RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts (original) (raw)
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012). Provides an overview of a series of papers released as part of the ENCODE project in which landmarks of biochemical function (regions of transcription, transcription factor association and histone modifications, among others) were attributed to 80% of the genome.
Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science309, 1559–1563 (2005). ArticleCASPubMed Google Scholar
Koch, F., Jourquin, F., Ferrier, P. & Andrau, J.-C. Genome-wide RNA polymerase II: not genes only! Trends Biochem. Sci.33, 265–273 (2008). ArticleCASPubMed Google Scholar
Taft, R. J., Pheasant, M. & Mattick, J. S. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays29, 288–299 (2007). ArticleCASPubMed Google Scholar
Berretta, J. & Morillon, A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep.10, 973–982 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature Rev. Genet.10, 155–159 (2009). ArticleCASPubMed Google Scholar
Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem.81, 145–166 (2012). ArticleCASPubMed Google Scholar
Mercer, T. R. & Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Struct. Mol. Biol.20, 300–307 (2013). ArticleCAS Google Scholar
Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell136, 629–641 (2009). ArticleCASPubMed Google Scholar
Wilusz, J. E., Sunwoo, H. & Spector, D. L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev.23, 1494–1504 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nagano, T. & Fraser, P. No-nonsense functions for long noncoding RNAs. Cell145, 178–181 (2011). ArticleCASPubMed Google Scholar
Robertson, M. P. & Joyce, G. F. The origins of the RNA world. Cold Spring Harb. Perspect. Biol.4, pii: a003608. (2012). ArticleCAS Google Scholar
Filipovska, A. & Rackham, O. Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Mol. Biosyst8, 699–708 (2012). ArticleCASPubMed Google Scholar
Stoltenburg, R., Reinemann, C. & Strehlitz, B. SELEX — a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng.24, 381–403 (2007). ArticleCASPubMed Google Scholar
Stoye, J. P. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nature Rev. Microbiol.10, 395–406 (2012). ArticleCAS Google Scholar
Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA106, 11667–11672 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tsai, M.-C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science329, 689–693 (2010). Illustrates an elegant example of a dominant theme in the lncRNA field whereby lncRNAs physically associate with histone-modifying complexes to regulate chromatin states. Importantly, shows thatHOTAIRcan also act as a scaffold to organize the concerted actions of two enzymatic activities. ArticleCASPubMedPubMed Central Google Scholar
Spitale, R. C., Tsai, M.-C. & Chang, H. Y. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics6, 539–543 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell38, 662–674 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell32, 232–246 (2008). ArticleCASPubMed Google Scholar
Kotake, Y. et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene30, 1956–1962 (2011). ArticleCASPubMed Google Scholar
Kornienko, A. E., Guenzl, P. M., Barlow, D. P. & Pauler, F. M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol.11, 59 (2013). ArticleCASPubMedPubMed Central Google Scholar
Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science338, 1469–1472 (2012). Provides a particularly compelling example of a mammalian lncRNA,AIRN, which represses target expression by transcriptional interference, as transcriptional overlap of the lncRNA with the target promoter rather than the lncRNA transcript itself is sufficient to interfere with Pol II recruitment. ArticleCASPubMed Google Scholar
Hongay, C. F., Grisafi, P. L., Galitski, T. & Fink, G. R. Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell127, 735–745 (2006). ArticleCASPubMed Google Scholar
van Werven, F. J. et al. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell150, 1170–1181 (2012). ArticleCASPubMedPubMed Central Google Scholar
Camblong, J., Iglesias, N., Fickentscher, C., Dieppois, G. & Stutz, F. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell131, 706–717 (2007). ArticleCASPubMed Google Scholar
Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell123, 581–592 (2005). ArticleCASPubMed Google Scholar
Houseley, J., Rubbi, L., Grunstein, M., Tollervey, D. & Vogelauer, M. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol. Cell32, 685–695 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev.19, 697–708 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bumgarner, S. L. et al. Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol. Cell45, 470–482 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hainer, S. J., Pruneski, J. A., Mitchell, R. D., Monteverde, R. M. & Martens, J. A. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev.25, 29–40 (2011). Demonstrates a novel mode ofSER3gene repression by the yeast lncRNASRG1that involves the direction of nucleosome occupancy at theSER3promoter. ArticleCASPubMedPubMed Central Google Scholar
Hirota, K. et al. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature456, 130–134 (2008). ArticleCASPubMed Google Scholar
Lefevre, P., Witham, J., Lacroix, C. E., Cockerill, P. N. & Bonifer, C. The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol. Cell32, 129–139 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bumgarner, S. L., Dowell, R. D., Grisafi, P., Gifford, D. K. & Fink, G. R. Toggle involving _cis_-interfering noncoding RNAs controls variegated gene expression in yeast. Proc. Natl Acad. Sci. USA106, 18321–18326 (2009). Provides the first description of the pair ofcis-interfering lncRNAs at theFLO11locus in yeast, where a regulatory circuit toggles between two states of expression depending on the identity of the lncRNA expressed. ArticleCASPubMedPubMed Central Google Scholar
Flynn, R. A. & Chang, H. Y. Active chromatin and noncoding RNAs: an intimate relationship. Curr. Opin. Genet. Dev.22, 172–178 (2012). ArticleCASPubMed Google Scholar
Ørom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell143, 46–58 (2010). Describes a novel class of lncRNAs that, instead of repressing, activates target genes to function as RNA-dependent enhancers of gene expression. ArticleCASPubMedPubMed Central Google Scholar
Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature494, 497–501 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mariner, P. D. et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell29, 499–509 (2008). ArticleCASPubMed Google Scholar
Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature445, 666–670 (2007). ArticleCASPubMed Google Scholar
Shamovsky, I., Ivannikov, M., Kandel, E. S., Gershon, D. & Nudler, E. RNA-mediated response to heat shock in mammalian cells. Nature440, 556–560 (2006). ArticleCASPubMed Google Scholar
Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal3, ra8 (2010). PubMedPubMed Central Google Scholar
Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev.20, 1470–1484 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bond, A. M. et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nature Neurosci.12, 1020–1027 (2009). ArticleCASPubMed Google Scholar
Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science309, 1570–1573 (2005). The first study to functionally screen 512 evolutionarily conserved putative lncRNAs. Identified theNRONlncRNA as a repressor of NFAT nuclear trafficking. ArticleCASPubMed Google Scholar
Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell147, 773–788 (2011). Describes a particularly interesting paradigm whereby the post-translational modification status of a protein effector constitutes a switch in lncRNA-binding specificity and consequently determines the nuclear subdomain localization of target genes. ArticleCASPubMedPubMed Central Google Scholar
Geisler, S., Lojek, L., Khalil, A. M., Baker, K. E. & Coller, J. Decapping of long noncoding RNAs regulates inducible genes. Mol. Cell45, 279–291 (2012). ArticleCASPubMedPubMed Central Google Scholar
Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science309, 1514–1518 (2005). ArticleCASPubMed Google Scholar
Beltran, M. et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev.22, 756–769 (2008). Provides an example of a NAT lncRNA that regulates splicing of the sense encoded mRNA, but with a twist in that the NAT increases protein levels of its target by preventing the splicing of a 5′ UTR IRES-containing intron. ArticleCASPubMedPubMed Central Google Scholar
Hastings, M. L., Milcarek, C., Martincic, K., Peterson, M. L. & Munroe, S. H. Expression of the thyroid hormone receptor gene, erbAα, in B lymphocytes: alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels. Nucleic Acids Res.25, 4296–4300 (1997). ArticleCASPubMedPubMed Central Google Scholar
Krystal, G. W., Armstrong, B. C. & Battey, J. F. N-myc mRNA forms an RNA–RNA duplex with endogenous antisense transcripts. Mol. Cell. Biol.10, 4180–4191 (1990). ArticleCASPubMedPubMed Central Google Scholar
Munroe, S. H. & Lazar, M. A. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J. Biol. Chem.266, 22083–22086 (1991). CASPubMed Google Scholar
Faghihi, M. A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nature Rev. Mol. Cell. Biol.10, 637–643 (2009). ArticleCAS Google Scholar
Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell39, 925–938 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hundley, H. A. & Bass, B. L. ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem. Sci.35, 377–383 (2010). ArticleCASPubMedPubMed Central Google Scholar
Peters, N. T., Rohrbach, J. A., Zalewski, B. A., Byrkett, C. M. & Vaughn, J. C. RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts. RNA9, 698–710 (2003). ArticleCASPubMedPubMed Central Google Scholar
Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science309, 1564–1566 (2005). ArticlePubMed Google Scholar
Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature491, 454–457 (2012). Discovers and characterizes the first lncRNA of a potentially new class of partially antisense SINE2B repeat-containing lncRNAs which upregulates translation of targets. ArticleCASPubMed Google Scholar
Nishizawa, M. et al. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biol.6, 2817–2830 (2008). ArticleCASPubMed Google Scholar
Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature470, 284–288 (2011). Provides the first evidence that Alu element-containing lncRNAs can transactivate SMD by imperfectly base pairing with 3′ UTR Alu elements in target mRNAs. ArticleCASPubMedPubMed Central Google Scholar
Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nature Med.14, 723–730 (2008). ArticleCASPubMed Google Scholar
Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell146, 353–358 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell147, 358–369 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res.38, 5366–5383 (2010). ArticleCASPubMedPubMed Central Google Scholar
Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet.39, 1033–1037 (2007). ArticleCASPubMed Google Scholar
Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Naturehttp://dx.doi.org/10.1038/nature11993 (2013). References 77 and 78 provide powerful evidence that circRNAs, covalently linked by the head-to-tail splicing of exons, can function as miRNA sponges to suppress miRNA activity.
Yin, Q.-F. et al. Long noncoding RNAs with snoRNA ends. Mol. Cell48, 219–230 (2012). Describes the discovery of a new class of intron-derived lncRNAs flanked by snoRNAs and shows that one in particular associates with splicing regulators to alter splicing patterns. ArticleCASPubMed Google Scholar
Hellwig, S. & Bass, B. L. A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes. Proc. Natl Acad. Sci. USA105, 12897–12902 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pijlman, G. P. et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe4, 579–591 (2008). ArticleCASPubMed Google Scholar
Moon, S. L. et al. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA18, 2029–2040 (2012). ArticleCASPubMedPubMed Central Google Scholar
Liu, X., Li, D., Zhang, W., Guo, M. & Zhan, Q. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J.31, 4415–4427 (2012). ArticleCASPubMedPubMed Central Google Scholar
Buratti, E. & Baralle, F. E. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol.7, 420–429 (2010). ArticleCASPubMed Google Scholar
Colombrita, C. et al. TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J. Biol. Chem.287, 15635–15647 (2012). ArticleCASPubMedPubMed Central Google Scholar
Strong, M. J. et al. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol. Cell. Neurosci.35, 320–327 (2007). ArticleCASPubMed Google Scholar
Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H. & Strong, M. J. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res.1305, 168–182 (2009). ArticleCASPubMed Google Scholar
Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nature Neurosci.14, 452–458 (2011). ArticleCASPubMed Google Scholar
Zappulla, D. C. & Cech, T. R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl Acad. Sci. USA101, 10024–10029 (2004). ArticleCASPubMedPubMed Central Google Scholar
Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature427, 808–814 (2004). ArticleCASPubMed Google Scholar
Pfeiffer, V. & Lingner, J. TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet.8, e1002747 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shevtsov, S. P. & Dundr, M. Nucleation of nuclear bodies by RNA. Nature Cell Biol.13, 167–173 (2011). ArticleCASPubMed Google Scholar
Sunwoo, H. et al. MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res.19, 347–359 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sasaki, Y. T. F., Ideue, T., Sano, M., Mituyama, T. & Hirose, T. MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl Acad. Sci. USA106, 2525–2530 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biol.13, 95–101 (2011). Uses a live-cell imaging system to directly visualize paraspeckle protein recruitment and shows thatNEAT1lncRNA transcription regulates paraspeckle maintenance with the lncRNA potentially acting as an assembly platform. ArticleCASPubMed Google Scholar
Cieśla, J. Metabolic enzymes that bind RNA: yet another level of cellular regulatory network? Acta Biochim. Pol.53, 11–32 (2006). PubMed Google Scholar
Hentze, M. W. & Argos, P. Homology between IRE-BP, a regulatory RNA-binding protein, aconitase, and isopropylmalate isomerase. Nucleic Acids Res.19, 1739–1740 (1991). ArticleCASPubMedPubMed Central Google Scholar
Mukhopadhyay, R., Jia, J., Arif, A., Ray, P. S. & Fox, P. L. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem. Sci.34, 324–331 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ramachandran, S. & Palanisamy, V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip. Rev. RNA3, 286–293 (2012). ArticleCASPubMed Google Scholar
Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol.9, 654–659 (2007). ArticleCASPubMed Google Scholar
Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biol.10, 1470–1476 (2008). ArticleCASPubMed Google Scholar
Mathivanan, S., Fahner, C. J., Reid, G. E. & Simpson, R. J. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res.40, D1241–D1244 (2012). ArticleCASPubMed Google Scholar
Huang, X. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics14, 319 (2013). Characterizes, for the first time, the RNA content of exosomes by RNA sequencing and reveals that lncRNAs are indeed present in these membrane-bound vesicles. ArticleCASPubMedPubMed Central Google Scholar
Yu, K., Chedin, F., Hsieh, C.-L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nature Immunol.4, 442–451 (2003). ArticleCAS Google Scholar
Abarrategui, I. & Krangel, M. S. Noncoding transcription controls downstream promoters to regulate T-cell receptor-α recombination. EMBO J.26, 4380–4390 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pone, E. J., Xu, Z., White, C. A., Zan, H. & Casali, P. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front. Biosci.17, 2594–2615 (2012). ArticleCAS Google Scholar
Stavnezer, J. & Amemiya, C. T. Evolution of isotype switching. Semin. Immunol.16, 257–275 (2004). ArticleCASPubMed Google Scholar
Hackney, J. A. et al. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv. Immunol.101, 163–189 (2009). ArticleCASPubMed Google Scholar
Selsing, E. Ig class switching: targeting the recombinational mechanism. Curr. Opin. Immunol.18, 249–254 (2006). ArticleCASPubMed Google Scholar
Abarrategui, I. & Krangel, M. S. Regulation of T cell receptor-α gene recombination by transcription. Nature Immunol.7, 1109–1115 (2006). ArticleCAS Google Scholar
Cobb, R. M., Oestreich, K. J., Osipovich, O. A. & Oltz, E. M. Accessibility control of V(D)J recombination. Adv. Immunol.91, 45–109 (2006). ArticleCASPubMed Google Scholar
Petes, T. D. Meiotic recombination hot spots and cold spots. Nature Rev. Genet.2, 360–369 (2001). ArticleCASPubMed Google Scholar
Wahls, W. P., Siegel, E. R. & Davidson, M. K. Meiotic recombination hotspots of fission yeast are directed to loci that express non-coding RNA. PLoS ONE3, e2887 (2008). ArticleCASPubMedPubMed Central Google Scholar
Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nature Chem. Biol.9, 18–20 (2013). ArticleCAS Google Scholar
Martin, L. et al. Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nature Methods9, 1192–1194 (2012). ArticleCASPubMed Google Scholar
Tsai, M.-C., Spitale, R. C. & Chang, H. Y. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res.71, 3–7 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science322, 750–756 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323 (2007). ArticleCASPubMedPubMed Central Google Scholar