Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell129, 665–679 (2007). ArticleCASPubMed Google Scholar
Indiani, C. & O'Donnell, M. The replication clamp-loading machine at work in the three domains of life. Nature Rev. Mol. Cell Biol.7, 751–761 (2006). ArticleCAS Google Scholar
Kelch, B. A., Makino, D. L., O'Donnell, M. & Kuriyan, J. How a DNA polymerase clamp loader opens a sliding clamp. Science334, 1675–1680 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rauen, M., Burtelow, M. A., Dufault, V. M. & Karnitz, L. M. The human checkpoint protein hRad17 interacts with the PCNA-like proteins hRad1, hHus1, and hRad9. J. Biol. Chem.275, 29767–29771 (2000). ArticleCASPubMed Google Scholar
Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev.16, 198–208 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mayer, M. L., Gygi, S. P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell7, 959–970 (2001). ArticleCASPubMed Google Scholar
Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell37, 714–727 (2010). ArticleCASPubMed Google Scholar
Crabbe, L. et al. Analysis of replication profiles reveals key role of RFC–Ctf18 in yeast replication stress response. Nature Struct. Mol. Biol.17, 1391–1397 (2010). ArticleCAS Google Scholar
Lee, K. Y., Fu, H., Aladjem, M. I. & Myung, K. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J. Cell Biol.200, 31–44 (2013). ArticleCASPubMedPubMed Central Google Scholar
Johnson, A. & O'Donnell, M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem.74, 283–315 (2005). ArticleCASPubMed Google Scholar
Kong, X. P., Onrust, R., O'Donnell, M. & Kuriyan, J. Three-dimensional structure of the β-subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell69, 425–437 (1992). ArticleCASPubMed Google Scholar
Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell79, 1233–1243 (1994). ArticleCASPubMed Google Scholar
Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell87, 297–306 (1996). References 13 and 14 describe the crystal structure of yeast PCNA and the structural basis of the p21CIP1/WAF1PIP box binding to PCNA. ArticleCASPubMed Google Scholar
Ivanov, I., Chapados, B. R., McCammon, J. A. & Tainer, J. A. Proliferating cell nuclear antigen loaded onto double-stranded DNA: dynamics, minor groove interactions and functional implications. Nucleic Acids Res.34, 6023–6033 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mayanagi, K. et al. Architecture of the DNA polymerase B–proliferating cell nuclear antigen (PCNA)–DNA ternary complex. Proc. Natl Acad. Sci. USA108, 1845–1849 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xu, H., Zhang, P., Liu, L. & Lee, M. Y. A novel PCNA-binding motif identified by the panning of a random peptide display library. Biochemistry40, 4512–4520 (2001). ArticleCASPubMed Google Scholar
Bruning, J. B. & Shamoo, Y. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-δ p66 subunit and flap endonuclease-1. Structure12, 2209–2219 (2004). ArticleCASPubMed Google Scholar
Fridman, Y. et al. Subtle alterations in PCNA-partner interactions severely impair DNA replication and repair. PLoS Biol.8, e1000507 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Dionne, I., Nookala, R. K., Jackson, S. P., Doherty, A. J. & Bell, S. D. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol. Cell11, 275–282 (2003). ArticleCASPubMed Google Scholar
Sakurai, S. et al. Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J.24, 683–693 (2005). ArticleCASPubMed Google Scholar
Xing, G., Kirouac, K., Shin, Y. J., Bell, S. D. & Ling, H. Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA. Mol. Microbiol.71, 678–691 (2009). ArticleCASPubMed Google Scholar
Bubeck, D. et al. PCNA directs type 2 RNase H activity on DNA replication and repair substrates. Nucleic Acids Res.39, 3652–3666 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mayanagi, K. et al. Mechanism of replication machinery assembly as revealed by the DNA ligase–PCNA–DNA complex architecture. Proc. Natl Acad. Sci. USA106, 4647–4652 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gilljam, K. M. et al. Identification of a novel, widespread, and functionally important PCNA-binding motif. J. Cell Biol.186, 645–654 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ciccia, A. et al. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell47, 396–409 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ulrich, H. D. Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair (Amst.)8, 461–469 (2009). ArticleCAS Google Scholar
Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). Discovery that PCNA is modified by ubiquitylation in response to DNA damage and by SUMOylation during an unperturbed S phase. ArticleCASPubMed Google Scholar
Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature425, 188–191 (2003). ArticleCASPubMed Google Scholar
Sale, J. E., Lehmann, A. R. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature Rev. Mol. Cell Biol.13, 141–152 (2012). ArticleCAS Google Scholar
Friedberg, E. C. Suffering in silence: the tolerance of DNA damage. Nature Rev. Mol. Cell Biol.6, 943–953 (2005). ArticleCAS Google Scholar
Wang, S. C. et al. Tyrosine phosphorylation controls PCNA function through protein stability. Nature Cell Biol.8, 1359–1368 (2006). ArticleCASPubMed Google Scholar
Yu, Y. et al. Proliferating cell nuclear antigen is protected from degradation by forming a complex with MutT homolog2. J. Biol. Chem.284, 19310–19320 (2009). ArticleCASPubMedPubMed Central Google Scholar
Loeb, L. A. & Monnat, R. J. Jr. DNA polymerases and human disease. Nature Rev. Genet.9, 594–604 (2008). ArticleCASPubMed Google Scholar
Karras, G. I. & Jentsch, S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell141, 255–267 (2010). ArticleCASPubMed Google Scholar
Daigaku, Y., Davies, A. A. & Ulrich, H. D. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature465, 951–955 (2010). References 36 and 37 provided the demonstration that theRAD6-dependent pathway of DNA damage tolerance can operate outside of S phase. ArticleCASPubMedPubMed Central Google Scholar
Jansen, J. G. et al. Mammalian polymerase zeta is essential for post-replication repair of UV-induced DNA lesions. DNA Repair (Amst.)8, 1444–1451 (2009). ArticleCAS Google Scholar
Jansen, J. G. et al. Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells. Mol. Cell. Biol.29, 3113–3123 (2009). ArticleCASPubMedPubMed Central Google Scholar
Edmunds, C. E., Simpson, L. J. & Sale, J. E. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol. Cell30, 519–529 (2008). ArticleCASPubMed Google Scholar
Leach, C. A. & Michael, W. M. Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J. Cell Biol.171, 947–954 (2005). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, K. et al. Rad18 guides Pol η to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J.23, 3886–3896 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell14, 491–500 (2004). ArticleCASPubMed Google Scholar
Chang, D. J., Lupardus, P. J. & Cimprich, K. A. Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. J. Biol. Chem.281, 32081–32088 (2006). ArticleCASPubMed Google Scholar
Tsuji, Y. et al. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells13, 343–354 (2008). ArticleCASPubMed Google Scholar
Davies, A. A., Huttner, D., Daigaku, Y., Chen, S. & Ulrich, H. D. Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein A. Mol. Cell29, 625–636 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hibbert, R. G., Huang, A., Boelens, R. & Sixma, T. K. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc. Natl Acad. Sci. USA108, 5590–5595 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lin, J. R., Zeman, M. K., Chen, J. Y., Yee, M. C. & Cimprich, K. A. SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol. Cell42, 237–249 (2011). ArticleCASPubMedPubMed Central Google Scholar
Terai, K., Abbas, T., Jazaeri, A. A. & Dutta, A. CRL4Cdt2 E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol. Cell37, 143–149 (2010). ArticleCASPubMedPubMed Central Google Scholar
Das-Bradoo, S. et al. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nature Cell Biol.12, 74–79 (2010). ArticleCASPubMed Google Scholar
Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics10, M111.013284 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Hishiki, A. et al. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J. Biol. Chem.284, 10552–10560 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science310, 1821–1824 (2005). The identification of ubiquitin-binding domains in Y-family TLS polymerases that facilitate their recruitment to monoubiquitylated PCNA at blocked replication forks. ArticleCASPubMed Google Scholar
Plosky, B. S. et al. Controlling the subcellular localization of DNA polymerases ι and η via interactions with ubiquitin. EMBO J.25, 2847–2855 (2006). ArticleCASPubMedPubMed Central Google Scholar
Guo, C. et al. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol. Cell. Biol.26, 8892–8900 (2006). ArticleCASPubMedPubMed Central Google Scholar
Guo, C., Tang, T. S., Bienko, M., Dikic, I. & Friedberg, E. C. Requirements for the interaction of mouse Polκ with ubiquitin and its biological significance. J. Biol. Chem.283, 4658–4664 (2008). ArticleCASPubMed Google Scholar
Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev.15, 158–172 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sabbioneda, S. et al. Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases. Mol. Biol. Cell19, 5193–5202 (2008). ArticleCASPubMedPubMed Central Google Scholar
Prakash, S., Johnson, R. E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem.74, 317–353 (2005). ArticleCASPubMed Google Scholar
Ohashi, E. et al. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells9, 523–531 (2004). ArticleCASPubMed Google Scholar
Murakumo, Y. et al. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem.276, 35644–35651 (2001). ArticleCASPubMed Google Scholar
Hibbert, R. G. & Sixma, T. K. Intrinsic flexibility of ubiquitin on proliferating cell nuclear antigen (PCNA) in translesion synthesis. J. Biol. Chem.287, 39216–39223 (2012). ArticleCASPubMedPubMed Central Google Scholar
Freudenthal, B. D., Gakhar, L., Ramaswamy, S. & Washington, M. T. Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nature Struct. Mol. Biol.17, 479–484 (2010). ArticleCAS Google Scholar
Hendel, A. et al. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells. PLoS Genet.7, e1002262 (2011). ArticleCASPubMedPubMed Central Google Scholar
Szuts, D., Marcus, A. P., Himoto, M., Iwai, S. & Sale, J. E. REV1 restrains DNA polymerase ζ to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo. Nucleic Acids Res.36, 6767–6780 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Yang, K., Moldovan, G. L. & D'Andrea, A. D. RAD18-dependent recruitment of SNM1A to DNA repair complexes by a ubiquitin-binding zinc finger. J. Biol. Chem.285, 19085–19091 (2010). ArticleCASPubMedPubMed Central Google Scholar
Saugar, I., Parker, J. L., Zhao, S. & Ulrich, H. D. The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA. Nucleic Acids Res.40, 245–257 (2012). ArticleCASPubMed Google Scholar
Crosetto, N. et al. Human Wrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner. J. Biol. Chem.283, 35173–35185 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ulrich, H. D. & Walden, H. Ubiquitin signalling in DNA replication and repair. Nature Rev. Mol. Cell Biol.11, 479–489 (2010). ArticleCAS Google Scholar
Motegi, A. et al. Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J. Cell Biol.175, 703–708 (2006). ArticleCASPubMedPubMed Central Google Scholar
Motegi, A. et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl Acad. Sci. USA105, 12411–12416 (2008). ArticleCASPubMedPubMed Central Google Scholar
Unk, I. et al. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc. Natl Acad. Sci. USA105, 3768–3773 (2008). ArticleCASPubMedPubMed Central Google Scholar
Unk, I. et al. Human SHPRH is a ubiquitin ligase for Mms2–Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc. Natl Acad. Sci. USA103, 18107–18112 (2006). ArticleCASPubMedPubMed Central Google Scholar
Krijger, P. H. et al. HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: existence of an alternative E3 ligase. DNA Repair (Amst.)10, 438–444 (2011). ArticleCAS Google Scholar
Yuan, J., Ghosal, G. & Chen, J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell47, 410–421 (2012). ArticleCASPubMedPubMed Central Google Scholar
Weston, R., Peeters, H. & Ahel, D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev.26, 1558–1572 (2012). ArticleCASPubMedPubMed Central Google Scholar
Niimi, A. et al. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc. Natl Acad. Sci. USA105, 16125–16130 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gohler, T., Munoz, I. M., Rouse, J. & Blow, J. J. PTIP/Swift is required for efficient PCNA ubiquitination in response to DNA damage. DNA Repair (Amst.)7, 775–787 (2008). ArticleCAS Google Scholar
Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol.8, 339–347 (2006). The discovery that the DUB USP1 counteracts UV light-induced PCNA monoubiquitylation in human cells. CASPubMed Google Scholar
Gallego-Sanchez, A., Andres, S., Conde, F., San-Segundo, P. A. & Bueno, A. Reversal of PCNA ubiquitylation by Ubp10 in Saccharomyces cerevisiae. PLoS Genet.8, e1002826 (2012). ArticleCASPubMedPubMed Central Google Scholar
Faesen, A. C. et al. The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem. Biol.18, 1550–1561 (2011). ArticleCASPubMed Google Scholar
Cohn, M. A. et al. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell28, 786–797 (2007). ArticleCASPubMed Google Scholar
Lee, K. Y. et al. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through its interactions with PCNA and USP1. J. Biol. Chem.285, 10362–10369 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature436, 428–433 (2005). Describes the role of PCNA SUMOylation in recruiting Srs2 during S phase to inhibit recombination. ArticleCASPubMed Google Scholar
Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature423, 305–309 (2003). ArticleCASPubMed Google Scholar
Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature423, 309–312 (2003). ArticleCASPubMed Google Scholar
Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell19, 123–133 (2005). ArticleCASPubMed Google Scholar
Freudenthal, B. D., Brogie, J. E., Gakhar, L., Kondratick, C. M. & Washington, M. T. Crystal structure of SUMO-modified proliferating cell nuclear antigen. J. Mol. Biol.406, 9–17 (2011). ArticleCASPubMed Google Scholar
Armstrong, A. A., Mohideen, F. & Lima, C. D. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature483, 59–63 (2012). References 66, 67 and 97 provide structural studies of PCNA modified by ubiquitin and SUMO and reveal that their orientation is on the back face of PCNA. ArticleCASPubMedPubMed Central Google Scholar
Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem.281, 16117–16127 (2006). ArticleCASPubMed Google Scholar
Moldovan, G. L. et al. Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol. Cell45, 75–86 (2012). ArticleCASPubMed Google Scholar
Parnas, O. et al. Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J.29, 2611–2622 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bienko, M. et al. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol. Cell37, 396–407 (2010). ArticleCASPubMed Google Scholar
Parker, J. L., Bielen, A. B., Dikic, I. & Ulrich, H. D. Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase η in Saccharomyces cerevisiae. Nucleic Acids Res.35, 881–889 (2007). ArticleCASPubMedPubMed Central Google Scholar
Woelk, T. et al. Molecular mechanisms of coupled monoubiquitination. Nature Cell Biol.8, 1246–1254 (2006). ArticleCASPubMed Google Scholar
Gohler, T., Sabbioneda, S., Green, C. M. & Lehmann, A. R. ATR-mediated phosphorylation of DNA polymerase η is needed for efficient recovery from UV damage. J. Cell Biol.192, 219–227 (2011). ArticleCASPubMedPubMed Central Google Scholar
Henneke, G., Koundrioukoff, S. & Hubscher, U. Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene22, 4301–4313 (2003). ArticleCASPubMed Google Scholar
Scott, M. T., Morrice, N. & Ball, K. L. Reversible phosphorylation at the C-terminal regulatory domain of p21Waf1/Cip1 modulates proliferating cell nuclear antigen binding. J. Biol. Chem.275, 11529–11537 (2000). ArticleCASPubMed Google Scholar
Arias, E. E. & Walter, J. C. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nature Cell Biol.8, 84–90 (2006). ArticleCASPubMed Google Scholar
Higa, L. A. et al. L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage. Cell Cycle5, 1675–1680 (2006). ArticleCASPubMed Google Scholar
Hu, J. & Xiong, Y. An evolutionarily conserved function of proliferating cell nuclear antigen for Cdt1 degradation by the Cul4–Ddb1 ubiquitin ligase in response to DNA damage. J. Biol. Chem.281, 3753–3756 (2006). ArticleCASPubMed Google Scholar
Nishitani, H. et al. Two E3 ubiquitin ligases, SCF–Skp2 and DDB1–Cul4, target human Cdt1 for proteolysis. EMBO J.25, 1126–1136 (2006). ArticleCASPubMedPubMed Central Google Scholar
Senga, T. et al. PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J. Biol. Chem.281, 6246–6252 (2006). References 110–114 report the discovery that PCNA is required as a molecular platform for the ubiquitylation and subsequent degradation of a PIP box-dependent interactor, CDT1. ArticleCASPubMed Google Scholar
Oda, H. et al. Regulation of the histone H4 monomethylase PR-Set7 by CRL4Cdt2-mediated PCNA-dependent degradation during DNA damage. Mol. Cell40, 364–376 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jorgensen, S. et al. SET8 is degraded via PCNA-coupled CRL4CDT2 ubiquitylation in S phase and after UV irradiation. J. Cell Biol.192, 43–54 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Centore, R. C. et al. CRL4Cdt2-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol. Cell40, 22–33 (2010). ArticleCASPubMedPubMed Central Google Scholar
Abbas, T. et al. CRL4Cdt2 regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol. Cell40, 9–21 (2010). ArticleCASPubMedPubMed Central Google Scholar
Raman, M., Havens, C. G., Walter, J. C. & Harper, J. W. A genome-wide screen identifies p97 as an essential regulator of DNA damage-dependent CDT1 destruction. Mol. Cell44, 72–84 (2011). ArticleCASPubMedPubMed Central Google Scholar
Havens, C. G. & Walter, J. C. Docking of a specialized PIP box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol. Cell35, 93–104 (2009). ArticleCASPubMedPubMed Central Google Scholar
Michishita, M. et al. Positively charged residues located downstream of PIP box, together with TD amino acids within PIP box, are important for CRL4Cdt2-mediated proteolysis. Genes Cells16, 12–22 (2011). ArticleCASPubMed Google Scholar
Havens, C. G. et al. Direct role for proliferating cell nuclear antigen in substrate recognition by the E3 ubiquitin ligase CRL4Cdt2. J. Biol. Chem.287, 11410–11421 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shibutani, S. T. et al. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev. Cell15, 890–900 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. H. & Michael, W. M. Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. elegans. Mol. Cell32, 757–766 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jung, Y. S., Liu, G. & Chen, X. Pirh2 E3 ubiquitin ligase targets DNA polymerase η for 20S proteasomal degradation. Mol. Cell. Biol.30, 1041–1048 (2010). ArticleCASPubMed Google Scholar
Povlsen, L. K. et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nature Cell Biol.14, 1089–1098 (2012). The first systems-wide analysis of proteins regulated by ubiquitylation in response to DNA damage in human cells. ArticleCASPubMed Google Scholar
Soria, G., Speroni, J., Podhajcer, O. L., Prives, C. & Gottifredi, V. p21 differentially regulates DNA replication and DNA-repair-associated processes after UV irradiation. J. Cell Sci.121, 3271–3282 (2008). ArticleCASPubMed Google Scholar
Acs, K. et al. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nature Struct. Mol. Biol.18, 1345–1350 (2011). ArticleCAS Google Scholar
Meerang, M. et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nature Cell Biol.13, 1376–1382 (2011). ArticleCASPubMed Google Scholar
Mosbech, A. et al. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nature Struct. Mol. Biol.19, 1084–1092 (2012). ArticleCAS Google Scholar
Davis, E. J. et al. DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage. Nature Struct. Mol. Biol.19, 1093–1100 (2012). ArticleCAS Google Scholar
Ghosal, G., Leung, J. W., Nair, B. C., Fong, K. W. & Chen, J. Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis. J. Biol. Chem.287, 34225–34233 (2012). ArticleCASPubMedPubMed Central Google Scholar
Centore, R. C., Yazinski, S. A., Tse, A. & Zou, L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol. Cell46, 625–635 (2012). ArticleCASPubMedPubMed Central Google Scholar
Juhasz, S. et al. Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance. Nucleic Acids Res.40, 10795–10808 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zeman, M. K. & Cimprich, K. A. Finally, polyubiquitinated PCNA gets recognized. Mol. Cell47, 333–334 (2012). ArticleCASPubMed Google Scholar
Xie, K., Doles, J., Hemann, M. T. & Walker, G. C. Error-prone translesion synthesis mediates acquired chemoresistance. Proc. Natl Acad. Sci. USA107, 20792–20797 (2010). ArticleCASPubMedPubMed Central Google Scholar
Doles, J. et al. Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl Acad. Sci. USA107, 20786–20791 (2010). References 136 and 137 show that TLS has a major role in mediating acquired chemoresistance and that inhibition of TLS may provide a therapeutic target for tumours that are resistant to chemotherapy. ArticleCASPubMedPubMed Central Google Scholar
Punchihewa, C. et al. Identification of small molecule proliferating cell nuclear antigen (PCNA) inhibitor that disrupts interactions with PIP-box proteins and inhibits DNA replication. J. Biol. Chem.287, 14289–14300 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ulrich, H. D. Timing and spacing of ubiquitin-dependent DNA damage bypass. FEBS Lett.585, 2861–2867 (2011). ArticleCASPubMed Google Scholar
Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature399, 700–704 (1999). ArticleCASPubMed Google Scholar
Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science285, 263–265 (1999). References 140 and 141 demonstrate that xeroderma pigmentosum variant is caused by mutations in the gene encoding Pol η. ArticleCASPubMed Google Scholar
Guo, C. et al. REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol. Cell23, 265–271 (2006). ArticleCASPubMed Google Scholar
Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J.19, 3388–3397 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell96, 645–653 (1999). ArticleCASPubMed Google Scholar