The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease (original) (raw)
Pawson, T. & Scott, J. D. Protein phosphorylation in signaling--50 years and counting. Trends Biochem. Sci.30, 286–290 (2005). ArticleCASPubMed Google Scholar
Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol.2, 21–32 (2001). ArticleCAS Google Scholar
Lee, M. S. & Tsai, L. H. Cdk5: one of the links between senile plaques and neurofibrillary tangles? J. Alzheimers Dis.5, 127–137 (2003). ArticleCASPubMed Google Scholar
Lu, K. P., Liou, Y. C. & Vincent, I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. BioEssays25, 174–181 (2003). ArticleCASPubMed Google Scholar
Lu, K. P. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem. Sci.29, 200–209 (2004). ArticleCASPubMed Google Scholar
Wulf, G., Finn, G., Suizu, F. & Lu, K. P. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nature Cell Biol.7, 435–441 (2005). ArticleCASPubMed Google Scholar
Lu, K. P., Hanes, S. D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature380, 544–547 (1996). Describes the discovery of PIN1 as one of three proteins that interact with NIMA to suppress its lethal mitotic phenotype, and shows that PIN1 is the first active peptidyl-prolyl isomerase that is essential for cell division in budding yeast. ArticleCASPubMed Google Scholar
Yaffe, M. B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science278, 1957–1960 (1997). ArticleCASPubMed Google Scholar
Ranganathan, R., Lu, K. P., Hunter, T. & Noel, J. P. Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell89, 875–886 (1997). References9and10describe the first identification of PIN1 as a phosphorylation-specific prolyl isomerase and PIN1 substrates. ArticleCASPubMed Google Scholar
Fischer, G. & Aumuller, T. Regulation of peptide bond cis/transisomerization by enzyme catalysis and its implication in physiological processes. Rev. Physiol. Biochem. Pharmacol.148, 105–150 (2003). ArticleCASPubMed Google Scholar
Lu, P. J., Zhou, X. Z., Shen, M. & Lu, K. P. A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science283, 1325–1328 (1999). Describes the PIN1 WW domain as the first phosphoSer- or phosphoThr-binding module to be discovered after phosphoSer- or phosphoThr-binding 14-3-3 proteins. ArticleCASPubMed Google Scholar
Zhou, X. Z., Lu, P. J., Wulf, G. & Lu, K. P. Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell. Mol. Life Sci.56, 788–806 (1999). ArticleCASPubMed Google Scholar
Atchison, F. W. & Means, A. R. A role for Pin1 in mammalian germ cell development and spermatogenesis. Front. Biosci.9, 3248–3256 (2004). ArticleCASPubMed Google Scholar
Anderson, P. Pin1: a proline isomerase that makes you wheeze? Nature Immunol.6, 1211–1212 (2005). ArticleCAS Google Scholar
Maudsley, S. & Mattson, M. P. Protein twists and turns in Alzheimer disease. Nature Med.12, 392–393 (2006). ArticleCASPubMed Google Scholar
Goutagny, N., Severa, M. & Fitzgerald, K. A. Pin-ning down immune responses to RNA viruses. Nature Immunol.7, 555–557 (2006). ArticleCAS Google Scholar
Hajnoczky, G. & Hoek, J. B. Cell signaling. Mitochondrial longevity pathways. Science315, 607–609 (2007). ArticlePubMed Google Scholar
Balastik, M., Lim, J., Pastorino, L. & Lu, K. P. Pin1 in Alzheimer's disease: multiple substrates, one regulatory mechanisms? Biophys. Biochem. Acta1772, 422–429 (2007). CAS Google Scholar
Avila, M. A. & Lu, K. P. Hepatitis B virus X-protein and Pin1 in liver cancer: “Les liaisons dangereuses”. Gastroenterology132, 1088–1103 (2007). ArticleCAS Google Scholar
Yeh, E. S. & Means, A. R. PIN1, the cell cycle and cancer. Nature Rev. Cancer7, 381–388 (2007). ArticleCAS Google Scholar
Andreotti, A. H. Native state proline isomerization: an intrinsic molecular switch. Biochemistry42, 9515–9524 (2003). ArticleCASPubMed Google Scholar
Eckert, B., Martin, A., Balbach, J. & Schmid, F. X. Prolyl isomerization as a molecular timer in phage infection. Nature Struct. Mol. Biol.12, 619–623 (2005). Article Google Scholar
Lummis, S. C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature438, 248–252 (2005). ArticleCASPubMed Google Scholar
Nelson, C. J., Santos-Rosa, H. & Kouzarides, T. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell126, 905–916 (2006). ArticleCASPubMed Google Scholar
Sarkar, P., Reichman, C., Saleh, T., Birge, R. B. & Kalodimos, C. G. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol. Cell25, 413–426 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nicholson, L. K. & Lu, K. P. Prolyl cis-trans isomerization as a molecular timer in Crk signaling. Mol. Cell25, 483–485 (2007). ArticleCASPubMed Google Scholar
Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. Prolyl cis-trans isomerization as a molecular timer. Nature Chem. Biol. (in the press).
Weiwad, M., Kullertz, G., Schutkowski, M. & Fischer, G. Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett.478, 39–42 (2000). ArticleCASPubMed Google Scholar
Brown, N. R., Noble, M. E., Endicott, J. A. & Johnson, L. N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nature Cell Biol.1, 438–443 (1999). ArticleCASPubMed Google Scholar
Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873–883 (2000). CAS Google Scholar
Kipping, M. et al. Increased backbone flexibility in threonine45-phosphorylated hirudin upon pH change. Biochemistry40, 7957–7963 (2001). ArticleCASPubMed Google Scholar
Dolinski, K., Muir, S., Cardenas, M. & Heitman, J. All cyclophilins and FKBPs are dispensible for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA94, 13093–13098 (1997). ArticleCASPubMedPubMed Central Google Scholar
Joseph, J. D., Daigle, S. N. & Means, A. R. PINA is essential for growth and positively influences NIMA function in Aspergillus nidulans. J. Biol. Chem.279, 32373–32384 (2004). ArticleCASPubMed Google Scholar
Devasahayam, G., Chaturvedi, V. & Hanes, S. D. The Ess1 prolyl isomerase is required for growth and morphogenetic switching in Candida albicans. Genetics160, 37–48 (2002). CASPubMedPubMed Central Google Scholar
Huang, H. K., Forsburg, S. L., John, U. P., O'Connell, M. J. & Hunter, T. Isolation and characterization of the Pin1/Ess1p homologue in Schizosaccharomyces pombe. J. Cell Sci.114, 3779–3788 (2001). CASPubMed Google Scholar
Fujimori, F., Takahashi, K., Uchida, C. & Uchida, T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem. Biophys. Res. Commun.265, 658–663 (1999). Describes the first generation ofPin1-deficient mice, but reports that they have no phenotype, which has subsequently been found to be incorrect. ArticleCASPubMed Google Scholar
Arevalo-Rodriguez, M., Cardenas, M. E., Wu, X., Hanes, S. D. & Heitman, J. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3–Rpd3 histone deacetylase. EMBO J.19, 3739–3749 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fujimori, F. et al. Crosstalk of prolyl isomerases, Pin1/Ess1, and cyclophilin A. Biochem. Biophys. Res. Commun.289, 181–190 (2001). ArticleCASPubMed Google Scholar
Yao, J. L., Kops, O., Lu, P. J. & Lu, K. P. Functional conservation of phosphorylation-specific prolyl isomerases in plants. J. Biol. Chem.276, 13517–13523 (2001). ArticleCASPubMed Google Scholar
Zhu, J. X., Dagostino, E., Rejto, P. A., Mroczkowski, B. & Murray, B. Identification and characterization of a novel and functional murine Pin1 isoform. Biochem. Biophys. Res. Commun.359, 529–535 (2007). ArticleCASPubMed Google Scholar
Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P. & Lu, K. P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature399, 784–788 (1999). Identifies tau as the first PIN1 substrate in neurons and finds that PIN1 is depleted in Alzheimer's brains, providing the first link between PIN1 and Alzheimer's disease. ArticleCASPubMed Google Scholar
Wulf, G. M. et al. Pin1 is overexpressed in breast cancer and potentiates the transcriptional activity of phosphorylated c-Jun towards the cyclin D1 gene. EMBO J.20, 3459–3472 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ryo, A., Nakamura, N., Wulf, G., Liou, Y. C. & Lu, K. P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nature Cell Biol.3, 793–801 (2001). References45and46are the first demonstrations of PIN1 overexpression in human cancers and its crucial role in activating Ras/JNK/c-Jun and Wnt/β-catenin oncogenic pathways. ArticleCASPubMed Google Scholar
Liou, Y. C. et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl. Acad. Sci. USA99, 1335–1340 (2002). Describes the first obvious set of cell proliferative phenotypes inPin1-deficient mice. ArticleCASPubMedPubMed Central Google Scholar
Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell12, 1413–1426 (2003). ArticleCASPubMed Google Scholar
Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T. & Noel, J. P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nature Struct. Biol.7, 639–643 (2000). ArticleCASPubMed Google Scholar
Wintjens, R. et al. 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides. J. Biol. Chem.276, 25150–25156. (2001). ArticleCASPubMed Google Scholar
Jacobs, D. M. et al. Peptide binding induces large scale changes in inter-domain mobility in human Pin1. J. Biol. Chem.278, 26174–26182 (2003). ArticleCASPubMed Google Scholar
Smet, C., Wieruszeski, J. M., Buee, L., Landrieu, I. & Lippens, G. Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein. FEBS Lett.579, 4159–4164 (2005). ArticleCASPubMed Google Scholar
Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-b production. Nature440, 528–534 (2006). Provides the first direct demonstration of the dynamic conformational regulation after phosphorylation by PIN1 using NMR and describes that PIN1 deregulation might contribute to both tangle and plaque pathologies in Alzheimer's disease. ArticleCASPubMed Google Scholar
Namanja, A. T. et al. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human PIN1. Structure15, 313–327 (2007). ArticleCASPubMed Google Scholar
Peng, T., Zintsmaster, J. S., Namanja, A. T. & Peng, J. W. Sequence-specific dynamics modulate recognition specificity in WW domains. Nature Struct. Mol. Biol.14, 325–331 (2007). ArticleCAS Google Scholar
Labeikovsky, W., Eisenmesser, E. Z., Bosco, D. A. & Kern, D. Structure and dynamics of pin1 during catalysis by NMR. J. Mol. Biol.367, 1370–1381 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ramelot, T. A. & Nicholson, L. K. Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J. Mol. Biol.307, 871–884 (2001). ArticleCASPubMed Google Scholar
Lu, P. J., Zhou, X. Z., Liou, Y. C., Noel, J. P. & Lu, K. P. Critical role of WW domain phosphorylation in regulating its phosphoserine-binding activity and the Pin1 function. J. Biol. Chem.277, 2381–2384 (2002). ArticleCASPubMed Google Scholar
Liou, Y.-C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature424, 556–561 (2003). ArticleCASPubMed Google Scholar
Hamdane, M. et al. Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol. Cell. Neurosci.32, 155–160 (2006). ArticleCASPubMed Google Scholar
Bao, L., Sauter, G., Sowadski, J., Lu, K. P. & Wang, D. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol.164, 1727–1737 (2004). ArticleCASPubMedPubMed Central Google Scholar
Atchison, F. W., Capel, B. & Means, A. R. Pin1 regulates the timing of mammalian primordial germ cell proliferation. Development130, 3579–3586 (2003). ArticleCASPubMed Google Scholar
Ryo, A. et al. Pin1 is an E2F target gene essential for the Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell Biol.22, 5281–5295 (2002). ArticleCASPubMedPubMed Central Google Scholar
MacLachlan, T. K. et al. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J. Biol. Chem.275, 2777–2785 (2000). ArticleCASPubMed Google Scholar
Eckerdt, F. et al. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J. Biol. Chem.280, 36575–36583 (2005). ArticleCASPubMed Google Scholar
Sultana, R. et al. Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: a redox proteomics analysis. Neurobiol. Aging27, 918–925 (2006). ArticleCASPubMed Google Scholar
Butterfield, D. A. et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer's disease. Neurobiol. Dis.22, 223–232 (2006). ArticleCASPubMed Google Scholar
Shen, M., Stukenberg, P. T., Kirschner, M. W. & Lu, K. P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev.12, 706–720 (1998). ArticleCASPubMedPubMed Central Google Scholar
Crenshaw, D. G., Yang, J., Means, A. R. & Kornbluth, S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J.17, 1315–1327 (1998). ArticleCASPubMedPubMed Central Google Scholar
Winkler, K. E., Swenson, K. I., Kornbluth, S. & Means, A. R. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science287, 1644–1647 (2000). ArticleCASPubMed Google Scholar
Stukenberg, P. T. & Kirschner, M. W. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol. Cell7, 1071–1083 (2001). ArticleCASPubMed Google Scholar
Ubersax, J. A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature425, 859–864 (2003). ArticleCASPubMed Google Scholar
Okamoto, K. & Sagata, N. Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase. Proc. Natl Acad. Sci. U S. A 104, 3753–3758 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bernis, C. et al. Pin1 stabilizes Emi1 during G2 phase by preventing its association with SCF (betatrcp). EMBO Rep.8, 91–98 (2007). ArticleCASPubMed Google Scholar
Xu, Y. X. & Manley, J. L. The prolyl isomerase pin1 functions in mitotic chromosome condensation. Mol. Cell26, 287–300 (2007). ArticleCASPubMed Google Scholar
Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biol.6, 308–318 (2004). Describes MYC as a PIN1 substrate with MYC being more stable inPin1-deficient embryonic fibroblasts. This suggests that loss of PIN1 may be oncogenic, although other studies show that loss of PIN1 in mice prevents cancer development induced either by overexpression of oncogenic Neu or Ras, or by knockout of p53. ArticleCASPubMed Google Scholar
van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell23, 37–48 (2006). ArticleCASPubMed Google Scholar
Suizu, F., Ryo, A., Wulf, G., Lim, J. & Lu, K. P. Pin1 regulates centrosome duplication and its overexpression induces centrosome amplification, chromosome instability and oncogenesis. Mol. Cell Biol.26, 1463–1479 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer2, 815–825. (2002). ArticleCAS Google Scholar
Doxsey, S., McCollum, D. & Theurkauf, W. Centrosomes in cellular regulation. Annu. Rev. Cell Dev. Biol.21, 411–434 (2005). ArticleCASPubMed Google Scholar
Lu, K. P. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell4, 175–180 (2003). ArticleCASPubMed Google Scholar
Lu, K. P. et al. Targeting carcinogenesis: a role for the prolyl isomerase Pin1? Mol. Carcinog.45, 397–402 (2006). ArticleCASPubMed Google Scholar
Chen, S. Y. et al. Activation of β-catenin signaling in prostate cancer by peptidyl-prolyl isomerase Pin1-mediated abrogation of the androgen receptor-β-catenin interaction. Mol. Cell Biol.26, 929–939 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell17, 215–224 (2005). ArticleCASPubMed Google Scholar
Wulf, G., Garg, P., Liou, Y. C., Iglehart, D. & Lu, K. P. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J.23, 3397–3407 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature411, 1017–1021 (2001). ArticleCASPubMed Google Scholar
Lufei, C., Koh, T. H., Uchida, T. & Cao, X. Pin1 is required for the Ser727 phosphorylation-dependent Stat3 activity. Oncogene (in the press).
Pang, R. et al. PIN1 overexpression and β-catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene23, 4182–4186 (2004). ArticleCASPubMed Google Scholar
Yeh, E. S., Lew, B. O. & Means, A. R. The loss of PIN1 deregulates cyclin E and sensitizes MEFs to genomic instability. J. Biol. Chem.281, 241–251 (2006). ArticleCASPubMed Google Scholar
Takahashi, K. et al. Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene26, 3835–3845 (2007). ArticleCASPubMed Google Scholar
Toledo, F. et al. Mouse mutants reveal that putative protein interaction sites in the p53 proline-rich domain are dispensable for tumor suppression. Mol. Cell Biol.27, 1425–1432 (2007). ArticleCASPubMed Google Scholar
Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev.68, 320–344 (2004). ArticleCASPubMedPubMed Central Google Scholar
Karin, M. & Gallagher, E. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life57, 283–295 (2005). ArticleCASPubMed Google Scholar
Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W. & Lu, K. P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem.277, 47976–47979 (2002). ArticleCASPubMed Google Scholar
Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature419, 849–853 (2002). ArticleCASPubMed Google Scholar
Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature419, 853–857 (2002). References94–96identify p53 as a PIN1 substrate in response to genotoxic stress. ArticleCASPubMed Google Scholar
Mantovani, F. et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol. Cell14, 625–636 (2004). ArticleCASPubMed Google Scholar
Pinton, P. et al. Protein kinase C β and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science315, 659–663 (2007). ArticleCASPubMed Google Scholar
Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature402, 309–313 (1999). ArticleCASPubMed Google Scholar
Moretto Zita, M. et al. Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J.26, 1761–1771 (2007). ArticleCASPubMedPubMed Central Google Scholar
Li, Q. M. et al. Activation of JNK3 after injury induces cytochrome C release by facilitating Pin1-dependent degradation of Mcl-1. J. Neurosci.27, 8395–8404 (2007). ArticleCASPubMedPubMed Central Google Scholar
Becker, E. B. & Bonni, A. Pin1 mediates neural-specific activation of the mitochondrial apoptotic machinery. Neuron49, 655–662 (2006). ArticleCASPubMed Google Scholar
Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci.24, 1121–1159 (2001). ArticleCASPubMed Google Scholar
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). ArticleCASPubMed Google Scholar
Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell120, 545–555 (2005). ArticleCASPubMed Google Scholar
Goedert, M. & Spillantini, M. G. A century of Alzheimer's disease. Science314, 777–781 (2006). ArticleCASPubMed Google Scholar
Webber, K. M. et al. The cell cycle in Alzheimer disease: a unique target for neuropharmacology. Mech. Ageing Dev.126, 1019–1025 (2005). ArticleCASPubMed Google Scholar
Yang, Y. & Herrup, K. Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim. Biophys. Acta1772, 457–466 (2007). ArticleCASPubMed Google Scholar
Thorpe, J. R., Morley, S. J. & Rulten, S. L. Utilizing the peptidyl-prolyl cis-trans isomerase pin1 as a probe of its phosphorylated target proteins. Examples of binding to nuclear proteins in a human kidney cell line and to tau in Alzheimer's diseased brain. J. Histochem. Cytochem.49, 97–108 (2001). ArticleCASPubMed Google Scholar
Ramakrishnan, P., Dickson, D. W. & Davies, P. Pin1 colocalization with phosphorylated tau in Alzheimer's disease and other tauopathies. Neurobiol. Dis.14, 251–264 (2003). ArticleCASPubMed Google Scholar
Thorpe, J. R. et al. Shortfalls in the peptidyl-prolyl cis-trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Neurobiol. Dis.17, 237–249 (2004). ArticleCASPubMed Google Scholar
Wang, S. et al. The significance of Pin1 in the development of Alzheimer's disease. J. Alzheimers Dis.11, 13–23 (2007). ArticleCASPubMed Google Scholar
Davies, D. C., Horwood, N., Isaacs, S. L. & Mann, D. M. The effect of age and Alzheimer's disease on pyramidal neuron density in the individual fields of the hippocampal formation. Acta Neuropathol. (Berl.)83, 510–517 (1992). ArticleCAS Google Scholar
Campbell, H. D., Webb, G. C., Fountain, S. & Young, I. G. The human PIN1 peptidyl-prolyl cis/trans isomerase gene maps to human chromosome 19p13 and the closely related PIN1L gene to 1p31. Genomics44, 157–162 (1997). ArticleCASPubMed Google Scholar
Wijsman, E. M. et al. Evidence for a novel late-onset Alzheimer disease locus on chromosome 19p13.2. Am. J. Hum. Genet.75, 398–409 (2004). ArticleCASPubMedPubMed Central Google Scholar
Segat, L. et al. Pin1 promoter polymorphisms are associated with Alzheimer's disease. Neurobiol. Aging28, 69–74 (2007). ArticleCASPubMed Google Scholar
Lambert, J. C., Bensemain, F., Chapuis, J., Cottel, D. & Amouyel, P. Association study of the PIN1 gene with Alzheimer's disease. Neurosci. Lett.402, 259–261 (2006). ArticleCASPubMed Google Scholar
Nowotny, P. et al. Association studies between common variants in prolyl isomerase Pin1 and the risk for late-onset Alzheimer's disease. Neurosci. Lett.419, 15–17 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ishihara, T. et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron24, 751–762 (1999). ArticleCASPubMed Google Scholar
Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genet.25, 402–405 (2000). ArticleCASPubMed Google Scholar
Gotz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ 42 fibrils. Science293, 1491–1495 (2001). ArticleCASPubMed Google Scholar
Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science293, 1487–1491 (2001). ArticleCASPubMed Google Scholar
Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. & Tsai, L. H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron40, 471–483 (2003). ArticleCASPubMed Google Scholar
Akiyama, H., Shin, R. W., Uchida, C., Kitamoto, T. & Uchida, T. Pin1 promotes production of Alzheimer's amyloid β from β-cleaved amyloid precursor protein. Biochem. Biophys. Res. Commun.336, 521–529 (2005). ArticleCASPubMed Google Scholar
Takahashi, R. H. et al. Intraneuronal Alzheimer aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am. J. Pathol.161, 1869–1879 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wong, P. C., Cai, H., Borchelt, D. R. & Price, D. L. Genetically engineered mouse models of neurodegenerative diseases. Nature Neurosci.5, 633–639 (2002). ArticleCASPubMed Google Scholar
Roe, C. M., Behrens, M. I., Xiong, C., Miller, J. P. & Morris, J. C. Alzheimer disease and cancer. Neurology64, 895–898 (2005). ArticleCASPubMed Google Scholar
Jicha, G. A. et al. A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer's disease. J. Neurochem.69, 2087–2095 (1997). ArticleCASPubMed Google Scholar
Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer2, 301–310 (2002). ArticleCAS Google Scholar
Monje, P., Hernandez-Losa, J., Lyons, R. J., Castellone, M. D. & Gutkind, J. S. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem.280, 35081–35084 (2005). ArticleCASPubMed Google Scholar
Shaulian, E. & Karin, M. AP-1 as a regulator of cell life and death. Nature Cell Biol.4, E131–E136 (2002). ArticleCASPubMed Google Scholar
Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol.5, 749–759 (2005). ArticleCAS Google Scholar
Shen, Z. J., Esnault, S. & Malter, J. S. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nature Immunol.6, 1280–1287 (2005). Describes that PIN1 is activated in asthma and that it has a crucial role in granulocyte-macrophage colony-stimulating factor production and eosinophil survival. ArticleCAS Google Scholar
Saitoh, T. et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nature Immunol.7, 598–605 (2006). ArticleCAS Google Scholar
Yu, L. et al. Regulation of Bruton's tyrosine kinase (Btk) by the peptidyl-prolyl isomerase Pin1. J. Biol. Chem.281, 18201–18207 (2006). ArticleCASPubMed Google Scholar
Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell112, 243–256 (2003). ArticleCASPubMed Google Scholar
Schreiber, S. L. & Crabtree, G. R. The mechanism of action of cyclosporin A and FK506. Immunol. Today13, 136–142 (1992). ArticleCASPubMed Google Scholar
Ayala, G. et al. Pin1 is a novel prognostic marker in prostate cancer. Cancer Research63, 6244–6251 (2003). CASPubMed Google Scholar
Kuramochi, J. et al. High Pin1 expression is associated with tumor progression in colorectal cancer. J. Surg. Oncol.94, 155–160 (2006). ArticleCASPubMed Google Scholar
He, J. et al. Overexpression of Pin1 in non-small cell lung cancer (NSCLC) and its correlation with lymph node metastases. Lung Cancer56, 51–58 (2007). ArticlePubMed Google Scholar
Pang, R. et al. Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology132, 1088–1103 (2007). ArticleCASPubMed Google Scholar
Hennig, L. et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry37, 5953–5960 (1998). ArticleCASPubMed Google Scholar
Uchida, T. et al. Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem. Biol.10, 15–24 (2003). ArticleCASPubMed Google Scholar
Wang, X. J., Xu, B., Mullins, A. B., Neiler, F. K. & Etzkorn, F. A. Conformationally locked isostere of phosphoSer-cis-Pro inhibits Pin1 23-fold better than phosphoSer-trans-Pro isostere. J. Am. Chem. Soc.126, 15533–15542 (2004). ArticleCASPubMed Google Scholar
Wildemann, D. et al. Nanomolar inhibitors of the peptidyl prolyl cis/trans isomerase Pin1 from combinatorial peptide libraries. J. Med. Chem.49, 2147–2150 (2006). ArticleCASPubMed Google Scholar
Formichi, P., Battisti, C., Radi, E. & Federico, A. Cerebrospinal fluid tau, A β, and phosphorylated tau protein for the diagnosis of Alzheimer's disease. J. Cell Physiol.208, 39–46 (2006). ArticleCASPubMed Google Scholar