Concepts in sumoylation: a decade on (original) (raw)
Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell6, 793–807 (1995). ArticleCASPubMedPubMed Central Google Scholar
Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K. & Chen, D. J. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics36, 271–279 (1996). ArticleCASPubMed Google Scholar
Okura, T. et al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol.157, 4277–4281 (1996). CASPubMed Google Scholar
Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E. & Freemont, P. S. PIC1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene13, 971–982 (1996). CASPubMed Google Scholar
Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol.135, 1457–1470 (1996). Identifies SUMO1 as a reversible modifier, together with reference 6, and demonstrates that sumoylation can lead to altered localization. ArticleCASPubMed Google Scholar
Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell88, 97–107 (1997). Identifies SUMO1 as a reversible modifier, together with reference 5, and demonstrates that sumoylation can lead to novel protein interactions. ArticleCASPubMed Google Scholar
Gill, G. Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev.15, 536–541 (2005). ArticleCASPubMed Google Scholar
Scheschonka, A., Tang, Z. & Betz, H. Sumoylation in neurons: nuclear and synaptic roles? Trends Neurosci.30, 85–91 (2007). ArticleCASPubMed Google Scholar
Girdwood, D. W., Tatham, M. H. & Hay, R. T. SUMO and transcriptional regulation. Semin. Cell Dev. Biol.15, 201–210 (2004). ArticleCASPubMed Google Scholar
Seeler, J. S. & Dejean, A. Nuclear and unclear functions of SUMO. Nature Rev. Mol. Cell Biol.4, 690–699 (2003). ArticleCAS Google Scholar
Bayer, P. et al. Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol.280, 275–286 (1998). ArticleCASPubMed Google Scholar
Mossessova, E. & Lima, C. D. Ulp1–SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell5, 865–876 (2000). ArticleCASPubMed Google Scholar
Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. & Lima, C. D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell108, 345–356 (2002). The crystal structure reported in this paper demonstrates how the single E2 conjugating enzyme UBC9 recognizes conventional SUMO-acceptor sites in its targets. ArticleCASPubMed Google Scholar
Guo, D. et al. A functional variant of SUMO4, a new IκBα modifier, is associated with type 1 diabetes. Nature Genet.36, 837–841 (2004). ArticleCASPubMed Google Scholar
Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem.275, 6252–6258 (2000). ArticleCASPubMed Google Scholar
Rosas-Acosta, G., Russell, W. K., Deyrieux, A., Russell, D. H. & Wilson, V. G. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell Proteomics4, 56–72 (2005). ArticleCASPubMed Google Scholar
Vertegaal, A. C. et al. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell Proteomics5, 2298–2310 (2006). ArticleCASPubMed Google Scholar
Owerbach, D., McKay, E. M., Yeh, E. T., Gabbay, K. H. & Bohren, K. M. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun.337, 517–520 (2005). ArticleCASPubMed Google Scholar
Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J.16, 5509–5519 (1997). ArticleCASPubMedPubMed Central Google Scholar
Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature408, 325–330 (2000). ArticleCASPubMed Google Scholar
Saracco, S. A., Miller, M. J., Kurepa, J. & Vierstra, R. D. Genetic analysis of sumoylation in Arabidopsis: heat-induced conjugation of SUMO1 and 2 is essential. Plant Physiol.145, 119–134 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nacerddine, K. et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell9, 769–779 (2005). ArticleCASPubMed Google Scholar
Tanaka, K. et al. Characterization of a fission yeast SUMO-1 homologue, Pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol. Cell. Biol.19, 8660–8672 (1999). ArticleCASPubMedPubMed Central Google Scholar
Alkuraya, F. S. et al. SUMO1 haploinsufficiency leads to cleft lip and palate. Science313, 1751 (2006). Finds reduced SUMO1 expression in a patient with cleft lip and shows that mice with one defectiveSUMO1allele develop a similar phenotype. Moreover, it shows that SUMO1 is essential in mice. ArticlePubMed Google Scholar
Desterro, J. M., Rodriguez, M. S., Kemp, G. D. & Hay, R. T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem.274, 10618–10624 (1999). ArticleCASPubMed Google Scholar
Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N. & Yasuda, H. In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem. Biophys. Res. Commun.254, 693–698 (1999). ArticleCASPubMed Google Scholar
Gong, L., Li, B., Millas, S. & Yeh, E. T. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett.448, 185–189 (1999). ArticleCASPubMed Google Scholar
Johnson, E. S. & Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem.272, 26799–26802 (1997). ArticleCASPubMed Google Scholar
Desterro, J. M., Thomson, J. & Hay, R. T. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett.417, 297–300 (1997). ArticleCASPubMed Google Scholar
Lee, G. W. et al. Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J. Biol. Chem.273, 6503–6507 (1998). ArticleCASPubMed Google Scholar
Saitoh, H. et al. Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr. Biol.8, 121–124 (1998). ArticleCASPubMed Google Scholar
Hochstrasser, M. SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell107, 5–8 (2001). ArticleCASPubMed Google Scholar
Sharrocks, A. D. PIAS proteins and transcriptional regulation — more than just SUMO E3 ligases? Genes Dev.20, 754–758 (2006). ArticleCASPubMed Google Scholar
Johnson, E. S. & Gupta, A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell106, 735–744 (2001). Together with reference 39 describes the first SUMO E3 ligases, Siz1 and Siz2. Identification of their mammalian homologues, the PIAS proteins, as E3 ligases followed shortly thereafter (see references 40 and 45). ArticleCASPubMed Google Scholar
Takahashi, Y., Kahyo, T., Toh, E. A., Yasuda, H. & Kikuchi, Y. Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J. Biol. Chem.276, 48973–48977 (2001). ArticleCASPubMed Google Scholar
Kahyo, T., Nishida, T. & Yasuda, H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell8, 713–718 (2001). ArticleCASPubMed Google Scholar
Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl Acad. Sci. USA99, 2872–2877 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nishida, T. & Yasuda, H. PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem.277, 41311–41317 (2002). ArticleCASPubMed Google Scholar
Sapetschnig, A. et al. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J.21, 5206–5215 (2002). Provides a clear example for the role of SUMO in inhibiting transcription: PIAS1-dependent sumoylation in the inhibitory domain silences Sp3 without impairing DNA binding. ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, K. & Yokosawa, H. PIAS3 induces SUMO-1 modification and transcriptional repression of IRF-1. FEBS Lett.530, 204–208 (2002). ArticleCASPubMed Google Scholar
Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev.15, 3088–3103 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kotaja, N., Karvonen, U., Janne, O. A. & Palvimo, J. J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol.22, 5222–5234 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA102, 4777–4782 (2005). Together with references 48 and 49 identifies Mms21/Nse2, a component of the Smc5–Smc6 complex, as a novel SP-RING-type SUMO E3 ligase. ArticleCASPubMedPubMed Central Google Scholar
Andrews, E. A. et al. Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol.25, 185–196 (2005). ArticleCASPubMedPubMed Central Google Scholar
Potts, P. R. & Yu, H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nature Struct. Mol. Biol.14, 581–590 (2007). Links sumoylation to telomerase-independent telomere maintenance in certain cancer cells. ArticleCAS Google Scholar
Cheng, C. H. et al. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev.20, 2067–2081 (2006). In addition to the description of Zip3 as a meiosis-specific SUMO E3 ligase, this paper suggests a role for SUMO-chain formation in synaptonemal-complex formation and sporulation. ArticleCASPubMedPubMed Central Google Scholar
Pichler, A., Gast, A., Seeler, J. S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell108, 109–120 (2002). Identification of the nucleoporin RanBP2 as a unique E3 ligase, the catalytic domain of which is unrelated in sequence to HECT or RING E3 ligases (see also reference 53). ArticleCASPubMed Google Scholar
Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T. K. & Melchior, F. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nature Struct. Mol. Biol.11, 984–991 (2004). ArticleCAS Google Scholar
Reverter, D. & Lima, C. D. Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex. Nature435, 687–692 (2005). A crystal structure suggests that RanBP2 functions as an E3 ligase by binding both SUMO and UBC9 to position the SUMO–E2 thioester bond in an optimal orientation to enhance conjugation. ArticleCASPubMedPubMed Central Google Scholar
Tatham, M. H. et al. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nature Struct. Mol. Biol.12, 67–74 (2005). ArticleCAS Google Scholar
Kagey, M. H., Melhuish, T. A. & Wotton, D. The polycomb protein Pc2 is a SUMO E3. Cell113, 127–137 (2003). ArticleCASPubMed Google Scholar
Kagey, M. H., Melhuish, T. A., Powers, S. E. & Wotton, D. Multiple activities contribute to Pc2 E3 function. EMBO J.24, 108–119 (2005). ArticleCASPubMed Google Scholar
Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M. & Yao, T. P. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell. Biol.25, 8456–8464 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gregoire, S. & Yang, X. J. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol. Cell. Biol.25, 2273–2287 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ghisletti, S. et al. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARγ. Mol. Cell25, 57–70 (2007). ArticleCASPubMedPubMed Central Google Scholar
Stankovic-Valentin, N. et al. An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved ψKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol. Cell. Biol.27, 2661–2675 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tatham, M. H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem.276, 35368–35374 (2001). ArticleCASPubMed Google Scholar
Bylebyl, G. R., Belichenko, I. & Johnson, E. S. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem.278, 44113–44120 (2003). ArticleCASPubMed Google Scholar
Li, S. J. & Hochstrasser, M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol.20, 2367–2377 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature398, 246–251 (1999). A biochemical screen of an expression library allowed identification of the first SUMO-specific isopeptidase — Ulp1. ArticleCASPubMed Google Scholar
Gong, L. & Yeh, E. T. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J. Biol. Chem.281, 15869–15877 (2006). ArticleCASPubMed Google Scholar
Li, S. J. & Hochstrasser, M. The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J. Cell Biol.160, 1069–1081 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hang, J. & Dasso, M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. J. Biol. Chem.277, 19961–19966 (2002). ArticleCASPubMed Google Scholar
Zhang, H., Saitoh, H. & Matunis, M. J. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol.22, 6498–6508 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nishida, T., Tanaka, H. & Yasuda, H. A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur. J. Biochem.267, 6423–6427 (2000). ArticleCASPubMed Google Scholar
Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M. & McBride, H. M. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J. Cell Sci.120, 1178–1188 (2007). ArticleCASPubMed Google Scholar
Gong, L., Millas, S., Maul, G. G. & Yeh, E. T. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem.275, 3355–3359 (2000). ArticleCASPubMed Google Scholar
Bailey, D. & O'Hare, P. Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J. Biol. Chem.279, 692–703 (2004). ArticleCASPubMed Google Scholar
Kim, K. I. et al. A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J. Biol. Chem.275, 14102–14106 (2000). ArticleCASPubMed Google Scholar
Mukhopadhyay, D. & Dasso, M. Modification in reverse: the SUMO proteases. Trends Biochem. Sci.32, 286–295 (2007). ArticleCASPubMed Google Scholar
Mahajan, R., Gerace, L. & Melchior, F. Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol.140, 259–270 (1998). ArticleCASPubMedPubMed Central Google Scholar
Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol.140, 499–509 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kamitani, T. et al. Identification of three major sentrinization sites in PML. J. Biol. Chem.273, 26675–26682 (1998). ArticleCASPubMed Google Scholar
Sternsdorf, T., Jensen, K., Reich, B. & Will, H. The nuclear dot protein Sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J. Biol. Chem.274, 12555–12566 (1999). ArticleCASPubMed Google Scholar
Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell2, 233–239 (1998). Provided the first example of a protein that can be sumoylated and ubiquitylated at the same Lys residue. ArticleCASPubMed Google Scholar
Muller, S. et al. c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem.275, 13321–13329 (2000). ArticleCASPubMed Google Scholar
Macauley, M. S. et al. Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence. J. Biol. Chem.281, 4164–4172 (2006). ArticleCASPubMed Google Scholar
Pichler, A. et al. SUMO modification of the ubiquitin-conjugating enzyme E2–25K. Nature Struct. Mol. Biol.12, 264–269 (2005). ArticleCAS Google Scholar
Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl Acad. Sci. USA103, 45–50 (2006). Phosphorylation adjacent to the conventional SUMO-acceptor site enhances modification of several target proteins. ArticleCASPubMed Google Scholar
Hietakangas, V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell. Biol.23, 2953–2968 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yang, S. H., Galanis, A., Witty, J. & Sharrocks, A. D. An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J.25, 5083–5093 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). Demonstrates that monoubiquitylation, polyubiquitylation and sumoylation of the same Lys residue in a non-consensus SUMO-acceptor site of PCNA serve distinct functions in DNA repair and replication (see also references 92 and 93). ArticleCASPubMed Google Scholar
Girdwood, D. et al. p300 transcriptional repression is mediated by SUMO modification. Mol. Cell11, 1043–1054 (2003). ArticleCASPubMed Google Scholar
Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell19, 123–133 (2005). ArticleCASPubMed Google Scholar
Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature436, 428–433 (2005). ArticleCASPubMed Google Scholar
Zheng, G. & Yang, Y. C. ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation. J. Biol. Chem.279, 42410–42421 (2004). ArticleCASPubMed Google Scholar
Lin, X. et al. Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol. Cell11, 1389–1396 (2003). ArticleCASPubMed Google Scholar
Macauley, M. S. et al. Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1. J. Biol. Chem.279, 49131–49137 (2004). ArticleCASPubMed Google Scholar
Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J.21, 1456–1464 (2002). This work shows that cycles of SUMO modification and demodification of TDG contribute to the enzyme's function, most likely through conformational changes that allow product release and rebinding (see also reference 98). ArticleCASPubMedPubMed Central Google Scholar
Baba, D. et al. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature435, 979–982 (2005). ArticleCASPubMed Google Scholar
Minty, A., Dumont, X., Kaghad, M. & Caput, D. Covalent modification of p73α by SUMO-1. J. Biol. Chem.275, 36316–36323 (2000). ArticleCASPubMed Google Scholar
Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl Acad. Sci. USA101, 14373–14378 (2004). Through NMR analysis of a PIAS peptide, previously shown to bind SUMO non-covalently (see reference 99), the authors define a minimal SUMO-binding motif. ArticleCASPubMedPubMed Central Google Scholar
Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem.281, 16117–16127 (2006). ArticleCASPubMed Google Scholar
Hannich, J. T. et al. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem.280, 4102–4110 (2005). ArticleCASPubMed Google Scholar
Song, J., Zhang, Z., Hu, W. & Chen, Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem.280, 40122–40129 (2005). ArticleCASPubMed Google Scholar
Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M. & Pandolfi, P. P. The mechanisms of PML-nuclear body formation. Mol. Cell24, 331–339 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lin, D. Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell24, 341–354 (2006). Non-covalent interaction of Daxx with SUMO is required for Daxx-dependent transcriptional repression as well as for Daxx sumoylation. ArticleCASPubMed Google Scholar
Kuo, H. Y. et al. SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc. Natl Acad. Sci. USA102, 16973–16978 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sun, H., Leverson, J. D. & Hunter, T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J.26, 4102–4112 (2007). This paper, together with references 107, 109 and 110, suggests that SUMO can serve as a degradation signal by recruiting a ubiquitin E3 ligase via a non-covalent SUMO–SIM/SBM interaction with its targets. ArticleCASPubMedPubMed Central Google Scholar
Uzunova, K. et al. Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 29 Aug 2007 (doi:10.1074/jbc.M706505200). ArticleCAS Google Scholar
Xie, Y. et al. The yeast HEX3–SLX8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 11 Sep 2007 (doi:10.1074/jbc.M706025200). ArticleCAS Google Scholar
Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. Nature Rev. Mol. Cell Biol.6, 610–621 (2005). ArticleCAS Google Scholar
Chupreta, S., Holmstrom, S., Subramanian, L. & Iniguez-Lluhi, J. A. A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol. Cell. Biol.25, 4272–4282 (2005). Extensive analysis of SUMO2 mutants revealed a surface in SUMO strictly that is required for transcriptional repression. This surface is now known to interact with SIM/SBM. ArticleCASPubMedPubMed Central Google Scholar
Yang, S. H. & Sharrocks, A. D. SUMO promotes HDAC-mediated transcriptional repression. Mol. Cell13, 611–617 (2004). ArticleCASPubMed Google Scholar
Lin, J. Y., Ohshima, T. & Shimotohno, K. Association of Ubc9, an E2 ligase for SUMO conjugation, with p53 is regulated by phosphorylation of p53. FEBS Lett.573, 15–18 (2004). ArticleCASPubMed Google Scholar
Ross, S., Best, J. L., Zon, L. I. & Gill, G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell10, 831–842 (2002). ArticleCASPubMed Google Scholar
Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature425, 188–191 (2003). ArticleCASPubMed Google Scholar
Ulrich, H. D. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol.15, 525–532 (2005). ArticleCASPubMed Google Scholar
Mabb, A. M., Wuerzberger-Davis, S. M. & Miyamoto, S. PIASy mediates NEMO sumoylation and NF-κB activation in response to genotoxic stress. Nature Cell Biol.8, 986–993 (2006). ArticleCASPubMed Google Scholar
Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell115, 565–576 (2003). ArticleCASPubMed Google Scholar
Shalizi, A. et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science311, 1012–1017 (2006). ArticleCASPubMed Google Scholar
Johnson, E. S. & Blobel, G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol.147, 981–994 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. J. et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J. Cereb. Blood Flow Metab.27, 950–962 (2007). ArticleCASPubMed Google Scholar
Kurepa, J. et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J. Biol. Chem.278, 6862–6872 (2003). ArticleCASPubMed Google Scholar
Bossis, G. & Melchior, F. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell21, 349–357 (2006). Depending on the dose, H2O2can cause global or local loss of sumoylation due to reversible crosslinking of SUMO E1 and E2 enzymes. ArticleCASPubMed Google Scholar
Boggio, R., Colombo, R., Hay, R. T., Draetta, G. F. & Chiocca, S. A mechanism for inhibiting the SUMO pathway. Mol. Cell16, 549–561 (2004). ArticleCASPubMed Google Scholar
Boggio, R., Passafaro, A. & Chiocca, S. Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. J. Biol. Chem.282, 15376–15382 (2007). The viral protein Gam1 abolishes global sumoylation by targeting SUMO E1 for ubiquitin-mediated degradation (together with reference 128). ArticleCASPubMed Google Scholar
Cheng, J., Bawa, T., Lee, P., Gong, L. & Yeh, E. T. Role of desumoylation in the development of prostate cancer. Neoplasia8, 667–676 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mo, Y. Y., Yu, Y., Theodosiou, E., Rachel Ee, P. L. & Beck, W. T. A role for Ubc9 in tumorigenesis. Oncogene24, 2677–2683 (2005). ArticleCASPubMed Google Scholar
Harder, Z., Zunino, R. & McBride, H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol.14, 340–345 (2004). ArticleCASPubMed Google Scholar
Dadke, S. et al. Regulation of protein tyrosine phosphatase 1B by sumoylation. Nature Cell Biol.9, 80–85 (2007). The ER-associated PTP1B is a SUMO target.In vitroassays suggest that sumoylation directly inactivates the enzyme. ArticleCASPubMed Google Scholar
Rajan, S., Plant, L. D., Rabin, M. L., Butler, M. H. & Goldstein, S. A. Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell121, 37–47 (2005). ArticleCASPubMed Google Scholar
Feliciangeli, S. et al. Does sumoylation control K2P1/TWIK1 background K+ channels? Cell130, 563–569 (2007). ArticleCASPubMed Google Scholar
Benson, M. D. et al. SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc. Natl Acad. Sci. USA104, 1805–1810 (2007). A voltage-gated potassium channel is a target for reversible sumoylation. ArticleCASPubMedPubMed Central Google Scholar
Wible, B. A., Yang, Q., Kuryshev, Y. A., Accili, E. A. & Brown, A. M. Cloning and expression of a novel K+ channel regulatory protein, KChAP. J. Biol. Chem.273, 11745–11751 (1998). ArticleCASPubMed Google Scholar
Tang, Z., El Far, O., Betz, H. & Scheschonka, A. Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. J. Biol. Chem.280, 38153–38159 (2005). ArticleCASPubMed Google Scholar
Martin, S., Nishimune, A., Mellor, J. R. & Henley, J. M. SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature447, 321–325 (2007). ArticleCASPubMedPubMed Central Google Scholar
Seeler, J. S., Bischof, O., Nacerddine, K. & Dejean, A. SUMO, the three Rs and cancer. Curr. Top. Microbiol. Immunol.313, 49–71 (2007). CASPubMed Google Scholar
Dorval, V. & Fraser, P. E. SUMO on the road to neurodegeneration. Biochim. Biophys. Acta1773, 694–706 (2007). ArticleCASPubMed Google Scholar