–1568 (2013). This study provides an example of how viral infection may influence the development and functional properties of ELSs in autoimmune disease. ArticleCASPubMed Google Scholar
Croia, C. et al. Implication of Epstein–Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjogren's syndrome. Arthritis Rheum.http://dx.doi.org/10.1002/art.38726 (2014).
Schonbeck, S., Padberg, F., Hohlfeld, R. & Wekerle, H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J. Clin. Invest.90, 245–250 (1992). ArticleCASPubMedPubMed Central Google Scholar
Thaunat, O. Pathophysiologic significance of B-cell clusters in chronically rejected grafts. Transplantation92, 121–126 (2011). ArticlePubMed Google Scholar
Thaunat, O. et al. Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J. Immunol.185, 717–728 (2010). This study provides an example of how the development of severe inflammation following chronic transplant rejection is accompanied by lymphoid neogenesis. ArticleCASPubMed Google Scholar
Brown, K., Sacks, S. H. & Wong, W. Tertiary lymphoid organs in renal allografts can be associated with donor-specific tolerance rather than rejection. Eur. J. Immunol.41, 89–96 (2011). ArticleCASPubMed Google Scholar
Le Texier, L. et al. Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile. Am. J. Transplant.11, 429–438 (2011). ArticleCASPubMed Google Scholar
Dieu-Nosjean, M. C. et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol.26, 4410–4417 (2008). ArticleCASPubMed Google Scholar
de Chaisemartin, L. et al. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res.71, 6391–6399 (2011). ArticleCASPubMed Google Scholar
Nzula, S., Going, J. J. & Stott, D. I. Antigen-driven clonal proliferation, somatic hypermutation, and selection of B lymphocytes infiltrating human ductal breast carcinomas. Cancer Res.63, 3275–3280 (2003). CASPubMed Google Scholar
Martinet, L. et al. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res.71, 5678–5687 (2011). ArticleCASPubMed Google Scholar
Goc, J., Fridman, W. H., Sautes-Fridman, C. & Dieu-Nosjean, M. C. Characteristics of tertiary lymphoid structures in primary cancers. Oncoimmunology2, e26836 (2013). ArticlePubMedPubMed Central Google Scholar
Hamanishi, J. et al. Activated local immunity by CC chemokine ligand 19-transduced embryonic endothelial progenitor cells suppresses metastasis of murine ovarian cancer. Stem Cells28, 164–173 (2010). CASPubMed Google Scholar
Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet.4, e1000041 (2008). ArticleCASPubMedPubMed Central Google Scholar
Maiti, A. K. et al. Confirmation of an association between rs6822844 at the Il2–Il21 region and multiple autoimmune diseases: evidence of a general susceptibility locus. Arthritis Rheum.62, 323–329 (2010). ArticleCASPubMedPubMed Central Google Scholar
van Heel, D. A. et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nature Genet.39, 827–829 (2007). ArticleCASPubMed Google Scholar
Jones, J. L. et al. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J. Clin. Invest.119, 2052–2061 (2009). This study provides an example of how clinical intervention aids the mechanistic understanding of ELS development in the context of disease. CASPubMedPubMed Central Google Scholar
Mells, G. F. et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nature Genet.43, 329–332 (2011). ArticleCASPubMed Google Scholar
Lessard, C. J. et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjogren's syndrome. Nature Genet.45, 1284–1292 (2013). ArticleCASPubMed Google Scholar
Zhang, J. et al. Three SNPs in chromosome 11q23.3 are independently associated with systemic lupus erythematosus in Asians. Hum. Mol. Genet.23, 524–533 (2014). ArticleCASPubMed Google Scholar
Lill, C. M. et al. MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain136, 1778–1782 (2013). ArticlePubMedPubMed Central Google Scholar
Hislop, A. D., Taylor, G. S., Sauce, D. & Rickinson, A. B. Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu. Rev. Immunol.25, 587–617 (2007). ArticleCASPubMed Google Scholar
Thorley-Lawson, D. A. Epstein–Barr virus: exploiting the immune system. Nature Rev. Immunol.1, 75–82 (2001). ArticleCAS Google Scholar
Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol.25, 334–344 (2013). ArticlePubMed Google Scholar
van de Sande, M. G. et al. Presence of lymphocyte aggregates in the synovium of patients with early arthritis in relationship to diagnosis and outcome: is it a constant feature over time? Ann. Rheum. Dis.70, 700–703 (2011). ArticlePubMed Google Scholar
Ulrichs, T. et al. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J. Infect. Dis.192, 89–97 (2005). ArticlePubMed Google Scholar
Shoenfeld, Y. & Isenberg, D. A. Mycobacteria and autoimmunity. Immunol. Today9, 178–182 (1988). ArticleCASPubMed Google Scholar
Sansonno, D. et al. Increased serum levels of the chemokine CXCL13 and up-regulation of its gene expression are distinctive features of HCV-related cryoglobulinemia and correlate with active cutaneous vasculitis. Blood112, 1620–1627 (2008). ArticleCASPubMed Google Scholar
Sansonno, D. et al. Clonal analysis of intrahepatic B cells from HCV-infected patients with and without mixed cryoglobulinemia. J. Immunol.160, 3594–3601 (1998). CASPubMed Google Scholar
Ramos-Casals, M., De Vita, S. & Tzioufas, A. G. Hepatitis C virus, Sjogren's syndrome and B-cell lymphoma: linking infection, autoimmunity and cancer. Autoimmun Rev.4, 8–15 (2005). ArticlePubMed Google Scholar
Deutsch, A. J. et al. MALT lymphoma and extranodal diffuse large B-cell lymphoma are targeted by aberrant somatic hypermutation. Blood109, 3500–3504 (2007). ArticleCASPubMed Google Scholar
Hussell, T., Isaacson, P. G., Crabtree, J. E. & Spencer, J. _Helicobacter pylori_-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J. Pathol.178, 122–127 (1996). ArticleCASPubMed Google Scholar
Wohrer, S., Troch, M. & Raderer, M. Therapy of gastric mucosa-associated lymphoid tissue lymphoma. Expert Opin. Pharmacother.8, 1263–1273 (2007). ArticlePubMed Google Scholar
Bende, R. J. et al. Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J. Exp. Med.201, 1229–1241 (2005). ArticleCASPubMedPubMed Central Google Scholar
Klimiuk, P. A. et al. Circulating tumour necrosis factor-α and soluble tumour necrosis factor receptors in patients with different patterns of rheumatoid synovitis. Ann. Rheum. Dis.62, 472–475 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kotake, S. et al. Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum.44, 1003–1012 (2001). ArticleCASPubMed Google Scholar
Dharmapatni, A. A. et al. TWEAK and Fn14 expression in the pathogenesis of joint inflammation and bone erosion in rheumatoid arthritis. Arthritis Res. Ther.13, R51 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol.186, 1849–1860 (2011). ArticleCASPubMed Google Scholar
Magliozzi, R. et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol.68, 477–493 (2010). ArticleCASPubMed Google Scholar
Coronella-Wood, J. A. & Hersh, E. M. Naturally occurring B-cell responses to breast cancer. Cancer Immunol. Immunother.52, 715–738 (2003). ArticlePubMed Google Scholar
Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol.28, 105–113 (2010). ArticleCASPubMed Google Scholar
Krell, J., Frampton, A. E. & Stebbing, J. The clinical significance of tumor infiltrating lymphoctyes in breast cancer: does subtype matter? BMC Cancer12, 135 (2012). ArticlePubMedPubMed Central Google Scholar
Liu, W., Peng, Y. & Tobin, D. J. A new 12-gene diagnostic biomarker signature of melanoma revealed by integrated microarray analysis. PeerJ1, e49 (2013). ArticleCASPubMedPubMed Central Google Scholar
Jonsson, G. et al. Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin. Cancer Res.16, 3356–3367 (2010). ArticlePubMed Google Scholar
DiLillo, D. J., Yanaba, K. & Tedder, T. F. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J. Immunol.184, 4006–4016 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shiao, S. L., Ganesan, A. P., Rugo, H. S. & Coussens, L. M. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev.25, 2559–2572 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chiavolini, D. et al. Bronchus-associated lymphoid tissue (BALT) and survival in a vaccine mouse model of tularemia. PLoS ONE5, e11156 (2010). ArticleCASPubMedPubMed Central Google Scholar
Thaunat, O. et al. B cell survival in intragraft tertiary lymphoid organs after rituximab therapy. Transplantation85, 1648–1653 (2008). ArticleCASPubMed Google Scholar
Badot, V. et al. Gene expression profiling in the synovium identifies a predictive signature of absence of response to adalimumab therapy in rheumatoid arthritis. Arthritis Res. Ther.11, R57 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fava, R. A. et al. A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J. Immunol.171, 115–126 (2003). ArticleCASPubMed Google Scholar
Gatumu, M. K. et al. Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjogren's syndrome in salivary glands of non-obese diabetic mice. Arthritis Res. Ther.11, R24 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. et al. Recruitment and activation of naive T cells in the islets by lymphotoxin-β receptor-dependent tertiary lymphoid structure. Immunity25, 499–509 (2006). ArticleCASPubMed Google Scholar
Emu, B. et al. Safety, pharmacokinetics, and biologic activity of pateclizumab, a novel monoclonal antibody targeting lymphotoxin-α: results of a phase I randomized, placebo-controlled trial. Arthritis Res. Ther.14, R6 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zheng, B. et al. CXCL13 neutralization reduces the severity of collagen-induced arthritis. Arthritis Rheum.52, 620–626 (2005). ArticleCASPubMed Google Scholar
Kramer, J. M., Klimatcheva, E. & Rothstein, T. L. CXCL13 is elevated in Sjogren's syndrome in mice and humans and is implicated in disease pathogenesis. J. Leukoc. Biol.94, 1079–1089 (2013). ArticleCASPubMedPubMed Central Google Scholar
Henry, R. A. & Kendall, P. L. CXCL13 blockade disrupts B lymphocyte organization in tertiary lymphoid structures without altering B cell receptor bias or preventing diabetes in nonobese diabetic mice. J. Immunol.185, 1460–1465 (2010). ArticleCASPubMed Google Scholar
Pelletier, D. & Hafler, D. A. Fingolimod for multiple sclerosis. N. Engl. J. Med.366, 339–347 (2012). ArticleCASPubMed Google Scholar
Mehling, M. et al. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology71, 1261–1267 (2008). ArticleCASPubMed Google Scholar
Young, D. A. et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum.56, 1152–1163 (2007). ArticleCASPubMed Google Scholar
Herber, D. et al. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J. Immunol.178, 3822–3830 (2007). ArticleCASPubMed Google Scholar
Frey, O. et al. Inducible costimulator (ICOS) blockade inhibits accumulation of polyfunctional T helper 1/T helper 17 cells and mitigates autoimmune arthritis. Ann. Rheum. Dis.69, 1495–1501 (2010). ArticleCASPubMed Google Scholar
Hu, Y. L., Metz, D. P., Chung, J., Siu, G. & Zhang, M. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J. Immunol.182, 1421–1428 (2009). ArticleCASPubMed Google Scholar
Nanji, S. A. et al. Costimulation blockade of both inducible costimulator and CD40 ligand induces dominant tolerance to islet allografts and prevents spontaneous autoimmune diabetes in the NOD mouse. Diabetes55, 27–33 (2006). ArticleCASPubMed Google Scholar
Wengner, A. M. et al. CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum.56, 3271–3283 (2007). ArticleCASPubMed Google Scholar
Lee, B. H., Carcamo, W. C., Chiorini, J. A., Peck, A. B. & Nguyen, C. Q. Gene therapy using IL-27 ameliorates Sjogren's syndrome-like autoimmune exocrinopathy. Arthritis Res. Ther.14, R172 (2012). ArticleCASPubMedPubMed Central Google Scholar
Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain130, 1089–1104 (2007). ArticlePubMed Google Scholar
Ludewig, B., Odermatt, B., Landmann, S., Hengartner, H. & Zinkernagel, R. M. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med.188, 1493–1501 (1998). ArticleCASPubMedPubMed Central Google Scholar
Astorri, E. et al. Evolution of ectopic lymphoid neogenesis and in situ autoantibody production in autoimmune nonobese diabetic mice: cellular and molecular characterization of tertiary lymphoid structures in pancreatic islets. J. Immunol.185, 3359–3368 (2010). ArticleCASPubMed Google Scholar
Sharifi, S., Murphy, M., Loda, M., Pinkus, G. S. & Khettry, U. Nodular lymphoid lesion of the liver: an immune-mediated disorder mimicking low-grade malignant lymphoma. Am. J. Surg. Pathol.23, 302–308 (1999). ArticleCASPubMed Google Scholar
Grant, A. J., Lalor, P. F., Hubscher, S. G., Briskin, M. & Adams, D. H. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology33, 1065–1072 (2001). ArticleCASPubMed Google Scholar
Grant, A. J. et al. Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am. J. Pathol.160, 1445–1455 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hill, M. E., Shiono, H., Newsom-Davis, J. & Willcox, N. The myasthenia gravis thymus: a rare source of human autoantibody-secreting plasma cells for testing potential therapeutics. J. Neuroimmunol. 201–202, 50–56 (2008).
Nacionales, D. C. et al. Type I interferon production by tertiary lymphoid tissue developing in response to 2,6,10,14-tetramethyl-pentadecane (pristane). Am. J. Pathol.168, 1227–1240 (2006). ArticleCASPubMedPubMed Central Google Scholar
Houtkamp, M. A., de Boer, O. J., van der Loos, C. M., van der Wal, A. C. & Becker, A. E. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol.193, 263–269 (2001). ArticleCASPubMed Google Scholar
Grabner, R. et al. Lymphotoxin-β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged _ApoE_−/− mice. J. Exp. Med.206, 233–248 (2009). ArticleCASPubMedPubMed Central Google Scholar
Carlsen, H. S., Baekkevold, E. S., Johansen, F. E., Haraldsen, G. & Brandtzaeg, P. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut51, 364–371 (2002). ArticleCASPubMedPubMed Central Google Scholar
Weninger, W. et al. Naive T cell recruitment to nonlymphoid tissues: a role for endothelium-expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis. J. Immunol.170, 4638–4648 (2003). ArticleCASPubMed Google Scholar
Surawicz, C. M. & Belic, L. Rectal biopsy helps to distinguish acute self-limited colitis from idiopathic inflammatory bowel disease. Gastroenterology86, 104–113 (1984). ArticleCASPubMed Google Scholar
Kaiserling, E. Newly-formed lymph nodes in the submucosa in chronic inflammatory bowel disease. Lymphology34, 22–29 (2001). CASPubMed Google Scholar
McNamee, E. N. et al. Ectopic lymphoid tissue alters the chemokine gradient, increases lymphocyte retention and exacerbates murine ileitis. Gut62, 53–62 (2013). ArticleCASPubMed Google Scholar
Demoor, T. et al. Role of lymphotoxin-α in cigarette smoke-induced inflammation and lymphoid neogenesis. Eur. Respir. J.34, 405–416 (2009). ArticleCASPubMed Google Scholar
Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med.350, 2645–2653 (2004). ArticleCASPubMed Google Scholar
Van Pottelberge, G. R. et al. Plasmacytoid dendritic cells in pulmonary lymphoid follicles of patients with COPD. Eur. Respir. J.36, 781–791 (2010). ArticleCASPubMed Google Scholar
Nielsen, J. S. et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27− memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res.18, 3281–3292 (2012). ArticleCASPubMed Google Scholar
Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med.10, 942–949 (2004). ArticleCASPubMed Google Scholar
Eisenthal, A. et al. Expression of dendritic cells in ovarian tumors correlates with clinical outcome in patients with ovarian cancer. Hum. Pathol.32, 803–807 (2001). ArticleCASPubMed Google Scholar
Yeung, M. M. et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: immune cell phenotype and TcR-γδ expression. Gut47, 215–227 (2000). ArticleCASPubMedPubMed Central Google Scholar
Winter, S. et al. The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic _Helicobacter pylori_-induced inflammation. J. Mol. Med.88, 1169–1180 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shomer, N. H., Fox, J. G., Juedes, A. E. & Ruddle, N. H. _Helicobacter_-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue. Infect. Immun.71, 3572–3577 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ghosh, S., Steere, A. C., Stollar, B. D. & Huber, B. T. In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J. Immunol.174, 2860–2869 (2005). ArticleCASPubMed Google Scholar
Rangel-Moreno, J. et al. Omental milky spots develop in the absence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity30, 731–743 (2009). ArticleCASPubMedPubMed Central Google Scholar
Beelen, R. H., Oosterling, S. J., van Egmond, M., van den Born, J. & Zareie, M. Omental milky spots in peritoneal pathophysiology (spots before your eyes). Perit. Dial. Int.25, 30–32 (2005). PubMed Google Scholar
Di Paolo, N. et al. Omental milky spots and peritoneal dialysis — review and personal experience. Perit. Dial. Int.25, 48–57 (2005). PubMed Google Scholar
Hiramatsu, K. et al. Inhalation of diesel exhaust for three months affects major cytokine expression and induces bronchus-associated lymphoid tissue formation in murine lungs. Exp. Lung Res.29, 607–622 (2003). ArticleCASPubMed Google Scholar
Mahendra, G. et al. Necrotic and inflammatory changes in metal-on-metal resurfacing hip arthroplasties. Acta Orthop.80, 653–659 (2009). ArticlePubMedPubMed Central Google Scholar
Perros, F. et al. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.185, 311–321 (2012). ArticlePubMed Google Scholar