- Levens, D. Disentangling the MYC web. Proc. Natl Acad. Sci. USA 99, 5757–5759 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Levens, D. L. Reconstructing MYC. Genes Dev. 17, 1071–1077 (2003).
Article CAS PubMed Google Scholar
- Eisenman, R. N. Deconstructing Myc. Genes Dev. 15, 2023–2030 (2001).
Article CAS PubMed Google Scholar
- Wu, K. J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283, 676–679 (1999).
Article CAS PubMed Google Scholar
- Pelengaris, S. & Khan, M. The many faces of c-MYC. Arch. Biochem. Biophys. 416, 129–136 (2003).
Article CAS PubMed Google Scholar
- Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109, 321–334 (2002). Demonstrates the multiple roles of Myc in tumorigenesis.
Article CAS PubMed Google Scholar
- Eilers, M., Schirm, S. & Bishop, J. M. The MYC protein activates transcription of the α-prothymosin gene. EMBO J. 10, 133–141 (1991).
Article CAS PubMed PubMed Central Google Scholar
- Freytag, S. O. & Geddes, T. J. Reciprocal regulation of adipogenesis by Myc and C/EBPα. Science 256, 379–382 (1992).
Article CAS PubMed Google Scholar
- Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999). Shows the link between Myc and cell growth.
Article CAS PubMed Google Scholar
- Baudino, T. A. et al. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 16, 2530–2543 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Arnold, I. & Watt, F. M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol. 11, 558–568 (2001).
Article CAS PubMed Google Scholar
- Frye, M., Gardner, C., Li, E. R., Arnold, I. & Watt, F. M. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 130, 2793–2808 (2003).
Article CAS PubMed Google Scholar
- Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997).
CAS PubMed Google Scholar
- Mateyak, M. K., Obaya, A. J. & Sedivy, J. M. c-Myc regulates cyclin D–Cdk4 and –Cdk6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Biol. 19, 4672–4683 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Trumpp, A. et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768–773 (2001).
Article CAS PubMed Google Scholar
- de Alboran, I. M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).
Article CAS PubMed Google Scholar
- Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 16, 2699–2712 (2002). References 17–19 analyse the effect of Myc knockouts in mammalian organ systems.
Article CAS PubMed PubMed Central Google Scholar
- Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell 10, 509–521 (2002).
Article CAS PubMed Google Scholar
- Blackwood, E. M. & Eisenman, R. N. Max: a helix–loop–helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).
Article CAS PubMed Google Scholar
- Blackwood, E. M., Lü scher, B. & Eisenman, R. N. Myc and Max associate in vivo. Genes Dev. 6, 71–80 (1992).
Article CAS PubMed Google Scholar
- Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222 (1993).
Article CAS PubMed Google Scholar
- Hurlin, P. J., Queva, C. & Eisenman, R. N. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev. 11, 44–58 (1997).
Article CAS PubMed Google Scholar
- Hurlin, P. J. et al. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J. 15, 2030–2038 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Zervos, A. S., Gyuris, J. & Brent, R. Mxi1, a protein that specifically interacts with Max to bind Myc–Max recognition sites. Cell 72, 223–232 (1993).
Article CAS PubMed Google Scholar
- Blackwell, T. K. et al. Binding of Myc proteins to canonical and noncanonical DNA sequences. Mol. Cell. Biol. 13, 5216–5224 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N. & Weintraub, H. Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149–1151 (1990).
Article CAS PubMed Google Scholar
- Ayer, D. E. & Eisenman, R. N. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentation. Genes Dev. 7, 2110–2119 (1993).
Article CAS PubMed Google Scholar
- Amati, B. et al. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233–245 (1993).
Article CAS PubMed Google Scholar
- Mao, D. Y. et al. Analysis of Myc bound loci identified by CpG island arrays shows that Max is essential for Myc-dependent repression. Curr. Biol. 13, 882–886 (2003).
Article CAS PubMed Google Scholar
- Nair, S. K. & Burley, S. K. X-ray structures of Myc–Max and Mad–Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205 (2003).
Article CAS PubMed Google Scholar
- Nilsson, J. A. et al. Mnt loss triggers Myc transcription targets, proliferation, apoptosis, and transformation. Mol. Cell. Biol. 24, 1560–1569 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Hurlin, P. J. et al. Deletion of Mnt leads to disrupted cell cycle control and tumorigenesis. Embo J. 22, 4584–4596 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Schreiber-Agus, N. et al. Role of Mxi1 in ageing organ systems and the regulation of normal and neoplastic growth. Nature 393, 483–487 (1998).
Article CAS PubMed Google Scholar
- Foley, K. P. et al. Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation. EMBO J. 17, 774–785 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Nikiforov, M. A., Popov, N., Kotenko, I., Henriksson, M. & Cole, M. D. The Mad and Myc basic domains are functionally equivalent. J. Biol. Chem. 278, 11094–11099 (2003).
Article CAS PubMed Google Scholar
- James, L. & Eisenman, R. Myc and Mad bHLHZ domains possess identical DNA-binding specificities but only partially overlapping functions in vivo. Proc. Natl Acad. Sci. USA 99, 10429–10434 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Kim, J. W. et al. Evaluation of Myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol. Cell. Biol. 24, 5923–5936 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Bouchard, C. et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev. 15, 2042–2047 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNA-binding mechanism. Proc. Natl Acad. Sci. USA 95, 13887–13892 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Waters, C. M., Littlewood, T. D., Hancock, D. C., Moore, J. P. & Evan, G. I. c-Myc protein expression in untransformed fibroblasts. Oncogene 6, 797–805 (1991).
CAS PubMed Google Scholar
- Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).
Article CAS PubMed Google Scholar
- Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biol. 7, 295–302 (2005).
Article CAS PubMed Google Scholar
- Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005).
Article CAS PubMed Google Scholar
- Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005).
Article CAS PubMed Google Scholar
- Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).
Article CAS PubMed Google Scholar
- Poortinga, G. et al. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. Embo J. 23, 3325–3335 (2004). References 49–53 link Myc to RNA-pol-I- and III-dependent transcription.
Article CAS PubMed PubMed Central Google Scholar
- Grandori, C. et al. Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev. 17, 1569–1574 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol. 3, 392–399 (2001).
Article CAS PubMed Google Scholar
- Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biol. 3, 400–408 (2001). References 55 and 56 define a pathway for gene repression by Myc.
Article CAS PubMed Google Scholar
- Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21 Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).
Article CAS PubMed Google Scholar
- Wanzel, M. et al. Akt and 14-3-3η regulate Miz1 to control cell-cycle arrest after DNA damage. Nature Cell Biol. 7, 30–41 (2005).
Article CAS PubMed Google Scholar
- Barsyte-Lovejoy, D., Mao, D. Y. & Penn, L. Z. c-Myc represses the proximal promoters of GADD45a and GADD153 by a post-RNA polymerase II recruitment mechanism. Oncogene 23, 3481–3486 (2004).
Article CAS PubMed Google Scholar
- Gartel, A. L. et al. Myc represses the p21WAF1/CIP1 promoter and interacts with Sp1/Sp3. Proc. Natl Acad. Sci. USA 98, 4510–4515 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Izumi, H. et al. Mechanism for the transcriptional repression by c-Myc on PDGF β-receptor. J. Cell Sci. 114, 1533–1544 (2001).
CAS PubMed Google Scholar
- Roy, A. L., Carruthers, C., Gutjahr, T. & Roeder, R. G. Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365, 359–361 (1993).
Article CAS PubMed Google Scholar
- Shrivastava, A. et al. Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. Science 262, 1889–1892 (1993).
Article CAS PubMed Google Scholar
- Qi, Y. et al. p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431, 712–717 (2004).
Article CAS PubMed Google Scholar
- Datta, A. et al. Myc-ARF (alternate reading frame) interaction inhibits the functions of Myc. J. Biol. Chem. 279, 36698–36707 (2004).
Article CAS PubMed Google Scholar
- Oster, S. K., Mao, D. Y., Kennedy, J. & Penn, L. Z. Functional analysis of the N-terminal domain of the Myc oncoprotein. Oncogene 22, 1998–2010 (2003).
Article CAS PubMed Google Scholar
- Bahram, F., von der Lehr, N., Cetinkaya, C. & Larsson, L. G. c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95, 2104–2110 (2000).
CAS PubMed Google Scholar
- Herbst, A. et al. A conserved element in Myc that negatively regulates its proapoptotic activity. EMBO Rep. 6, 177–183 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Herbst, A., Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Multiple cell-type-specific elements regulate Myc protein stability. Oncogene 23, 3863–3871 (2004).
Article CAS PubMed Google Scholar
- Stone, J. et al. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol. Cell. Biol. 7, 1697–1709 (1987).
Article CAS PubMed PubMed Central Google Scholar
- McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).
Article CAS PubMed Google Scholar
- Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Park, J., Kunjibettu, S., McMahon, S. B. & Cole, M. D. The ATM-related domain of TRRAP is required for histone acetyltransferase recruitment and Myc-dependent oncogenesis. Genes Dev. 15, 1619–1624 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Fuchs, M. et al. The p400 complex is an essential E1A transformation target. Cell 106, 297–307 (2001).
Article CAS PubMed Google Scholar
- Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087 (2004).
Article CAS PubMed Google Scholar
- Kobor, M. S. et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, E131 (2004).
Article PubMed PubMed Central Google Scholar
- Wood, M. A., McMahon, S. B. & Cole, M. D. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol. Cell 5, 321–330 (2000).
Article CAS PubMed Google Scholar
- Jonsson, Z. O., Jha, S., Wohlschlegel, J. A. & Dutta, A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol. Cell 16, 465–477 (2004).
Article CAS PubMed Google Scholar
- Etard, C., Gradl, D., Eilers, M. & Wedlich, D. Pontin and Reptin regulate proliferation in early Xenopus embryos through the Myc/Miz pathway. Mech. Dev. (in the press).
- Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).
Article CAS PubMed Google Scholar
- von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).
Article CAS PubMed Google Scholar
- Gonzalez, F., Delahodde, A., Kodadek, T. & Johnston, S. A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296, 548–550 (2002).
Article CAS PubMed Google Scholar
- Nikiforov, M. A. et al. TRRAP-dependent and TRRAP-independent transcriptional activation by Myc family oncoproteins. Mol. Cell. Biol. 22, 5054–5063 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Vervoorts, J. et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 4, 1–7 (2003).
Article CAS Google Scholar
- Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).
Article CAS PubMed Google Scholar
- Bouchard, C., Marquardt, J., Bras, A., Medema, R. H. & Eilers, M. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J. 23, 2830–2840 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Kanazawa, S., Soucek, L., Evan, G., Okamoto, T. & Peterlin, B. M. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 22, 5707–5711 (2003).
Article CAS PubMed Google Scholar
- Eberhardy, S. R. & Farnham, P. J. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J. Biol. Chem. 276, 48562–48571 (2001).
Article CAS PubMed Google Scholar
- Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. E mbo J. 24, 336–346 (2005).
CAS Google Scholar
- Beer, S. et al. Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol. 2, E332 (2004).
Article CAS PubMed PubMed Central Google Scholar
- van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).
Article CAS PubMed Google Scholar
- Kowalczyk, A. et al. The critical role of cyclin D2 in adult neurogenesis. J. Cell Biol. 167, 209–213 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Kenney, A. M., Cole, M. D. & Rowitch, D. H. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130, 15–28 (2003).
Article CAS PubMed Google Scholar
- Warner, B. J., Blain, S. W., Seoane, J. & Massague, J. Myc downregulation by transforming growth factor β required for activation of the p15Ink4b G1 arrest pathway. Mol. Cell. Biol. 19, 5913–5922 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Berwanger, B. et al. Loss of a Fyn-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell 2, 377–386 (2002).
Article CAS PubMed Google Scholar
- Lossos, I. S. et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc. Natl Acad. Sci. USA 99, 8886–8891 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).
Article CAS PubMed Google Scholar
- Miliani de Marval, P. L. et al. Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol. Cell. Biol. 24, 7538–7547 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Hermeking, H. et al. Identification of CDK4 as a target of c-MYC. Proc. Natl Acad. Sci. USA 97, 2229–2234 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Yang, W. et al. Repression of transcription of the p27 Kip1 cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20, 1688–1702 (2001).
Article CAS PubMed Google Scholar
- Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA 94, 6658–6663 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Semenza, G. L. et al. 'The metabolism of tumours: 70 years later. Novartis Found. Symp. 240, 251–260; discussion 260–264 (2001).
CAS PubMed Google Scholar
- Bowen, H. et al. c-Myc represses and Miz-1 activates the murine natural resistance-associated protein 1 promoter. J. Biol. Chem. 277, 34997–35006 (2002).
Article CAS PubMed Google Scholar
- Nikiforov, M. A. et al. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol. Cell. Biol. 22, 5793–5800 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Rosenwald, I. B., Rhoads, D. B., Callanan, L. D., Isselbacher, K. J. & Schmidt, E. V. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2α in response to growth induction by c-myc. Proc. Natl Acad. Sci. USA 90, 6175–6178 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Greasley, P. J., Bonnard, C. & Amati, B. Myc induces the nucleolin and BN51 genes: possible implications in ribosome biogenesis. Nucleic Acids Res. 28, 446–453 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Menssen, A. & Hermeking, H. Characterization of the c-MYC-regulated transcriptome by SAGE: Identification and analysis of c-MYC target genes. Proc. Natl Acad. Sci. USA 99, 6274–6279 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Beier, R. et al. Induction of cyclin E–cdk2 kinase activity, E2F-dependent transcription and cell growth by myc are genetically separable events. EMBO J. 19, 5813–5823. (2000).
Article CAS PubMed PubMed Central Google Scholar
- Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).
Article CAS PubMed Google Scholar
- Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: marvelouslY complex. Adv. Cancer Res. 84, 81–154 (2002).
Article CAS PubMed Google Scholar
- Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).
Article CAS PubMed Google Scholar
- Drayton, S. et al. Tumor suppressor p16INK4a determines sensitivity of human cells to transformation by cooperating cellular oncogenes. Cancer Cell 4, 301–310 (2003).
Article CAS PubMed Google Scholar
- Wei, W., Jobling, W. A., Chen, W., Hahn, W. C. & Sedivy, J. M. Abolition of cyclin-dependent kinase inhibitor p16_Ink4a_ and p21_Cip1/Waf1_ functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol. Cell. Biol. 23, 2859–2870 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biol. 6, 308–318 (2004).
Article CAS PubMed Google Scholar
- Gregory, M. A., Qi, Y. & Hann, S. R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem. 278, 51606–51612 (2003).
Article CAS PubMed Google Scholar
- Welcker, M., Orian, A., Grim, J. A., Eisenman, R. N. & Clurman, B. E. A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr. Biol. 14, 1852–1857 (2004).
Article CAS PubMed Google Scholar
- Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Yada, M. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23, 2116–2125 (2004). References 117–121 show how Myc is degraded by the proteasome.
Article CAS PubMed PubMed Central Google Scholar
- Watnick, R. S., Cheng, Y. N., Rangarajan, A., Ince, T. A. & Weinberg, R. A. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3, 219–231 (2003).
Article CAS PubMed Google Scholar
- Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).
Article CAS PubMed Google Scholar
- Endo, T. & Nadal-Ginard, B. Transcriptional and posttranscriptional control of c-myc during myogenesis: its mRNA remains inducible in differentiated cells and does not suppress the differentiated phenotype. Mol. Cell. Biol. 6, 1412–1421 (1986).
Article CAS PubMed PubMed Central Google Scholar
- Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19 ARF) and is amplified in a subset of human breast cancers. Nature Genet. 26, 291–299 (2000).
Article CAS PubMed Google Scholar
- Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Aslanian, A., Iaquinta, P. J., Verona, R. & Lees, J. A. Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev. 18, 1413–1422 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Baudino, T. A. et al. Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol. Cell 11, 905–914 (2003).
Article CAS PubMed Google Scholar
- Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell 8, 105–113 (2001).
Article CAS PubMed Google Scholar
- Juin, P., Hueber, A. O., Littlewood, T. & Evan, G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 13, 1367–1381 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Soucie, E. L. et al. Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol. Cell. Biol. 21, 4725–4736 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Mitchell, K. O. et al. Bax is a transcriptional target and mediator of c-myc-induced apoptosis. Cancer Res. 60, 6318–6325 (2000).
CAS PubMed Google Scholar
- Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA 101, 6164–6169 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Eischen, C. M., Woo, D., Roussel, M. F. & Cleveland, J. L. Apoptosis triggered by Myc-induced suppression of Bcl-XL or Bcl-2 is bypassed during lymphomagenesis. Mol. Cell. Biol. 21, 5063–5070 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med. 10, 484–486 (2004).
Article CAS PubMed Google Scholar
- Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).
Article CAS PubMed Google Scholar
- Sheen, J. H. & Dickson, R. B. Overexpression of c-Myc alters G1/S arrest following ionizing radiation. Mol. Cell. Biol. 22, 1819–1833 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function. A mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002). Provides a potential link between Myc and genomic instability.
Article CAS PubMed Google Scholar
- Karlsson, A. et al. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression. Proc. Natl Acad. Sci. USA 100, 9974–9979 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Karlsson, A. et al. Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 101, 2797–2803 (2003).
Article CAS PubMed Google Scholar
- Rockwood, L. D., Felix, K. & Janz, S. Elevated presence of retrotransposons at sites of DNA double strand break repair in mouse models of metabolic oxidative stress and MYC-induced lymphoma. Mutat. Res. 548, 117–125 (2004).
Article CAS PubMed Google Scholar
- Sargent, L. M. et al. Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice overexpressing c-Myc and transforming growth factor-α in the liver. Am. J. Pathol. 154, 1047–1055 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Soucek, L. & Evan, G. Myc — is this the oncogene from hell? Cancer Cell 1, 406–408 (2002).
Article CAS PubMed Google Scholar
- D'Cruz, C. M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Med. 7, 235–239 (2001).
Article CAS PubMed Google Scholar
- Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).
Article CAS PubMed Google Scholar
- Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).
Article PubMed Google Scholar
- Bello-Fernandez, C., Packham, G. & Cleveland, J. L. The ornithine decarboxylase gene is a transcriptional target of c-MYC. Proc. Natl Acad. Sci. USA 90, 7804–7808 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Lewis, B. C. et al. Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res. 60, 6178–6183 (2000).
CAS PubMed Google Scholar
- Wood, L. J. et al. HMG-I/Y, a new c-Myc target gene and potential oncogene. Mol. Cell. Biol. 20, 5490–5502 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Orre, R. S., Cotter, M. A., Subramanian, C. & Robertson, E. S. Prothymosin α functions as a cellular oncoprotein by inducing transformation of rodent fibroblasts in vitro. J. Biol. Chem. 276, 1794–1799 (2001).
Article CAS PubMed Google Scholar
- Zhu, P. et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5, 455–463 (2004).
Article CAS PubMed Google Scholar
- Bouchard, C. et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J. 18, 5321–5333 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Oliver, T. G. et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc. Natl Acad. Sci. USA 100, 7331–7336 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Sears, R., Ohtani, K. & Nevins, J. R. Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol. Cell. Biol. 17, 5227–5235 (1997).
Article CAS PubMed PubMed Central Google Scholar