Morris, E. J. & Dyson, N. J. Retinoblastoma protein partners. Adv. Cancer Res.82, 1–54 (2001). ArticleCASPubMed Google Scholar
Goodrich, D. W. How the other half lives, the amino-terminal domain of the retinoblastoma tumor suppressor protein. J. Cell Physiol.197, 169–180 (2003). ArticleCASPubMed Google Scholar
Bandara, L. R. & La Thangue, N. B. Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature351, 494–497 (1991). ArticleCASPubMed Google Scholar
Chellappan, S. P., Hiebert, S., Mudryj, M., Horowitz, J. M. & Nevins, J. R. The E2F transcription factor is a cellular target for the RB protein. Cell65, 1053–1061 (1991). ArticleCASPubMed Google Scholar
Chittenden, T., Livingston, D. M. & Kaelin, W. G. Jr. The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell65, 1073–1082 (1991). ArticleCASPubMed Google Scholar
Girling, R. et al. A new component of the transcription factor DRTF1/E2F. Nature362, 83–87 (1993). ArticleCASPubMed Google Scholar
Dynlacht, B. D., Brook, A., Dembski, M., Yenush, L. & Dyson, N. DNA-binding and _trans_-activation properties of Drosophila E2F and DP proteins. Proc. Natl Acad. Sci. USA91, 6359–6363 (1994). ArticleCASPubMedPubMed Central Google Scholar
Sawado, T. et al. dE2F2, a novel E2F-family transcription factor in Drosophila melanogaster. Biochem. Biophys. Res. Commun.251, 409–415 (1998). ArticleCASPubMed Google Scholar
Du, W., Vidal, M., Xie, J. E. & Dyson, N. RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev.10, 1206–1218 (1996). ArticleCASPubMed Google Scholar
Duronio, R. J. & O'Farrell, P. H. Developmental control of a G1–S transcriptional program in Drosophila. Development120, 1503–1515 (1994). CASPubMed Google Scholar
Duronio, R. J., O'Farrell, P. H., Xie, J. E., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev.9, 1445–1455 (1995). This study provided the first evidence that E2F is needed for cell proliferation in an animal model. The results show that eliminating activator E2F proteins has a dramatic effect on gene expression and DNA replication. It is helpful to read this with reference 34, in whichde2f1mutant phenotypes are suppressed by mutation ofde2f2. ArticleCASPubMed Google Scholar
Royzman, I., Whittaker, A. J. & Orr-Weaver, T. L. Mutations in Drosophila DP and E2F distinguish G1–S progression from an associated transcriptional program. Genes Dev.11, 1999–2011 (1997). ArticleCASPubMedPubMed Central Google Scholar
Brook, A., Xie, J. E., Du, W. & Dyson, N. Requirements for dE2F function in proliferating cells and in post-mitotic differentiating cells. EMBO J.15, 3676–3683 (1996). ArticleCASPubMedPubMed Central Google Scholar
Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell93, 1183–1193 (1998). ArticleCASPubMed Google Scholar
Wu, L. et al. The E2F1–3 transcription factors are essential for cellular proliferation. Nature414, 457–462 (2001). ArticleCASPubMed Google Scholar
Reis, T. & Edgar, B. A. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Cell117, 253–264 (2004). This study shows a complex interplay between dE2F1 and cyclin E in the regulation of cell-cycle transitions. ArticleCASPubMed Google Scholar
Datar, S. A., Jacobs, H. W., de la Cruz, A. F., Lehner, C. F. & Edgar, B. A. The Drosophila cyclin D–Cdk4 complex promotes cellular growth. EMBO J.19, 4543–4554 (2000). ArticleCASPubMedPubMed Central Google Scholar
Moon, N. S., Di Stefano, L. & Dyson, N. A gradient of epidermal growth factor receptor signaling determines the sensitivity of rbf1 mutant cells to E2F-dependent apoptosis. Mol. Cell. Biol.26, 7601–7615 (2006). ArticleCASPubMedPubMed Central Google Scholar
Du, W. Suppression of the rbf null mutants by a de2f1 allele that lacks transactivation domain. Development127, 367–379 (2000). CASPubMed Google Scholar
Weng, L., Zhu, C., Xu, J. & Du, W. Critical role of active repression by E2F and Rb proteins in endoreplication during Drosophila development. EMBO J.22, 3865–3875 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ferres-Marco, D. et al. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature439, 430–436 (2006). ArticleCASPubMed Google Scholar
Asano, M., Nevins, J. R. & Wharton, R. P. Ectopic E2F expression induces S phase and apoptosis in Drosophila imaginal discs. Genes Dev.10, 1422–1432 (1996). ArticleCASPubMed Google Scholar
Du, W., Xie, J. E. & Dyson, N. Ectopic expression of dE2F and dDP induces cell proliferation and death in the Drosophila eye. EMBO J.15, 3684–3692 (1996). ArticleCASPubMedPubMed Central Google Scholar
Duronio, R. J., Brook, A., Dyson, N. & O'Farrell, P. H. E2F-induced S phase requires cyclin E. Genes Dev.10, 2505–2513 (1996). ArticleCASPubMed Google Scholar
Buttitta, L. A., Katzaroff, A. J., Perez, C. L., de la Cruz, A. & Edgar, B. A. A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila. Dev. Cell12, 631–643 (2007). ArticleCASPubMed Google Scholar
Firth, L. C. & Baker, N. E. Extracellular signals responsible for spatially regulated proliferation in the differentiating Drosophila eye. Dev. Cell8, 541–551 (2005). ArticleCASPubMed Google Scholar
Duman-Scheel, M., Johnston, L. A. & Du, W. Repression of dMyc expression by Wingless promotes Rbf-induced G1 arrest in the presumptive Drosophila wing margin. Proc. Natl Acad. Sci. USA101, 3857–3862 (2004). ArticleCASPubMedPubMed Central Google Scholar
Baonza, A. & Freeman, M. Control of cell proliferation in the Drosophila eye by Notch signaling. Dev. Cell8, 529–539 (2005). ArticleCASPubMed Google Scholar
Dimova, D. K., Stevaux, O., Frolov, M. V. & Dyson, N. J. Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev.17, 2308–2320 (2003). Describes the use of RNAi and microarrays to identify the relative contribution of individual dE2F and RBF proteins to patterns of E2F-dependent transcription. ArticleCASPubMedPubMed Central Google Scholar
Cayirlioglu, P., Bonnette, P. C., Dickson, M. R. & Duronio, R. J. Drosophila E2f2 promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Development128, 5085–5098 (2001). CASPubMed Google Scholar
Duronio, R. J., Bonnette, P. C. & O'Farrell, P. H. Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F–DP transcription factor and cyclin E during the G1–S transition. Mol. Cell. Biol.18, 141–151 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ambrus, A. M., Nicolay, B. N., Rasheva, V. I., Suckling, R. J. & Frolov, M. V. dE2F2-independent rescue of proliferation in cells lacking an activator dE2F1. Mol. Cell. Biol.27, 8561–8570 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rasheva, V. I., Knight, D., Bozko, P., Marsh, K. & Frolov, M. V. Specific role of the SR protein splicing factor B52 in cell cycle control in Drosophila. Mol. Cell. Biol.26, 3468–3477 (2006). ArticleCASPubMedPubMed Central Google Scholar
Thacker, S. A., Bonnette, P. C. & Duronio, R. J. The contribution of E2F-regulated transcription to Drosophila PCNA gene function. Curr. Biol.13, 53–58 (2003). ArticleCASPubMed Google Scholar
Cayirlioglu, P., Ward, W. O., Silver Key, S. C. & Duronio, R. J. Transcriptional repressor functions of Drosophila E2F1 and E2F2 cooperate to inhibit genomic DNA synthesis in ovarian follicle cells. Mol. Cell. Biol.23, 2123–2134 (2003). ArticleCASPubMedPubMed Central Google Scholar
Stevaux, O. et al. Retinoblastoma family 2 is required in vivo for the tissue-specific repression of dE2F2 target genes. Cell Cycle4, 1272–1280 (2005). ArticleCASPubMed Google Scholar
Ceol, C. J. & Horvitz, H. R. dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development. Mol. Cell7, 461–473 (2001). ArticleCASPubMed Google Scholar
Page, B. D., Guedes, S., Waring, D. & Priess, J. R. The C. elegans E2F- and DP-related proteins are required for embryonic asymmetry and negatively regulate Ras/MAPK signaling. Mol. Cell7, 451–460 (2001). ArticleCASPubMed Google Scholar
Lu, X. & Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell95, 981–991 (1998). This study provided the first molecular understanding of synMuv gene function. ArticleCASPubMed Google Scholar
Chi, W. & Reinke, V. Promotion of oogenesis and embryogenesis in the C. elegans gonad by EFL-1/DPL-1 (E2F) does not require LIN-35 (pRB). Development133, 3147–3157 (2006). ArticleCASPubMed Google Scholar
Kirienko, N. V. & Fay, D. S. Transcriptome profiling of the C. elegans Rb ortholog reveals diverse developmental roles. Dev. Biol.305, 674–684 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sternberg, P. W. Vulval development. WormBook5, 1–28 (2005). Google Scholar
Ferguson, E. L. & Horvitz, H. R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics110, 17–72 (1985). CASPubMedPubMed Central Google Scholar
Sulston, J. E. & Horvitz, H. R. Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev. Biol.82, 41–55 (1981). ArticleCASPubMed Google Scholar
Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics96, 435–454 (1980). CASPubMedPubMed Central Google Scholar
Ferguson, E. L. & Horvitz, H. R. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics123, 109–121 (1989). CASPubMedPubMed Central Google Scholar
Clark, S. G., Lu, X. & Horvitz, H. R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics137, 987–997 (1994). CASPubMedPubMed Central Google Scholar
Huang, L. S., Tzou, P. & Sternberg, P. W. The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. Mol. Biol. Cell5, 395–411 (1994). ArticleCASPubMedPubMed Central Google Scholar
Ceol, C. J. & Horvitz, H. R. A new class of C. elegans synMuv genes implicates a Tip60/NuA4-like HAT complex as a negative regulator of Ras signaling. Dev. Cell6, 563–576 (2004). ArticleCASPubMed Google Scholar
Cui, M. et al. SynMuv genes redundantly inhibit lin-3/EGF expression to prevent inappropriate vulval induction in C. elegans. Dev. Cell10, 667–672 (2006). Identified transcriptional repression of the EGF-like growth factor genelin-3as the critical function of synMuv genes. These results clarified several confusing observations. ArticleCASPubMed Google Scholar
Ferguson, E. L., Sternberg, P. W. & Horvitz, H. R. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature326, 259–267 (1987). Together with references 52–55, this provided the solid genetic basis for the pRB and E2F studies inC. elegans. ArticleCASPubMed Google Scholar
Thomas, J. H. & Horvitz, H. R. The C. elegans gene lin-36 acts cell autonomously in the lin-35 Rb pathway. Development126, 3449–3459 (1999). CASPubMed Google Scholar
Myers, T. R. & Greenwald, I. lin-35 Rb acts in the major hypodermis to oppose _ras_-mediated vulval induction in C. elegans. Dev. Cell8, 117–123 (2005). Demonstrated that a non-cell autonomous function oflin-35Rb in the general epidermis is critical for normal regulation of the vulval cell fate. ArticleCASPubMed Google Scholar
Dufourcq, P. et al. Functional requirement for histone deacetylase 1 in Caenorhabditis elegans gonadogenesis. Mol. Cell. Biol.22, 3024–3034 (2002). ArticleCASPubMedPubMed Central Google Scholar
Poulin, G., Dong, Y., Fraser, A. G., Hopper, N. A. & Ahringer, J. Chromatin regulation and sumoylation in the inhibition of Ras-induced vulval development in Caenorhabditis elegans. EMBO J.24, 2613–2623 (2005). ArticleCASPubMedPubMed Central Google Scholar
Unhavaithaya, Y. et al. MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline–soma distinctions in C. elegans. Cell111, 991–1002 (2002). Demonstrated that a NuRD complex antagonizes polycomb gene function and germline-specific transcription in the soma. ArticleCASPubMed Google Scholar
Hsieh, J. et al. The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. Genes Dev.13, 2958–2970 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kelly, W. G., Xu, S., Montgomery, M. K. & Fire, A. Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics146, 227–238 (1997). CASPubMedPubMed Central Google Scholar
Fong, Y., Bender, L., Wang, W. & Strome, S. Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science296, 2235–2238 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bender, L. B. et al. MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development133, 3907–3917 (2006). ArticleCASPubMed Google Scholar
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell99, 133–141 (1999). ArticleCASPubMed Google Scholar
Sijen, T. & Plasterk, R. H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature426, 310–314 (2003). ArticleCASPubMed Google Scholar
Wang, D. et al. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature436, 593–597 (2005). ArticleCASPubMed Google Scholar
Kelly, W. G. & Fire, A. Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development125, 2451–2456 (1998). CASPubMed Google Scholar
Lehner, B. et al. Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference. Genome Biol.7, R4 (2006). ArticleCASPubMedPubMed Central Google Scholar
Grishok, A., Sinskey, J. L. & Sharp, P. A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev.19, 683–696 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. Science308, 1164–1167 (2005). ArticleCASPubMed Google Scholar
Cui, M., Kim, E. B. & Han, M. Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans. PLoS Genet.2, e74 (2006). ArticleCASPubMedPubMed Central Google Scholar
Andersen, E. C., Lu, X. & Horvitz, H. R. C. elegans ISWI and NURF301 antagonize an Rb-like pathway in the determination of multiple cell fates. Development133, 2695–2704 (2006). ArticleCASPubMed Google Scholar
Wildwater, M. et al. The retinoblastoma-related gene regulates stem cell maintenance in Arabidopsis roots. Cell123, 1337–1349 (2005). ArticleCASPubMed Google Scholar
Fay, D. S., Large, E., Han, M. & Darland, M. lin-35/Rb and ubc-18, an E2 ubiquitin-conjugating enzyme, function redundantly to control pharyngeal morphogenesis in C. elegans. Development130, 3319–3330 (2003). ArticleCASPubMed Google Scholar
Fay, D. S. et al. The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb_, pha-1_, and ubc-18. Dev. Biol.271, 11–25 (2004). ArticleCASPubMed Google Scholar
Cui, M., Fay, D. S. & Han, M. lin-35/Rb cooperates with the SWI/SNF complex to control Caenorhabditis elegans larval development. Genetics167, 1177–1185 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chesney, M. A., Kidd, A. R., 3rd & Kimble, J. gon-14 functions with class B and class C synthetic multivulva genes to control larval growth in Caenorhabditis elegans. Genetics172, 915–928 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bender, A. M., Wells, O. & Fay, D. S. lin-35/Rb and xnp-1/ATR-X function redundantly to control somatic gonad development in C. elegans. Dev. Biol.273, 335–349 (2004). ArticleCASPubMed Google Scholar
Cardoso, C. et al. XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans. Dev. Biol.278, 49–59 (2005). ArticleCASPubMed Google Scholar
Ceron, J. et al. Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC Dev. Biol.7, 30 (2007). ArticleCASPubMedPubMed Central Google Scholar
Reddy, K. C. & Villeneuve, A. M. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell118, 439–452 (2004). ArticleCASPubMed Google Scholar
Wu, L. et al. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature421, 942–947 (2003). ArticleCASPubMed Google Scholar
Pediconi, N. et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nature Cell Biol.5, 552–558 (2003). ArticleCASPubMed Google Scholar
Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol.4, 859–864 (2002). ArticleCASPubMed Google Scholar
Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of _Rb_-deficient mouse embryos. Mol. Cell2, 293–304 (1998). ArticleCASPubMed Google Scholar
Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev.15, 386–391 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. et al. Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nature Genet.36, 351–360 (2004). ArticleCASPubMed Google Scholar
Zhang, J., Schweers, B. & Dyer, M. A. The first knockout mouse model of retinoblastoma. Cell Cycle3, 952–959 (2004). CASPubMed Google Scholar
Chen, D. et al. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell5, 539–551 (2004). ArticleCASPubMed Google Scholar
Williams, B. O. et al. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nature Genet.7, 480–484 (1994). ArticleCASPubMed Google Scholar
Laurie, N. A. et al. Inactivation of the p53 pathway in retinoblastoma. Nature444, 61–66 (2006). ArticleCASPubMed Google Scholar
Reddien, P. W., Andersen, E. C., Huang, M. C. & Horvitz, H. R. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans. Genetics175, 1719–1733 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schertel, C. & Conradt, B. C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions. Development134, 3691–3701 (2007). ArticleCASPubMed Google Scholar
Royzman, I. et al. The E2F cell cycle regulator is required for Drosophila nurse cell DNA replication and apoptosis. Mech. Dev.119, 225–237 (2002). ArticleCASPubMed Google Scholar
Zhou, L. & Steller, H. Distinct pathways mediate UV-induced apoptosis in Drosophila embryos. Dev. Cell4, 599–605 (2003). ArticleCASPubMed Google Scholar
Moon, N. S. et al. Drosophila E2F1 has context-specific pro- and antiapoptotic properties during development. Dev. Cell9, 463–475 (2005). ArticleCASPubMed Google Scholar
Shan, B. & Lee, W. H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol.14, 8166–8173 (1994). ArticleCASPubMedPubMed Central Google Scholar
Hallstrom, T. C. & Nevins, J. R. Specificity in the activation and control of transcription factor E2F-dependent apoptosis. Proc. Natl Acad. Sci. USA100, 10848–10853 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ginsberg, D. EGFR signaling inhibits E2F1-induced apoptosis in vivo: implications for cancer therapy. Sci. STKE 2007, pe4 (2007).
Hallstrom, T. C., Mori, S. & Nevins, J. R. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell13, 11–22 (2008). ArticleCASPubMedPubMed Central Google Scholar
Morris, E. J. et al. E2F represses β-catenin transcription and is antagonized by both pRB and CDK-8. Nature (in the press).
Royzman, I., Austin, R. J., Bosco, G., Bell, S. P. & Orr-Weaver, T. L. ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev.13, 827–840 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bosco, G., Du, W. & Orr-Weaver, T. L. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nature Cell Biol.3, 289–295 (2001). ArticleCASPubMed Google Scholar
Spradling, A. & Orr-Weaver, T. Regulation of DNA replication during Drosophila development. Annu. Rev. Genet.21, 373–403 (1987). ArticleCASPubMed Google Scholar
Orr-Weaver, T. L. Drosophila chorion genes: cracking the eggshell's secrets. Bioessays13, 97–105 (1991). ArticleCASPubMed Google Scholar
Royzman, I. & Orr-Weaver, T. L. S. phase and differential DNA replication during Drosophila oogenesis. Genes Cells 3, 767–776 (1998). CAS Google Scholar
Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature430, 372–376 (2004). ArticleCASPubMed Google Scholar
Hartl, T., Boswell, C., Orr-Weaver, T. L. & Bosco, G. Developmentally regulated histone modifications in Drosophila follicle cells: initiation of gene amplification is associated with histone H3 and H4 hyperacetylation and H1 phosphorylation. Chromosoma116, 197–214 (2007). ArticleCASPubMed Google Scholar
Beall, E. L. et al. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature420, 833–837 (2002). ArticleCASPubMed Google Scholar
Beall, E. L., Bell, M., Georlette, D. & Botchan, M. R. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev.18, 1667–1680 (2004). ArticleCASPubMedPubMed Central Google Scholar
Beall, E. L. et al. Discovery of tMAC: a Drosophila testis-specific meiotic arrest complex paralogous to Myb-MuvB. Genes Dev.21, 904–919 (2007). ArticleCASPubMedPubMed Central Google Scholar
Korenjak, M. et al. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell119, 181–193 (2004). This paper and reference 127 describe the purification of the dREAM and MMB complexes and the discovery that the native RB–E2F repressor complex contains orthologues ofC. eleganssynMuv class B proteins. ArticleCASPubMed Google Scholar
Harrison, M. M., Ceol, C. J., Lu, X. & Horvitz, H. R. Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc. Natl Acad. Sci. USA103, 16782–16787 (2006). ArticleCASPubMedPubMed Central Google Scholar
Litovchick, L. et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol. Cell26, 539–551 (2007). Isolation and functional characterization of mammalian dREAM/MMB complexes. This paper is especially interesting when read together with reference 133. ArticleCASPubMed Google Scholar
Pilkinton, M., Sandoval, R. & Colamonici, O. R. Mammalian Mip/LIN-9 interacts with either the p107, p130/E2F4 repressor complex or B-Myb in a cell cycle-phase-dependent context distinct from the Drosophila dREAM complex. Oncogene26, 7535–7543 (2007). ArticleCASPubMed Google Scholar
Schmit, F. et al. LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes. Cell Cycle6, 1903–1913 (2007). ArticleCASPubMed Google Scholar
Taylor-Harding, B., Binne, U. K., Korenjak, M., Brehm, A. & Dyson, N. J. p55, the Drosophila ortholog of RbAp46/RbAp48, is required for the repression of dE2F2/RBF-regulated genes. Mol. Cell. Biol.24, 9124–9136 (2004). ArticleCASPubMedPubMed Central Google Scholar
Georlette, D. et al. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev.21, 2880–2896 (2007). Uses genomic approaches to give a detailed picture of the distribution and activity of theDrosophiladREAM and MMB complexes. This paper is especially interesting when read together with reference 129. ArticleCASPubMedPubMed Central Google Scholar
Lu, J., Ruhf, M. L., Perrimon, N. & Leder, P. A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression. Proc. Natl Acad. Sci. USA104, 9381–9386 (2007). ArticleCASPubMedPubMed Central Google Scholar
Harrison, M. M., Lu, X. & Horvitz, H. R. LIN-61, one of two Caenorhabditis elegans malignant-brain-tumor-repeat-containing proteins, acts with the DRM and NuRD-like protein complexes in vulval development but not in certain other biological processes. Genetics176, 255–271 (2007). ArticleCASPubMedPubMed Central Google Scholar
Trojer, P. et al. L3MBTL1, a histone-methylation-dependent chromatin lock. Cell129, 915–928 (2007). ArticleCASPubMed Google Scholar
Longworth, M. S., Herr, A., Ji, J. Y. & Dyson, N. J. RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev. (2008).
Manak, J. R., Mitiku, N. & Lipsick, J. S. Mutation of the Drosophila homologue of the Myb protooncogene causes genomic instability. Proc. Natl Acad. Sci. USA99, 7438–7443 (2002). ArticleCASPubMedPubMed Central Google Scholar
Manak, J. R., Wen, H., Van, T., Andrejka, L. & Lipsick, J. S. Loss of Drosophila Myb interrupts the progression of chromosome condensation. Nature Cell Biol.9, 581–587 (2007). ArticlePubMed Google Scholar
Wen, H., Andrejka, L., Ashton, J., Karess, R. & Lipsick, J. S. Epigenetic regulation of gene expression by Drosophila Myb and E2F2-RBF via the Myb-MuvB/dREAM complex. Genes Dev.22, 601–614 (2008). ArticleCASPubMedPubMed Central Google Scholar
Andersen, E. C. & Horvitz, H. R. Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development134, 2991–2999 (2007). ArticleCASPubMed Google Scholar
Coustham, V. et al. The C. elegans HP1 homologue HPL-2 and the LIN-13 zinc finger protein form a complex implicated in vulval development. Dev. Biol.297, 308–322 (2006). ArticleCASPubMed Google Scholar
Couteau, F., Guerry, F., Muller, F. & Palladino, F. A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. EMBO Rep.3, 235–241 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hassler, M. et al. Crystal structure of the retinoblastoma protein N domain provides insight into tumor suppression, ligand interaction, and holoprotein architecture. Mol. Cell28, 371–385 (2007). ArticleCASPubMedPubMed Central Google Scholar
Slansky, J. E. & Farnham, P. J. Introduction to the E2F family: protein structure and gene regulation. Curr. Top. Microbiol Immunol.208, 1–30 (1996). CASPubMed Google Scholar
Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev.8, 28–35 (1998). ArticleCASPubMed Google Scholar
Nevins, J. R. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ.9, 585–593 (1998). CASPubMed Google Scholar
Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol.3, 11–20 (2002). ArticleCAS Google Scholar
Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene24, 2810–2826 (2005). ArticleCASPubMed Google Scholar
Johnson, D. G. & Degregori, J. Putting the oncogenic and tumor suppressive activities of E2F into context. Curr. Mol. Med.6, 731–738 (2006). CASPubMed Google Scholar
DeGregori, J. & Johnson, D. G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med.6, 739–748 (2006). CASPubMed Google Scholar
Dick, F. A. Structure–function analysis of the retinoblastoma tumor suppressor protein — is the whole a sum of its parts? Cell Div.2, 26 (2007). ArticlePubMedPubMed Central Google Scholar
Keller, S. A., Ullah, Z., Buckley, M. S., Henry, R. W. & Arnosti, D. N. Distinct developmental expression of Drosophila retinoblastoma factors. Gene Expr. Patterns5, 411–421 (2005). ArticleCASPubMed Google Scholar
O'Farrell, P. H., Edgar, B. A., Lakich, D. & Lehner, C. F. Directing cell division during development. Science246, 635–640 (1989). ArticleCASPubMed Google Scholar
Edgar, B. A. & Lehner, C. F. Developmental control of cell cycle regulators: a fly's perspective. Science274, 1646–1652 (1996). ArticleCASPubMed Google Scholar
Edgar, B. A. & O'Farrell, P. H. The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell62, 469–480 (1990). ArticleCASPubMedPubMed Central Google Scholar
Edgar, B. A., Sprenger, F., Duronio, R. J., Leopold, P. & O'Farrell, P. H. Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev.8, 440–452 (1994). ArticleCASPubMed Google Scholar
Shibutani, S., Swanhart, L. M. & Duronio, R. J. _Rbf1_-independent termination of E2f1-target gene expression during early Drosophila embryogenesis. Development 134, 467–478 (2007). CAS Google Scholar
Heriche, J. K., Ang, D., Bier, E. & O'Farrell, P. H. Involvement of an SCFSlmb complex in timely elimination of E2F upon initiation of DNA replication in Drosophila. BMC Genet.4, 9 (2003). ArticlePubMedPubMed Central Google Scholar
Arias, E. E. & Walter, J. C. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nature Cell Biol.8, 84–90 (2006). ArticleCASPubMed Google Scholar
Koreth, J. & van den Heuvel, S. Cell-cycle control in Caenorhabditis elegans: how the worm moves from G1 to S. Oncogene24, 2756–2764 (2005). ArticleCASPubMed Google Scholar
Grishok, A. & Sharp, P. A. Negative regulation of nuclear divisions in Caenorhabditis elegans by retinoblastoma and RNA interference-related genes. Proc. Natl Acad. Sci. USA102, 17360–17365 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ouellet, J. & Roy. R. The lin-35/Rb and RNAi pathways cooperate to regulate a key cell cycle transition in C. elegans. BMC Dev. Biol.7, 38 (2007). ArticleCASPubMedPubMed Central Google Scholar
Saito, R. M., Perreault, A., Peach, B., Satterlee, J. S. & van den Heuvel, S. The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans. Nature Cell Biol.6, 777–783 (2004). ArticleCASPubMed Google Scholar
Boxem, M. & van den Heuvel, S. lin-35 Rb and cki-1 Cip/Kip cooperate in developmental regulation of G1 progression in C. elegans. Development128, 4349–4359 (2001). First demonstration of redundant G1 control mechanisms inC. elegans, which include a conserved CDK4/6–cyclin D–pRB–E2F pathway. CASPubMed Google Scholar
Park, M. & Krause, M. W. Regulation of postembryonic G1 cell cycle progression in Caenorhabditis elegans by a cyclin D/CDK-like complex. Development126, 4849–4860 (1999). CASPubMed Google Scholar
Boxem, M. & van den Heuvel, S. C. elegans class B synthetic multivulva genes act in G1 regulation. Curr. Biol.12, 906–911 (2002). ArticleCASPubMed Google Scholar
Fay, D. S., Keenan, S. & Han, M. fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes Dev.16, 503–517 (2002). ArticleCASPubMedPubMed Central Google Scholar